फोकर-प्लैंक समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Partial differential equation}} | {{Short description|Partial differential equation}} | ||
[[सांख्यिकीय यांत्रिकी]] और [[सूचना सिद्धांत]] में, ''' | [[सांख्यिकीय यांत्रिकी]] और [[सूचना सिद्धांत]] में, '''फोकर-प्लैंक समीकरण''' आंशिक अंतर समीकरण है जो एक [[एक प्रकार कि गति|प्रकार कि गति]] की तरह ड्रैग (भौतिकी) बलों और यादृच्छिक बलों के प्रभाव में कण के वेग की संभाव्यता घनत्व फलन के [[समय विकास]] का वर्णन करता है। समीकरण को अन्य वेधशालाओं के लिए भी सामान्यीकृत किया जा सकता है।<ref>{{Cite book| title = Statistical Physics: statics, dynamics and renormalization| author = Leo P. Kadanoff| publisher = World Scientific| isbn = 978-981-02-3764-6| year = 2000| url = https://books.google.com/books?id=22dadF5p6gYC&pg=PA135 }}</ref> फोककर-प्लैंक समीकरण के सूचना सिद्धांत, ग्राफ सिद्धांत, डेटा विज्ञान, वित्त, अर्थशास्त्र आदि में अनेक अनुप्रयोग हैं। | ||
इसका नाम [[एड्रियन फोकर]] और [[मैक्स प्लैंक]] के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।<ref>{{cite journal|last=Fokker|first=A. D.|year=1914|title=विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा|url=https://zenodo.org/record/1424274|journal=[[Annalen der Physik|Ann. Phys.]]|volume=348|issue=4. Folge 43|pages=810–820|bibcode=1914AnP...348..810F|doi=10.1002/andp.19143480507}}</ref><ref>{{cite journal|last=Planck|first=M.|year=1917|title=Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie|url=https://biodiversitylibrary.org/page/29213319|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin|volume=24|pages=324–341}}</ref> इसे [[एंड्री कोलमोगोरोव]] के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।<ref>{{cite journal |first=Andrei |last=Kolmogorov |title=Über die analytischen Methoden in der Wahrscheinlichkeitstheorie |journal=[[Mathematische Annalen]] |volume=104 |issue=1 |trans-title=On Analytical Methods in the Theory of Probability |pages=415–458 [pp. 448–451] |year=1931 |language=de |doi=10.1007/BF01457949 |s2cid=119439925 }}</ref> जब इसे कण स्थिति वितरण पर प्रयुक्त किया जाता है, तो इसे स्मोलुचोव्स्की समीकरण ([[मैरियन स्मोलुचोव्स्की]] के बाद) के रूप में जाना जाता है।<ref>{{cite book|last=Dhont|first=J. K. G.|url=https://books.google.com/books?id=mmArTF5SJ9oC&pg=PA183|title=कोलाइड्स की गतिशीलता का एक परिचय|publisher=Elsevier|year=1996|isbn=978-0-08-053507-4|page=183}}</ref> और इस संदर्भ में यह संवहन-[[प्रसार]] समीकरण के सामान्तर है। जब कण स्थिति और संवेग वितरण पर प्रयुक्त किया जाता है, तो इसे क्लेन-क्रैमर्स समीकरण के रूप में जाना जाता है। शून्य प्रसार वाला स्तिथि निरंतरता समीकरण है। फोककर-प्लैंक समीकरण क्रेमर्स-मोयल विस्तार के माध्यम से [[मास्टर समीकरण]] से प्राप्त किया जाता है।<ref>{{cite book |first1=Wolfgang |last1=Paul |first2=Jörg |last2=Baschnagel |chapter=A Brief Survey of the Mathematics of Probability Theory |title=स्टचास्तिक प्रोसेसेज़|pages=17–61 [esp. 33–35] |publisher=Springer |year=2013 |isbn= 978-3-319-00326-9|doi=10.1007/978-3-319-00327-6_2 }}</ref> | इसका नाम [[एड्रियन फोकर]] और [[मैक्स प्लैंक]] के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।<ref>{{cite journal|last=Fokker|first=A. D.|year=1914|title=विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा|url=https://zenodo.org/record/1424274|journal=[[Annalen der Physik|Ann. Phys.]]|volume=348|issue=4. Folge 43|pages=810–820|bibcode=1914AnP...348..810F|doi=10.1002/andp.19143480507}}</ref><ref>{{cite journal|last=Planck|first=M.|year=1917|title=Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie|url=https://biodiversitylibrary.org/page/29213319|journal=Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin|volume=24|pages=324–341}}</ref> इसे [[एंड्री कोलमोगोरोव]] के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।<ref>{{cite journal |first=Andrei |last=Kolmogorov |title=Über die analytischen Methoden in der Wahrscheinlichkeitstheorie |journal=[[Mathematische Annalen]] |volume=104 |issue=1 |trans-title=On Analytical Methods in the Theory of Probability |pages=415–458 [pp. 448–451] |year=1931 |language=de |doi=10.1007/BF01457949 |s2cid=119439925 }}</ref> जब इसे कण स्थिति वितरण पर प्रयुक्त किया जाता है, तो इसे स्मोलुचोव्स्की समीकरण ([[मैरियन स्मोलुचोव्स्की]] के बाद) के रूप में जाना जाता है।<ref>{{cite book|last=Dhont|first=J. K. G.|url=https://books.google.com/books?id=mmArTF5SJ9oC&pg=PA183|title=कोलाइड्स की गतिशीलता का एक परिचय|publisher=Elsevier|year=1996|isbn=978-0-08-053507-4|page=183}}</ref> और इस संदर्भ में यह संवहन-[[प्रसार]] समीकरण के सामान्तर है। जब कण स्थिति और संवेग वितरण पर प्रयुक्त किया जाता है, तो इसे क्लेन-क्रैमर्स समीकरण के रूप में जाना जाता है। शून्य प्रसार वाला स्तिथि निरंतरता समीकरण है। फोककर-प्लैंक समीकरण क्रेमर्स-मोयल विस्तार के माध्यम से [[मास्टर समीकरण]] से प्राप्त किया जाता है।<ref>{{cite book |first1=Wolfgang |last1=Paul |first2=Jörg |last2=Baschnagel |chapter=A Brief Survey of the Mathematics of Probability Theory |title=स्टचास्तिक प्रोसेसेज़|pages=17–61 [esp. 33–35] |publisher=Springer |year=2013 |isbn= 978-3-319-00326-9|doi=10.1007/978-3-319-00327-6_2 }}</ref> | ||
