मध्यबिंदु विधि: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
{{For|संख्यात्मक में मध्यबिंदु नियम [[संख्यात्मक एकीकरण|चतुर्भुज]]|आयताकार विधि}} | {{For|संख्यात्मक में मध्यबिंदु नियम [[संख्यात्मक एकीकरण|चतुर्भुज]]|आयताकार विधि}} | ||
[[File:Midpoint method illustration.png|right|thumb|यह मानते हुए मध्यबिंदु विधि का चित्रण <math>y_n</math> स्पष्ट मान के बराबर है <math>y(t_n).</math> मध्यबिंदु विधि गणना करती है <math>y_{n+1}</math> ताकि लाल राग मध्यबिंदु (हरी रेखा) पर स्पर्शरेखा रेखा के लगभग समानांतर हो।]][[संख्यात्मक विश्लेषण]] में, [[व्यावहारिक गणित]] की एक शाखा, मध्यबिंदु विधि संख्यात्मक [[साधारण अंतर समीकरण]] के लिए साधारण अंतर समीकरण को हल करने की एक-चरणीय विधि है, | [[File:Midpoint method illustration.png|right|thumb|यह मानते हुए मध्यबिंदु विधि का चित्रण <math>y_n</math> स्पष्ट मान के बराबर है <math>y(t_n).</math> मध्यबिंदु विधि गणना करती है <math>y_{n+1}</math> ताकि लाल राग मध्यबिंदु (हरी रेखा) पर स्पर्शरेखा रेखा के लगभग समानांतर हो।]][[संख्यात्मक विश्लेषण]] में, [[व्यावहारिक गणित]] की एक शाखा, '''मध्यबिंदु विधि''' संख्यात्मक [[साधारण अंतर समीकरण]] के लिए साधारण अंतर समीकरण को हल करने की एक-चरणीय विधि है, | ||
:<math> y'(t) = f(t, y(t)), \quad y(t_0) = y_0 .</math> | :<math> y'(t) = f(t, y(t)), \quad y(t_0) = y_0 .</math> | ||
स्पष्ट मध्यबिंदु विधि सूत्र द्वारा दी गई है | स्पष्ट मध्यबिंदु विधि सूत्र द्वारा दी गई है | ||
Line 25: | Line 25: | ||
==मध्यबिंदु विधि की व्युत्पत्ति == | ==मध्यबिंदु विधि की व्युत्पत्ति == | ||
समीकरण के लिए संख्यात्मक एकीकरण का चित्रण <math>y'=y, y(0)=1.</math> नीला: [[यूलर विधि]], हरा: मध्यबिंदु विधि, लाल: स्पष्ट समाधान, <math>y=e^t.</math> चरण का आकार है <math>h=1.0.</math>''' '''के लिए वही चित्रण <math>h=0.25.</math> यह देखा गया है कि मध्यबिंदु विधि यूलर विधि की तुलना में तेजी से अभिसरण करती है। | |||
मध्यबिंदु विधि यूलर विधि का परिशोधन है | मध्यबिंदु विधि यूलर विधि का परिशोधन है | ||
Line 59: | Line 59: | ||
अंतर्निहित विधि की समय समरूपता के कारण, स्थानीय त्रुटि के <math>h</math> में सम डिग्री के सभी पद समाप्त हो जाते हैं, जिससे कि स्थानीय त्रुटि स्वचालित रूप से <math>\mathcal O(h^3)</math> क्रम की हो जाती है। <math>k | अंतर्निहित विधि की समय समरूपता के कारण, स्थानीय त्रुटि के <math>h</math> में सम डिग्री के सभी पद समाप्त हो जाते हैं, जिससे कि स्थानीय त्रुटि स्वचालित रूप से <math>\mathcal O(h^3)</math> क्रम की हो जाती है। <math>k | ||
</math> के निर्धारण में अंतर्निहित को स्पष्ट यूलर विधि से बदलने पर फिर से स्पष्ट मध्यबिंदु विधि प्राप्त होती है। | </math> के निर्धारण में अंतर्निहित को स्पष्ट यूलर विधि से बदलने पर फिर से स्पष्ट मध्यबिंदु विधि प्राप्त होती है। | ||
==यह भी देखें == | ==यह भी देखें == | ||
Line 83: | Line 104: | ||
* {{Citation | last1=Süli | first1=Endre | last2=Mayers | first2=David | title=An Introduction to Numerical Analysis | publisher=[[Cambridge University Press]] | isbn=0-521-00794-1 | year=2003}}. | * {{Citation | last1=Süli | first1=Endre | last2=Mayers | first2=David | title=An Introduction to Numerical Analysis | publisher=[[Cambridge University Press]] | isbn=0-521-00794-1 | year=2003}}. | ||