Line 91: | Line 91: | ||
<math display="block">d\mathbf{X}_t = \boldsymbol{\mu}(\mathbf{X}_t,t)\,dt + \boldsymbol{\sigma}(\mathbf{X}_t,t)\,d\mathbf{W}_t,</math> | <math display="block">d\mathbf{X}_t = \boldsymbol{\mu}(\mathbf{X}_t,t)\,dt + \boldsymbol{\sigma}(\mathbf{X}_t,t)\,d\mathbf{W}_t,</math> | ||
जहां <math>\mathbf{X}_t</math> और <math>\boldsymbol{\mu}(\mathbf{X}_t,t)</math> {{mvar|N}}-आयामी यादृच्छिक सदिश हैं, <math>\boldsymbol{\sigma}(\mathbf{X}_t,t)</math> एक <math>N \times M</math> आव्युह है और <math>\mathbf{W}_t</math> एक M-आयामी मानक वीनर प्रक्रिया है, संभाव्यता घनत्व पी <math>\mathbf{X}_t</math> <math>p(\mathbf{x},t)</math> फोककर-प्लैंक समीकरण को संतुष्ट करता है | |||
{{Equation box 1|cellpadding|border|indent=:|equation=<math> \frac{\partial p(\mathbf{x},t)}{\partial t} = -\sum_{i=1}^N \frac{\partial}{\partial x_i} \left[ \mu_i(\mathbf{x},t) p(\mathbf{x},t) \right] + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \, \partial x_j} \left[ D_{ij}(\mathbf{x},t) p(\mathbf{x},t) \right], </math>|border colour=#0073CF|background colour=#F5FFFA}}ड्रिफ्ट सदिश <math>\boldsymbol{\mu} = (\mu_1,\ldots,\mu_N)</math> और प्रसार [[ टेन्सर |टेन्सर]] <math display="inline">\mathbf{D} = \frac{1}{2} \boldsymbol{\sigma\sigma}^\mathsf{T}</math> के साथ, अर्थात। | {{Equation box 1|cellpadding|border|indent=:|equation=<math> \frac{\partial p(\mathbf{x},t)}{\partial t} = -\sum_{i=1}^N \frac{\partial}{\partial x_i} \left[ \mu_i(\mathbf{x},t) p(\mathbf{x},t) \right] + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i \, \partial x_j} \left[ D_{ij}(\mathbf{x},t) p(\mathbf{x},t) \right], </math>|border colour=#0073CF|background colour=#F5FFFA}}ड्रिफ्ट सदिश <math>\boldsymbol{\mu} = (\mu_1,\ldots,\mu_N)</math> और प्रसार [[ टेन्सर |टेन्सर]] <math display="inline">\mathbf{D} = \frac{1}{2} \boldsymbol{\sigma\sigma}^\mathsf{T}</math> के साथ, अर्थात। | ||
Line 134: | Line 134: | ||
<math display="block">dX_t = -a X_t dt + \sigma dW_t.</math> | <math display="block">dX_t = -a X_t dt + \sigma dW_t.</math> | ||
जहाँ <math>a>0</math> के साथ. भौतिक रूप से, इस समीकरण को इस प्रकार प्रेरित किया जा सकता है: जैसे द्रव्यमान <math> m </math> का कण वेग <math> V_t</math> के साथ किसी माध्यम घूम रहा है, उदाहरण के लिए, तरल पदार्थ में जाने पर, घर्षण बल का अनुभव होगा जो गति का प्रतिरोध करता है कि जिसका परिमाण कण के वेग <math> -a V_t</math> के साथ <math> a = \mathrm{constant} </math> आनुपातिक होने के रूप में अनुमानित किया जा सकता है. माध्यम में उपस्तिथ अन्य कण , कण से टकराते समय इच्छानुसार उसे लात मारेंगे और इस प्रभाव को श्वेत ध्वनि शब्द | जहाँ <math>a>0</math> के साथ. भौतिक रूप से, इस समीकरण को इस प्रकार प्रेरित किया जा सकता है: जैसे द्रव्यमान <math> m </math> का कण वेग <math> V_t</math> के साथ किसी माध्यम घूम रहा है, उदाहरण के लिए, तरल पदार्थ में जाने पर, घर्षण बल का अनुभव होगा जो गति का प्रतिरोध करता है कि जिसका परिमाण कण के वेग <math> -a V_t</math> के साथ <math> a = \mathrm{constant} </math> आनुपातिक होने के रूप में अनुमानित किया जा सकता है. माध्यम में उपस्तिथ अन्य कण , कण से टकराते समय इच्छानुसार उसे लात मारेंगे और इस प्रभाव को श्वेत ध्वनि शब्द <math> \sigma (d W_t/dt) </math> द्वारा अनुमानित किया जा सकता है; न्यूटन का दूसरा नियम इस प्रकार लिखा गया है कि | ||
<math display="block"> m \frac{dV_t}{dt}=-a V_t +\sigma \frac{dW_t}{dt}. </math> | <math display="block"> m \frac{dV_t}{dt}=-a V_t +\sigma \frac{dW_t}{dt}. </math> | ||
सरलता के लिए <math> m = 1</math> लेने और | सरलता के लिए <math> m = 1</math> लेने और संकेतन को <math> V_t\rightarrow X_t</math> के रूप में बदलने से परिचित रूप <math>dX_t = -a X_t dt + \sigma dW_t</math> प्राप्त होता है | ||
संबंधित फोकर-प्लैंक समीकरण है | संबंधित फोकर-प्लैंक समीकरण है | ||
Line 152: | Line 152: | ||
<math display="block">\frac{\partial p_s}{\partial t} + \mathbf{v} \cdot \boldsymbol{\nabla} p_s + \frac{Z_s e}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \boldsymbol{\nabla}_v p_s = -\frac{\partial}{\partial v_i} \left(p_s \langle\Delta v_i\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \, \partial v_j} \left(p_s \langle\Delta v_i \, \Delta v_j\rangle\right),</math> | <math display="block">\frac{\partial p_s}{\partial t} + \mathbf{v} \cdot \boldsymbol{\nabla} p_s + \frac{Z_s e}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \boldsymbol{\nabla}_v p_s = -\frac{\partial}{\partial v_i} \left(p_s \langle\Delta v_i\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial v_i \, \partial v_j} \left(p_s \langle\Delta v_i \, \Delta v_j\rangle\right),</math> | ||
जहां तीसरे पद में [[लोरेंत्ज़ बल]] के कारण कण त्वरण सम्मिलित है और दाईं ओर फोककर-प्लैंक शब्द कण टकराव के प्रभावों को दर्शाता है। मात्राएँ <math>\langle\Delta v_i\rangle</math> और <math>\langle\Delta v_i \, \Delta v_j\rangle</math> इकाई समय में अन्य सभी कण प्रजातियों के साथ टकराव के कारण <math>s</math> प्रकार का कण वेग में औसत परिवर्तन है इन मात्राओं के लिए व्यंजक अन्यत्र दिए गए हैं।<ref name="Rosenbluth">{{Cite journal|last=Rosenbluth |first=M. N. |title=Fokker–Planck Equation for an Inverse-Square Force |journal=Physical Review |volume=107 |issue= 1|pages=1–6 |year=1957 |doi=10.1103/physrev.107.1|bibcode = 1957PhRv..107....1R |url=https://escholarship.org/uc/item/2gk1s1v8 }}</ref> यदि मॅनगेटों को | जहां तीसरे पद में [[लोरेंत्ज़ बल]] के कारण कण त्वरण सम्मिलित है और दाईं ओर फोककर-प्लैंक शब्द कण टकराव के प्रभावों को दर्शाता है। मात्राएँ <math>\langle\Delta v_i\rangle</math> और <math>\langle\Delta v_i \, \Delta v_j\rangle</math> इकाई समय में अन्य सभी कण प्रजातियों के साथ टकराव के कारण <math>s</math> प्रकार का कण वेग में औसत परिवर्तन है इन मात्राओं के लिए व्यंजक अन्यत्र दिए गए हैं।<ref name="Rosenbluth">{{Cite journal|last=Rosenbluth |first=M. N. |title=Fokker–Planck Equation for an Inverse-Square Force |journal=Physical Review |volume=107 |issue= 1|pages=1–6 |year=1957 |doi=10.1103/physrev.107.1|bibcode = 1957PhRv..107....1R |url=https://escholarship.org/uc/item/2gk1s1v8 }}</ref> यदि मॅनगेटों को नजरअंदाज कर दिया जाता है, तो बोल्ट्ज़मैन समीकरण [[व्लासोव समीकरण]] में बदल जाता है। | ||
== स्मोलुचोव्स्की प्रसार समीकरण == | == स्मोलुचोव्स्की प्रसार समीकरण == | ||
Line 225: | Line 225: | ||
<math display="block">y = x +\tau b ,\ \ \ y_0= x_0 + \tau_0 b </math> | <math display="block">y = x +\tau b ,\ \ \ y_0= x_0 + \tau_0 b </math> | ||
<math>P(x, t, |x_0, t_0) = q(y, \tau|y_0, \tau_0)</math> के साथ स्मोलुचोकी का समीकरण बन जाता है, | <math>P(x, t, |x_0, t_0) = q(y, \tau|y_0, \tau_0)</math> के साथ स्मोलुचोकी का समीकरण बन जाता है, | ||
Line 236: | Line 235: | ||
दाईं ओर का सिमुलेशन [[ब्राउनियन गतिकी]] सिमुलेशन का उपयोग करके पूरा किया गया था।<ref>{{Cite web|title=ब्राउनियन डायनेमिक्स|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Koztin|first=Ioan| website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref><ref>{{Cite web |title=ब्राउनियन डायनेमिक्स विधि लागू|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Kosztin|first=Ioan | website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref> पद्धति के लिए लैंग्विन समीकरण से प्रारंभ करते हुए यह | दाईं ओर का सिमुलेशन [[ब्राउनियन गतिकी]] सिमुलेशन का उपयोग करके पूरा किया गया था।<ref>{{Cite web|title=ब्राउनियन डायनेमिक्स|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Koztin|first=Ioan| website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref><ref>{{Cite web |title=ब्राउनियन डायनेमिक्स विधि लागू|url=https://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/| last=Kosztin|first=Ioan | website=Non-Equilibrium Statistical Mechanics: Course Notes|access-date=2020-05-18|archive-date=2020-01-15 | archive-url=https://web.archive.org/web/20200115202424/http://www.ks.uiuc.edu/~kosztin/PHYCS498NSM/|url-status=dead}}</ref> पद्धति के लिए लैंग्विन समीकरण से प्रारंभ करते हुए यह | ||
<math display="block">m\ddot{x} = - \gamma \dot{x} -c + \sigma \xi(t)</math> | <math display="block">m\ddot{x} = - \gamma \dot{x} -c + \sigma \xi(t)</math> | ||
जहां <math>\gamma</math> घर्षण शब्द है, <math>\xi</math> कण पर एक उतार-चढ़ाव वाला बल है, और <math>\sigma</math> उतार-चढ़ाव का आयाम है। संतुलन पर घर्षण बल जड़त्व बल <math>\left| \gamma \dot{x} \right| \gg \left| m \ddot{x} \right|</math> से बहुत अधिक होता है। इसलिए, लैंग्विन समीकरण बन जाता है, | |||
<math display="block">\gamma \dot{x} = -c + \sigma \xi(t)</math> | <math display="block">\gamma \dot{x} = -c + \sigma \xi(t)</math> | ||
ब्राउनियन गतिशील सिमुलेशन के लिए उतार-चढ़ाव बल <math>\xi(t)</math> आयाम प्रणाली के तापमान <math display="inline">\sigma = \sqrt{2\gamma k_\text{B} T}</math> पर निर्भर होने के साथ गॉसियन माना जाता है | ब्राउनियन गतिशील सिमुलेशन के लिए उतार-चढ़ाव बल <math>\xi(t)</math> आयाम प्रणाली के तापमान <math display="inline">\sigma = \sqrt{2\gamma k_\text{B} T}</math> पर निर्भर होने के साथ गॉसियन माना जाता है लैंग्विन समीकरण को फिर से लिखना, | ||
<math display="block">\frac{dx}{dt}=-D \beta c + \sqrt{2D}\xi(t)</math> | <math display="block">\frac{dx}{dt}=-D \beta c + \sqrt{2D}\xi(t)</math> | ||
Line 249: | Line 250: | ||