* {{cite book |last1=Burden | first1=Richard | last2=Faires | first2=John |title=Numerical Analysis |publisher=Richard Stratton|year=2010|isbn=978-0-538-73351-9|page=286}} | * {{cite book |last1=Burden | first1=Richard | last2=Faires | first2=John |title=Numerical Analysis |publisher=Richard Stratton|year=2010|isbn=978-0-538-73351-9|page=286}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | [[Category:Articles with hatnote templates targeting a nonexistent page]] |
Latest revision as of 12:55, 6 September 2023
संख्यात्मक विश्लेषण में, व्यावहारिक गणित की एक शाखा, मध्यबिंदु विधि संख्यात्मक साधारण अंतर समीकरण के लिए साधारण अंतर समीकरण को हल करने की एक-चरणीय विधि है,
स्पष्ट मध्यबिंदु विधि सूत्र द्वारा दी गई है
-
(1e)
द्वारा अंतर्निहित मध्यबिंदु विधि
-
(1i)
के लिए यहां, चरण आकार है - एक छोटी धनात्मक संख्या, और का अनुमानित अनुमानित मान है। स्पष्ट मध्यबिंदु विधि को कभी-कभी संशोधित यूलर विधि के रूप में भी जाना जाता है,[1] अंतर्निहित विधि सबसे सरल संयोजन विधि है, और, हैमिल्टनियन गतिशीलता पर प्रयुक्त , एक सहानुभूतिपूर्ण इंटीग्रेटर है। ध्यान दें कि संशोधित यूलर विधि ह्यून की विधि को संदर्भित कर सकती है,[2] अधिक स्पष्टता के लिए रनगे-कुट्टा विधियों की सूची देखें।
विधि का नाम इस तथ्य से आता है कि उपरोक्त सूत्र में, समाधान का स्लोप देने वाले फलन का मूल्यांकन के बीच के मध्य बिंदु पर किया जाता है, जिस पर का मान ज्ञात होता है और जिस पर का मान ज्ञात करना आवश्यक है।
एक ज्यामितीय व्याख्या विधि की उत्तम सहज समझ प्रदान कर सकती है (दाईं ओर चित्र देखें)। मूल यूलर विधि में, पर वक्र की स्पर्श रेखा की गणना का उपयोग करके की जाती है। अगला मान वहां पाया जाता है जहां स्पर्श रेखा ऊर्ध्वाधर रेखा को काटती है। चूँकि , यदि दूसरा व्युत्पन्न केवल और , के बीच धनात्मक है, या केवल ऋणात्मक है (जैसा कि चित्र में है), तो वक्र तेजी से स्पर्शरेखा से दूर हो जाएगा, जिससे बढ़ने पर बड़ी त्रुटियां होंगी। आरेख दर्शाता है कि मध्यबिंदु (ऊपरी, हरी रेखा खंड) पर स्पर्शरेखा संभवतः उस अंतराल में वक्र का अधिक स्पष्ट अनुमान देगी। चूँकि इस मध्यबिंदु स्पर्शरेखा की स्पष्ट गणना नहीं की जा सकी क्योंकि हम वक्र को नहीं जानते हैं (यही गणना की जानी है)। इसके अतिरिक्त , मध्य बिंदु पर के मान का अनुमान लगाने के लिए मूल यूलर की विधि का उपयोग करके इस स्पर्शरेखा का अनुमान लगाया जाता है, फिर के साथ स्पर्शरेखा के स्लोप की गणना की जाती है। अंत में, उत्तम स्पर्शरेखा का उपयोग से के मान की गणना करने के लिए किया जाता है। यह अंतिम चरण आरेख में लाल कॉर्ड द्वारा दर्शाया गया है। ध्यान दें कि मध्य बिंदु पर के मान का अनुमान लगाने में त्रुटि के कारण, लाल कॉर्ड हरे खंड (सच्ची स्पर्शरेखा) के बिल्कुल समानांतर नहीं है।
मध्यबिंदु विधि के प्रत्येक चरण पर स्थानीय त्रुटि क्रम की है, जो क्रम की वैश्विक त्रुटि देती है। इस प्रकार, यूलर की विधि की तुलना में अधिक कम्प्यूटेशनल रूप से गहन होने पर, मध्यबिंदु विधि की त्रुटि समान्यत: से अधिक तेजी से घट जाती है।
.