==ज्ञात समाधान और व्युत्क्रम वाले विशेष स्तिथियों == | ==ज्ञात समाधान और व्युत्क्रम वाले विशेष स्तिथियों == | ||
[[स्थानीय अस्थिरता]] के माध्यम से विकल्पों की [[अस्थिरता मुस्कान]] मॉडलिंग के लिए [[गणितीय वित्त]] में, किसी को मार्केट विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप प्रसार गुणांक <math>{\sigma}(\mathbf{X}_t,t)</math> प्राप्त करने की समस्या होती है । इसलिए समस्या फोककर-प्लैंक समीकरण के विपरीत है: विकल्प मार्केट से निकाले गए X के अंतर्निहित विकल्प के घनत्व ''f(x,t)'' को देखते हुए, किसी लक्ष्य ''f'' के अनुरूप स्थानीय अस्थिरता <math>{\sigma}(\mathbf{X}_t,t)</math> का पता लगाना है यह व्युत्क्रम समस्या है जिसे सामान्यतः डुपाइरे (1994, 1997) द्वारा गैर-पैरामीट्रिक समाधान के साथ हल किया गया है।<ref>[[Bruno Dupire]] (1994) Pricing with a Smile. ''Risk Magazine'', January, 18–20.</ref><ref>[[Bruno Dupire]] (1997) Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, Cambridge, 103–111. {{ISBN|0-521-58424-8}}.</ref> ब्रिगो और मर्कुरियो (2002, 2003) विशेष स्थानीय अस्थिरता <math>{\sigma}(\mathbf{X}_t,t)</math> के माध्यम से पैरामीट्रिक रूप में समाधान का प्रस्ताव करते हैं [[मिश्रण मॉडल]] द्वारा दिए गए फोककर-प्लैंक समीकरण के समाधान के अनुरूप होते है ।<ref>{{Cite journal| doi = 10.1142/S0219024902001511| year = 2002| last1 = Brigo | first1 = D.| last2 = Mercurio| first2 = Fabio| title = लॉगनॉर्मल-मिक्सचर डायनामिक्स और कैलिब्रेशन टू मार्केट वोलैटिलिटी स्माइल्स| journal = International Journal of Theoretical and Applied Finance| volume = 5| issue = 4| pages = 427–446| citeseerx = 10.1.1.210.4165}}</ref><ref>{{Cite journal| doi = 10.1088/1469-7688/3/3/303| title = वैकल्पिक परिसंपत्ति-मूल्य की गतिशीलता और अस्थिरता मुस्कुराती है| year = 2003| last1 = Brigo | first1 = D.| last2 = Mercurio | first2 = F.| last3 = Sartorelli | first3 = G.| journal = Quantitative Finance| volume = 3| issue = 3| pages = 173–183| s2cid = 154069452}}</ref> तथा इससे अधिक जानकारी फेंगलर (2008) में भी उपलब्ध है।<ref>Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag, {{ISBN|978-3-540-26234-3}}</ref> जहाँ | [[स्थानीय अस्थिरता]] के माध्यम से विकल्पों की [[अस्थिरता मुस्कान]] मॉडलिंग के लिए [[गणितीय वित्त]] में, किसी को मार्केट विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप प्रसार गुणांक <math>{\sigma}(\mathbf{X}_t,t)</math> प्राप्त करने की समस्या होती है । इसलिए समस्या फोककर-प्लैंक समीकरण के विपरीत है: विकल्प मार्केट से निकाले गए X के अंतर्निहित विकल्प के घनत्व ''f(x,t)'' को देखते हुए, किसी लक्ष्य ''f'' के अनुरूप स्थानीय अस्थिरता <math>{\sigma}(\mathbf{X}_t,t)</math> का पता लगाना है यह व्युत्क्रम समस्या है जिसे सामान्यतः डुपाइरे (1994, 1997) द्वारा गैर-पैरामीट्रिक समाधान के साथ हल किया गया है।<ref>[[Bruno Dupire]] (1994) Pricing with a Smile. ''Risk Magazine'', January, 18–20.</ref><ref>[[Bruno Dupire]] (1997) Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, Cambridge, 103–111. {{ISBN|0-521-58424-8}}.</ref> ब्रिगो और मर्कुरियो (2002, 2003) विशेष स्थानीय अस्थिरता <math>{\sigma}(\mathbf{X}_t,t)</math> के माध्यम से पैरामीट्रिक रूप में समाधान का प्रस्ताव करते हैं [[मिश्रण मॉडल]] द्वारा दिए गए फोककर-प्लैंक समीकरण के समाधान के अनुरूप होते है ।<ref>{{Cite journal| doi = 10.1142/S0219024902001511| year = 2002| last1 = Brigo | first1 = D.| last2 = Mercurio| first2 = Fabio| title = लॉगनॉर्मल-मिक्सचर डायनामिक्स और कैलिब्रेशन टू मार्केट वोलैटिलिटी स्माइल्स| journal = International Journal of Theoretical and Applied Finance| volume = 5| issue = 4| pages = 427–446| citeseerx = 10.1.1.210.4165}}</ref><ref>{{Cite journal| doi = 10.1088/1469-7688/3/3/303| title = वैकल्पिक परिसंपत्ति-मूल्य की गतिशीलता और अस्थिरता मुस्कुराती है| year = 2003| last1 = Brigo | first1 = D.| last2 = Mercurio | first2 = F.| last3 = Sartorelli | first3 = G.| journal = Quantitative Finance| volume = 3| issue = 3| pages = 173–183| s2cid = 154069452}}</ref> तथा इससे अधिक जानकारी फेंगलर (2008) में भी उपलब्ध है।<ref>Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag, {{ISBN|978-3-540-26234-3}}</ref> जहाँ एकत्रित (2008),<ref>[[Jim Gatheral]] (2008). The Volatility Surface. Wiley and Sons, {{ISBN|978-0-471-79251-2}}.</ref> और मुसीला और रुत्कोव्स्की (2008) भी इसके बारे में जानते है।<ref>Marek Musiela, Marek Rutkowski. ''Martingale Methods in Financial Modelling'', 2008, 2nd Edition, Springer-Verlag, {{ISBN|978-3-540-20966-9}}.</ref> | ||
==फोकर-प्लैंक समीकरण और पथ अभिन्न == | ==फोकर-प्लैंक समीकरण और पथ अभिन्न == | ||
Line 262: | Line 263: | ||
\end{align}</math> | \end{align}</math> | ||
यहां <math>x</math>वें -डेरिवेटिव केवल <math>\delta</math>-फलन पर कार्य करते हैं, <math>p(x,t)</math> पर नहीं समय अंतराल <math>\varepsilon</math> पर एकीकृत करें , | |||
यहां <math>x</math>वें -डेरिवेटिव केवल <math>\delta</math>-फलन पर कार्य करते हैं, <math>p(x,t)</math> पर नहीं | |||
<math display="block">p(x', t + \varepsilon) =\int_{-\infty}^\infty \, \mathrm{d}x\left(\left( 1+\varepsilon \left[ D_1(x,t) \frac \partial {\partial x} + D_2(x,t) \frac{\partial^2}{\partial x^2}\right]\right) \delta(x' - x) \right) p(x,t)+O(\varepsilon^2).</math> | <math display="block">p(x', t + \varepsilon) =\int_{-\infty}^\infty \, \mathrm{d}x\left(\left( 1+\varepsilon \left[ D_1(x,t) \frac \partial {\partial x} + D_2(x,t) \frac{\partial^2}{\partial x^2}\right]\right) \delta(x' - x) \right) p(x,t)+O(\varepsilon^2).</math> | ||
[[फूरियर अभिन्न]] डालें | [[फूरियर अभिन्न]] डालें | ||
<math display="block">\delta{\left( x' - x\right)} = \int_{-i\infty}^{i\infty} \frac{\mathrm{d} \tilde{x}}{2\pi i} e^{\tilde{x} {\left( x - x'\right)}}</math> | <math display="block">\delta{\left( x' - x\right)} = \int_{-i\infty}^{i\infty} \frac{\mathrm{d} \tilde{x}}{2\pi i} e^{\tilde{x} {\left( x - x'\right)}}</math> | ||
<math>\delta</math>-फलन के लिए , | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 290: | Line 289: | ||
* मास्टर समीकरण | * मास्टर समीकरण | ||
* [[ माध्य-क्षेत्र खेल सिद्धांत | माध्य-क्षेत्र खेल सिद्धांत]] | * [[ माध्य-क्षेत्र खेल सिद्धांत | माध्य-क्षेत्र खेल सिद्धांत]] | ||
* बीबीजीकेवाई पदानुक्रम | * बीबीजीकेवाई पदानुक्रम या बोगोलीउबोव-बॉर्न-ग्रीन-किर्कवुड-यवोन समीकरणों का पदानुक्रम | ||
* ऑर्नस्टीन-उहलेनबेक प्रक्रिया | * ऑर्नस्टीन-उहलेनबेक प्रक्रिया | ||
* संवहन-प्रसार समीकरण | * संवहन-प्रसार समीकरण | ||
Line 304: | Line 303: | ||
*{{cite book |first=Hannes |last=Risken |title=The Fokker–Planck Equation: Methods of Solutions and Applications |edition=2nd |year=1996 |series=Springer Series in Synergetics |publisher=Springer |isbn=3-540-61530-X }} | *{{cite book |first=Hannes |last=Risken |title=The Fokker–Planck Equation: Methods of Solutions and Applications |edition=2nd |year=1996 |series=Springer Series in Synergetics |publisher=Springer |isbn=3-540-61530-X }} | ||
{{DEFAULTSORT:Fokker-Planck equation}} | {{DEFAULTSORT:Fokker-Planck equation}} | ||
[[Category: | [[Category:CS1|Fokker-Planck equation]] | ||
[[Category:Created On 24/07/2023]] | [[Category:CS1 Deutsch-language sources (de)|Fokker-Planck equation]] | ||
[[Category:CS1 maint|Fokker-Planck equation]] | |||
[[Category:Created On 24/07/2023|Fokker-Planck equation]] | |||
[[Category:Lua-based templates|Fokker-Planck equation]] | |||
[[Category:Machine Translated Page|Fokker-Planck equation]] | |||
[[Category:Pages with script errors|Fokker-Planck equation]] | |||
[[Category:Short description with empty Wikidata description|Fokker-Planck equation]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready|Fokker-Planck equation]] | |||
[[Category:Templates that add a tracking category|Fokker-Planck equation]] | |||
[[Category:Templates that generate short descriptions|Fokker-Planck equation]] | |||
[[Category:Templates using TemplateData|Fokker-Planck equation]] |
Latest revision as of 09:14, 5 September 2023
सांख्यिकीय यांत्रिकी और सूचना सिद्धांत में, फोकर-प्लैंक समीकरण आंशिक अंतर समीकरण है जो एक प्रकार कि गति की तरह ड्रैग (भौतिकी) बलों और यादृच्छिक बलों के प्रभाव में कण के वेग की संभाव्यता घनत्व फलन के समय विकास का वर्णन करता है। समीकरण को अन्य वेधशालाओं के लिए भी सामान्यीकृत किया जा सकता है।[1] फोककर-प्लैंक समीकरण के सूचना सिद्धांत, ग्राफ सिद्धांत, डेटा विज्ञान, वित्त, अर्थशास्त्र आदि में अनेक अनुप्रयोग हैं।
इसका नाम एड्रियन फोकर और मैक्स प्लैंक के नाम पर रखा गया है, जिन्होंने 1914 और 1917 में इसका वर्णन किया था।[2][3] इसे एंड्री कोलमोगोरोव के नाम पर कोलमोगोरोव फॉरवर्ड समीकरण के रूप में भी जाना जाता है, जिन्होंने 1931 में स्वतंत्र रूप से इसकी खोज की थी।[4] जब इसे कण स्थिति वितरण पर प्रयुक्त किया जाता है, तो इसे स्मोलुचोव्स्की समीकरण (मैरियन स्मोलुचोव्स्की के बाद) के रूप में जाना जाता है।[5] और इस संदर्भ में यह संवहन-प्रसार समीकरण के सामान्तर है। जब कण स्थिति और संवेग वितरण पर प्रयुक्त किया जाता है, तो इसे क्लेन-क्रैमर्स समीकरण के रूप में जाना जाता है। शून्य प्रसार वाला स्तिथि निरंतरता समीकरण है। फोककर-प्लैंक समीकरण क्रेमर्स-मोयल विस्तार के माध्यम से मास्टर समीकरण से प्राप्त किया जाता है।[6]
मौलिक यांत्रिकी और क्वांटम यांत्रिकी की एकल योजना में फोककर-प्लैंक समीकरण की पहली सुसंगत सूक्ष्म व्युत्पत्ति निकोले बोगोल्युबोव और निकोलाई मित्रोफ़ानोविच क्रायलोव द्वारा की गई थी।[7][8]
एक आयाम
एक स्थानिक आयाम x में, मानक वीनर प्रक्रिया द्वारा संचालित और स्टोकेस्टिक विभेदक समीकरण (एसडीई) द्वारा वर्णित इटो कैलकुलस के लिए उपयोग किया जाता है | तथा, प्रक्रिया
ड्रिफ्ट और प्रसार गुणांक वेग के साथ, तथा यादृच्छिक वेरिएबल का संभाव्यता घनत्व के लिए फोककर-प्लैंक का समीकरण है [9]
निम्नलिखित में प्रयोग करें .