विधियाँ उच्च-क्रम विधियों के एक वर्ग के उदाहरण हैं जिन्हें रनगे-कुट्टा विधियों के रूप में जाना जाता है।
मध्यबिंदु विधि की व्युत्पत्ति
समीकरण के लिए संख्यात्मक एकीकरण का चित्रण नीला: यूलर विधि, हरा: मध्यबिंदु विधि, लाल: स्पष्ट समाधान, चरण का आकार है के लिए वही चित्रण यह देखा गया है कि मध्यबिंदु विधि यूलर विधि की तुलना में तेजी से अभिसरण करती है।
मध्यबिंदु विधि यूलर विधि का परिशोधन है
और इसी तरह से व्युत्पन्न किया गया है। यूलर की विधि प्राप्त करने की कुंजी अनुमानित समानता है
-
(2)
जो स्लोप सूत्र से प्राप्त होता है
-
(3)
और उसे ध्यान में रखते हुए
मध्यबिंदु विधि के लिए, (3) को अधिक स्पष्ट से बदलें
जब (2) के स्थान पर हम पाते हैं
-
(4)
कोई इस समीकरण का उपयोग को खोजने के लिए नहीं कर सकता क्योंकि कोई पर को नहीं जानता है। समाधान यह है कि टेलर श्रृंखला विस्तार का उपयोग ठीक उसी तरह किया जाए जैसे कि को हल करने के लिए यूलर विधि का उपयोग किया जा रहा हो।
जो (4) प्लग इन करने पर हमें देता है
और स्पष्ट मध्यबिंदु विधि (1e)।
अंतर्निहित विधि (1i) को से तक रेखा खंड के मध्य बिंदु द्वारा आधे चरण पर मान का अनुमान लगाकर प्राप्त किया जाता है।
और इस तरह
- सन्निकटन सम्मिलित करना के लिए
अंतर्निहित रनगे-कुट्टा पद्धति में परिणाम होता है
जिसमें पहले भाग के रूप में चरण आकार के साथ अंतर्निहित यूलर विधि सम्मिलित है।
अंतर्निहित विधि की समय समरूपता के कारण, स्थानीय त्रुटि के में सम डिग्री के सभी पद समाप्त हो जाते हैं, जिससे कि स्थानीय त्रुटि स्वचालित रूप से क्रम की हो जाती है। के निर्धारण में अंतर्निहित को स्पष्ट यूलर विधि से बदलने पर फिर से स्पष्ट मध्यबिंदु विधि प्राप्त होती है।
यह भी देखें
- आयत विधि
- ह्यून की विधि
- लीपफ्रॉग एकीकरण और वेरलेट एकीकरण
टिप्पणियाँ
- ↑ Süli & Mayers 2003, p. 328
- ↑ Burden & Faires 2011, p. 286
संदर्भ
- Griffiths,D. V.; Smith, I. M. (1991). Numerical methods for engineers: a programming approach. Boca Raton: CRC Press. p. 218. ISBN 0-8493-8610-1.
- Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0-521-00794-1.
- Burden, Richard; Faires, John (2010). Numerical Analysis. Richard Stratton. p. 286. ISBN 978-0-538-73351-9.