इन्फिनिटेसिमल जेनरेटर (स्टोकेस्टिक प्रक्रियाएं) को परिभाषित करें (निम्नलिखित Ref में पाया जा सकता है।[10]):
फिर, एक Itô समीकरण के अधीन कण के लिए, इसका का उपयोग कर
जबकि फोककर-प्लैंक समीकरण का उपयोग उन समस्याओं के साथ किया जाता है जहां प्रारंभिक वितरण ज्ञात होता है, यदि समस्या पिछले समय के वितरण को जानने की है, अर्थात तब फेनमैन-केएसी सूत्र का उपयोग किया जा सकता है, जो कोलमोगोरोव पिछड़े समीकरण का परिणाम है।
इटो अर्थ में ऊपर परिभाषित स्टोकेस्टिक प्रक्रिया को स्ट्रैटोनोविच इंटीग्रल कन्वेंशन के अंदर स्ट्रैटोनोविच एसडीई के रूप में फिर से लिखा जा सकता है:
निरंतर प्रसार के साथ शून्य-ड्रिफ्ट समीकरण को मौलिक ब्राउनियन गति का मॉडल माना जा सकता है:
उच्च आयाम
अधिक सामान्यतः, यदि
ड्रिफ्ट सदिश और प्रसार टेन्सर के साथ, अर्थात।
यदि इटो एसडीई के अतिरिक्त , स्ट्रैटोनोविच इंटीग्रल पर विचार किया जाता है,
सामान्यीकरण
सामान्यतः, फोककर-प्लैंक समीकरण सामान्य कोलमोगोरोव फॉरवर्ड समीकरण का विशेष स्तिथि है
उदाहरण
वीनर प्रक्रिया
एक मानक अदिश वीनर प्रक्रिया स्टोकेस्टिक विभेदक समीकरण द्वारा उत्पन्न होती है
ऑर्नस्टीन-उहलेनबेक प्रक्रिया
ऑर्नस्टीन-उहलेनबेक प्रक्रिया ऐसी प्रक्रिया है जिसे इस प्रकार परिभाषित किया गया है
सरलता के लिए लेने और संकेतन को के रूप में बदलने से परिचित रूप प्राप्त होता है
संबंधित फोकर-प्लैंक समीकरण है
प्लाज्मा भौतिकी
प्लाज्मा भौतिकी में, कण प्रजाति , के लिए वितरण फलन(भौतिकी)।, संभाव्यता घनत्व फलन का स्थान लेता है। संबंधित बोल्ट्ज़मैन समीकरण द्वारा दिया गया है
जहां तीसरे पद में लोरेंत्ज़ बल के कारण कण त्वरण सम्मिलित है और दाईं ओर फोककर-प्लैंक शब्द कण टकराव के प्रभावों को दर्शाता है। मात्राएँ और इकाई समय में अन्य सभी कण प्रजातियों के साथ टकराव के कारण प्रकार का कण वेग में औसत परिवर्तन है इन मात्राओं के लिए व्यंजक अन्यत्र दिए गए हैं।[13] यदि मॅनगेटों को नजरअंदाज कर दिया जाता है, तो बोल्ट्ज़मैन समीकरण व्लासोव समीकरण में बदल जाता है।
स्मोलुचोव्स्की प्रसार समीकरण
बाह्य बल के अधीन अत्यधिक नमीयुक्त ब्राउनियन कण पर विचार करें :[14]
जहाँ प्रसार स्थिरांक है और . इस समीकरण का महत्व यह है कि यह कणों की प्रणाली पर तापमान के प्रभाव और स्थानिक रूप से निर्भर प्रसार स्थिरांक दोनों को सम्मिलित करने की अनुमति देता है।
बाह्य क्षेत्र में ब्राउनियन कण के लैंग्विन समीकरण से प्रारंभ करना , जहाँ घर्षण शब्द है, कण पर एक उतार-चढ़ाव वाला बल है, और उतार-चढ़ाव का आयाम है.
इसके बाद, किसी विशेष आयतन में कणों की कुल संख्या इस प्रकार दी जाती है,
कम्प्यूटेशनल विचार
ब्राउनियन गति लैंग्विन समीकरण का अनुसरण करती है, जिसे अनेक भिन्न -भिन्न स्टोकेस्टिक फोर्सिंग के लिए हल किया जा सकता है, जिसके परिणाम औसत होते हैं (आणविक गतिशीलता में विहित संयोजन)। चूँकि , इस कम्प्यूटेशनल रूप से गहन दृष्टिकोण के अतिरिक्त , कोई फोककर-प्लैंक समीकरण का उपयोग कर सकता है और अंतराल में कण का वेग और संभाव्यता पर विचार कर सकता है जब यह समय 0 पर अपनी गति प्रारम्भ करता है .
1-D रैखिक संभावित उदाहरण
एक आयाम में ब्राउनियन गतिकी सरल है।[14][15]
सिद्धांत
प्रपत्र की रैखिक क्षमता से प्रारंभ करना संगत स्मोलुचोव्स्की समीकरण बन जाता है,
जहां प्रसार स्थिरांक, , स्थान और समय पर स्थिर है। सीमा की स्थितियाँ ऐसी हैं कि संभावना विलुप्त हो जाती है कणों के समूह की प्रारंभिक स्थिति के साथ ही स्थान से प्रारंभ होते है |.
और को परिभाषित और समन्वय परिवर्तन को प्रयुक्त करना ही इसका कार्य होता है |
के साथ स्मोलुचोकी का समीकरण बन जाता है,
सिमुलेशन
दाईं ओर का सिमुलेशन ब्राउनियन गतिकी सिमुलेशन का उपयोग करके पूरा किया गया था।[16][17] पद्धति के लिए लैंग्विन समीकरण से प्रारंभ करते हुए यह
जहां घर्षण शब्द है, कण पर एक उतार-चढ़ाव वाला बल है, और उतार-चढ़ाव का आयाम है। संतुलन पर घर्षण बल जड़त्व बल से बहुत अधिक होता है। इसलिए, लैंग्विन समीकरण बन जाता है,
ब्राउनियन गतिशील सिमुलेशन के लिए उतार-चढ़ाव बल आयाम प्रणाली के तापमान पर निर्भर होने के साथ गॉसियन माना जाता है लैंग्विन समीकरण को फिर से लिखना,
जहाँ आइंस्टीन संबंध है. इस ब्राउनियन कण के पथ को संख्यात्मक रूप से अनुमानित करने के लिए इस समीकरण का एकीकरण यूलर-मारुयामा विधि का उपयोग करके किया गया था।
समाधान
आंशिक अंतर समीकरण होने के कारण, फोककर-प्लैंक समीकरण को केवल विशेष स्तिथियों में ही विश्लेषणात्मक रूप से हल किया जा सकता है। श्रोडिंगर समीकरण के साथ फोकर-प्लैंक समीकरण की औपचारिक सादृश्यता अनेक स्तिथियों में इसके समाधान के लिए क्वांटम यांत्रिकी से ज्ञात उन्नत संचालक विधियों के उपयोग की अनुमति देती है। इसके अतिरिक्त , ओवरडैम्प्ड गतिशीलता के स्तिथियों में जब फोककर-प्लैंक समीकरण में सभी स्थानिक वेरिएबल के संबंध में दूसरा आंशिक व्युत्पन्न होता है, तो समीकरण को मास्टर समीकरण के रूप में लिखा जा सकता है जिसे सरलता से संख्यात्मक रूप से हल किया जा सकता है।[18] अनेक अनुप्रयोगों में, व्यक्ति केवल स्थिर-अवस्था संभाव्यता वितरण में रुचि रखता है , जिसे यहां से पाया जा सकता है माध्य प्रथम मार्ग समय और विभाजन संभावनाओं की गणना को साधारण अंतर समीकरण के समाधान तक कम किया जा सकता है जो फोककर-प्लैंक समीकरण से घनिष्ठ रूप से संबंधित है।
ज्ञात समाधान और व्युत्क्रम वाले विशेष स्तिथियों
स्थानीय अस्थिरता के माध्यम से विकल्पों की अस्थिरता मुस्कान मॉडलिंग के लिए गणितीय वित्त में, किसी को मार्केट विकल्प उद्धरणों से प्राप्त संभाव्यता घनत्व के अनुरूप प्रसार गुणांक प्राप्त करने की समस्या होती है । इसलिए समस्या फोककर-प्लैंक समीकरण के विपरीत है: विकल्प मार्केट से निकाले गए X के अंतर्निहित विकल्प के घनत्व f(x,t) को देखते हुए, किसी लक्ष्य f के अनुरूप स्थानीय अस्थिरता का पता लगाना है यह व्युत्क्रम समस्या है जिसे सामान्यतः डुपाइरे (1994, 1997) द्वारा गैर-पैरामीट्रिक समाधान के साथ हल किया गया है।[19][20] ब्रिगो और मर्कुरियो (2002, 2003) विशेष स्थानीय अस्थिरता के माध्यम से पैरामीट्रिक रूप में समाधान का प्रस्ताव करते हैं मिश्रण मॉडल द्वारा दिए गए फोककर-प्लैंक समीकरण के समाधान के अनुरूप होते है ।[21][22] तथा इससे अधिक जानकारी फेंगलर (2008) में भी उपलब्ध है।[23] जहाँ एकत्रित (2008),[24] और मुसीला और रुत्कोव्स्की (2008) भी इसके बारे में जानते है।[25]
फोकर-प्लैंक समीकरण और पथ अभिन्न
प्रत्येक फोककर-प्लैंक समीकरण पथ अभिन्न सूत्रीकरण के सामान्तर है। पथ अभिन्न सूत्रीकरण क्षेत्र सिद्धांत विधियों के अनुप्रयोग के लिए उत्कृष्ट प्रारंभिक बिंदु है।[26] उदाहरण के लिए, इसका उपयोग क्रिटिकल फेनोमेना या क्रिटिकल डायनामिक्स में किया जाता है।
पाथ समाकलन की व्युत्पत्ति क्वांटम यांत्रिकी की तरह ही संभव है। वेरिएबल के साथ फोककर-प्लैंक समीकरण की व्युत्पत्ति इस प्रकार है। डेल्टा फलन सम्मिलित करके प्रारंभ करें और फिर भागों द्वारा एकीकृत करें:
यहां वें -डेरिवेटिव केवल -फलन पर कार्य करते हैं, पर नहीं समय अंतराल पर एकीकृत करें ,
फूरियर अभिन्न डालें
यद्यपि औपचारिक रूप से समतुल्य, फोककर-प्लैंक समीकरण या पथ अभिन्न सूत्रीकरण में विभिन्न समस्याओं को अधिक सरलता से हल किया जा सकता है। उदाहरण के लिए संतुलन वितरण फोककर-प्लैंक समीकरण से अधिक सीधे प्राप्त किया जा सकता है।
यह भी देखें
- कोलमोगोरोव पिछड़े समीकरण (प्रसार)
- बोल्ट्ज़मैन समीकरण
- व्लासोव समीकरण
- मास्टर समीकरण
- माध्य-क्षेत्र खेल सिद्धांत
- बीबीजीकेवाई पदानुक्रम या बोगोलीउबोव-बॉर्न-ग्रीन-किर्कवुड-यवोन समीकरणों का पदानुक्रम
- ऑर्नस्टीन-उहलेनबेक प्रक्रिया
- संवहन-प्रसार समीकरण
- क्लेन-क्रेमर्स समीकरण
नोट्स और संदर्भ
- ↑ Leo P. Kadanoff (2000). Statistical Physics: statics, dynamics and renormalization. World Scientific. ISBN 978-981-02-3764-6.
- ↑ Fokker, A. D. (1914). "विकिरण क्षेत्र में घूमते विद्युत द्विध्रुवों की औसत ऊर्जा". Ann. Phys. 348 (4. Folge 43): 810–820. Bibcode:1914AnP...348..810F. doi:10.1002/andp.19143480507.
- ↑ Planck, M. (1917). "Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie". Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin. 24: 324–341.
- ↑ Kolmogorov, Andrei (1931). "Über die analytischen Methoden in der Wahrscheinlichkeitstheorie" [On Analytical Methods in the Theory of Probability]. Mathematische Annalen (in Deutsch). 104 (1): 415–458 [pp. 448–451]. doi:10.1007/BF01457949. S2CID 119439925.
- ↑ Dhont, J. K. G. (1996). कोलाइड्स की गतिशीलता का एक परिचय. Elsevier. p. 183. ISBN 978-0-08-053507-4.
- ↑ Paul, Wolfgang; Baschnagel, Jörg (2013). "A Brief Survey of the Mathematics of Probability Theory". स्टचास्तिक प्रोसेसेज़. Springer. pp. 17–61 [esp. 33–35]. doi:10.1007/978-3-319-00327-6_2. ISBN 978-3-319-00326-9.
- ↑ N. N. Bogolyubov Jr. and D. P. Sankovich (1994). "N. N. Bogolyubov and statistical mechanics". Russian Math. Surveys 49(5): 19—49. doi:10.1070/RM1994v049n05ABEH002419
- ↑ N. N. Bogoliubov and N. M. Krylov (1939). Fokker–Planck equations generated in perturbation theory by a method based on the spectral properties of a perturbed Hamiltonian. Zapiski Kafedry Fiziki Akademii Nauk Ukrainian SSR 4: 81–157 (in Ukrainian).
- ↑ Risken, H. (1996), The Fokker–Planck Equation: Methods of Solution and Applications, vol. Second Edition, Third Printing, p. 72
- ↑ 10.0 10.1 Öttinger, Hans Christian (1996). पॉलिमरिक तरल पदार्थों में स्टोकेस्टिक प्रक्रियाएं. Berlin-Heidelberg: Springer-Verlag. p. 75. ISBN 978-3-540-58353-0.
- ↑ Kamenshchikov, S. (2014). "परफेक्ट कैओस सिस्टम में क्लस्टरिंग और अनिश्चितता". Journal of Chaos. 2014: 1–6. arXiv:1301.4481. doi:10.1155/2014/292096. S2CID 17719673.
- ↑ Lecture handout 2019 nyu.edu
- ↑ Rosenbluth, M. N. (1957). "Fokker–Planck Equation for an Inverse-Square Force". Physical Review. 107 (1): 1–6. Bibcode:1957PhRv..107....1R. doi:10.1103/physrev.107.1.
- ↑ 14.0 14.1 Ioan, Kosztin (Spring 2000). "स्मोलुचोव्स्की प्रसार समीकरण". Non-Equilibrium Statistical Mechanics: Course Notes.
- ↑ Kosztin, Ioan (Spring 2000). "ब्राउनियन डायनेमिक्स विधि लागू". Non-Equilibrium Statistical Mechanics: Course Notes.
- ↑ Koztin, Ioan. "ब्राउनियन डायनेमिक्स". Non-Equilibrium Statistical Mechanics: Course Notes. Archived from the original on 2020-01-15. Retrieved 2020-05-18.
- ↑ Kosztin, Ioan. "ब्राउनियन डायनेमिक्स विधि लागू". Non-Equilibrium Statistical Mechanics: Course Notes. Archived from the original on 2020-01-15. Retrieved 2020-05-18.
- ↑ Holubec Viktor, Kroy Klaus, and Steffenoni Stefano (2019). "Physically consistent numerical solver for time-dependent Fokker–Planck equations". Phys. Rev. E. 99 (4): 032117. arXiv:1804.01285. Bibcode:2019PhRvE..99c2117H. doi:10.1103/PhysRevE.99.032117. PMID 30999402. S2CID 119203025.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Bruno Dupire (1994) Pricing with a Smile. Risk Magazine, January, 18–20.
- ↑ Bruno Dupire (1997) Pricing and Hedging with Smiles. Mathematics of Derivative Securities. Edited by M.A.H. Dempster and S.R. Pliska, Cambridge University Press, Cambridge, 103–111. ISBN 0-521-58424-8.
- ↑ Brigo, D.; Mercurio, Fabio (2002). "लॉगनॉर्मल-मिक्सचर डायनामिक्स और कैलिब्रेशन टू मार्केट वोलैटिलिटी स्माइल्स". International Journal of Theoretical and Applied Finance. 5 (4): 427–446. CiteSeerX 10.1.1.210.4165. doi:10.1142/S0219024902001511.
- ↑ Brigo, D.; Mercurio, F.; Sartorelli, G. (2003). "वैकल्पिक परिसंपत्ति-मूल्य की गतिशीलता और अस्थिरता मुस्कुराती है". Quantitative Finance. 3 (3): 173–183. doi:10.1088/1469-7688/3/3/303. S2CID 154069452.
- ↑ Fengler, M. R. (2008). Semiparametric Modeling of Implied Volatility, 2005, Springer Verlag, ISBN 978-3-540-26234-3
- ↑ Jim Gatheral (2008). The Volatility Surface. Wiley and Sons, ISBN 978-0-471-79251-2.
- ↑ Marek Musiela, Marek Rutkowski. Martingale Methods in Financial Modelling, 2008, 2nd Edition, Springer-Verlag, ISBN 978-3-540-20966-9.
- ↑ Zinn-Justin, Jean (1996). क्वांटम क्षेत्र सिद्धांत और महत्वपूर्ण घटनाएँ. Oxford: Clarendon Press. ISBN 978-0-19-851882-2.
- ↑ Janssen, H. K. (1976). "क्लासिकल फील्ड डायनेमिक्स और डायनामिकल क्रिटिकल प्रॉपर्टीज के रीनॉर्मलाइजेशन ग्रुप कैलकुलेशन के लिए लैग्रेंजियन पर". Z. Phys. B23 (4): 377–380. Bibcode:1976ZPhyB..23..377J. doi:10.1007/BF01316547. S2CID 121216943.
अग्रिम पठन
- Frank, Till Daniel (2005). Nonlinear Fokker–Planck Equations: Fundamentals and Applications. Springer Series in Synergetics. Springer. ISBN 3-540-21264-7.
- Gardiner, Crispin (2009). Stochastic Methods (4th ed.). Springer. ISBN 978-3-540-70712-7.
- Pavliotis, Grigorios A. (2014). Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Springer Texts in Applied Mathematics. Springer. ISBN 978-1-4939-1322-0.
- Risken, Hannes (1996). The Fokker–Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics (2nd ed.). Springer. ISBN 3-540-61530-X.