श्रृंखला नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 147: Line 147:


:<math>\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a}.</math>
:<math>\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a}.</math>
यदि <math>g</math>, {{Mvar|a}} के निकट दोलन करता है, तो ऐसा हो सकता है कि कोई व्यक्ति a के कितने भी करीब क्यों न हो , हमेशा x भी करीब होता है जैसे ''g'' ( ''x'' ) = ''g'' ( ''a'' ). उदाहरण के लिए, यह ''x'' = 0 और ''g'' ( ''x'' ) = ''x'' <sup>2</sup> sin(1/ ''x'' ) के लिए ''g'' ( ''x'' ) = 0 द्वारा परिभाषित[[ निरंतर कार्य | निरंतर]] कार्य g के लिए ''a'' = 0 के निकट होता है। अन्यथा, जब भी ऐसा होता है, उपरोक्त व्यंजक अपरिभाषित होता है क्योंकि इसमें शून्य से विभाजन करना शामिल होता है।
यदि <math>g</math>, {{Mvar|a}} के निकट दोलन करता है, तो ऐसा हो सकता है कि कोई व्यक्ति a के कितने भी करीब क्यों न हो , हमेशा x भी करीब होता है जैसे ''g'' ( ''x'' ) = ''g'' ( ''a'' ). उदाहरण के लिए, यह ''x'' = 0 और ''g'' ( ''x'' ) = ''x'' <sup>2</sup> sin(1/ ''x'' ) के लिए ''g'' ( ''x'' ) = 0 द्वारा परिभाषित[[ निरंतर कार्य | निरंतर]] कार्य g के लिए ''a'' = 0 के निकट होता है। अन्यथा, जब भी ऐसा होता है, उपरोक्त व्यंजक अपरिभाषित होता है क्योंकि इसमें शून्य से विभाजन करना उपस्थित होता है।


:<math>Q(y) = \begin{cases}
:<math>Q(y) = \begin{cases}
Line 209: Line 209:
फॉर्म के फंक्शन के लिए चेन रूल:
फॉर्म के फंक्शन के लिए चेन रूल:
:{{math|''f''(''g''{{sub|1}}(''x''), ... , ''g''{{sub|''k''}}(''x''))}},
:{{math|''f''(''g''{{sub|1}}(''x''), ... , ''g''{{sub|''k''}}(''x''))}},
किसी को इसके k तर्कों के संबंध में f के आंशिक डेरिवेटिव की आवश्यकता होती है। आंशिक डेरिवेटिव के लिए सामान्य अंकन में कार्य के तर्कों के लिए नाम शामिल होते हैं। चूंकि उपरोक्त सूत्र में इन तर्कों का नाम नहीं दिया गया है, इसलिए इसे निरूपित करना सरल और स्पष्ट है
किसी को इसके k तर्कों के संबंध में f के आंशिक डेरिवेटिव की आवश्यकता होती है। आंशिक डेरिवेटिव के लिए सामान्य अंकन में कार्य के तर्कों के लिए नाम उपस्थित होते हैं। चूंकि उपरोक्त सूत्र में इन तर्कों का नाम नहीं दिया गया है, इसलिए इसे निरूपित करना सरल और स्पष्ट है
:<math>D_i f</math> इसके i वें तर्क के संबंध में f का आंशिक व्युत्पन्न
:<math>D_i f</math> इसके i वें तर्क के संबंध में f का आंशिक व्युत्पन्न
: <math>D_i f(z)</math>
: <math>D_i f(z)</math>
Line 239: Line 239:
या संक्षेप में,
या संक्षेप में,
:<math>D(f \circ g) = Df \circ Dg.</math>
:<math>D(f \circ g) = Df \circ Dg.</math>
ऊपर दिए गए दूसरे प्रमाण के समान तकनीक का उपयोग करके उच्च-आयामी श्रृंखला नियम को सिद्ध किया जा सकता है।<ref name="spivak_manifolds">{{cite book |first=Michael |last=Spivak |author-link=Michael Spivak |title=[[कैलकुलस ऑन मैनिफोल्ड्स (पुस्तक)|Calculus on Manifolds]] |location=Boston |publisher=Addison-Wesley |year=1965 |isbn=0-8053-9021-9 |pages=19–20 }}</रेफरी>
ऊपर दिए गए दूसरे प्रमाण के समान तकनीक का उपयोग करके उच्च-आयामी श्रृंखला नियम को सिद्ध किया जा सकता है।<ref name="spivak_manifolds">{{cite book |first=Michael |last=Spivak |author-link=Michael Spivak |title=[[कैलकुलस ऑन मैनिफोल्ड्स (पुस्तक)|Calculus on Manifolds]] |location=Boston |publisher=Addison-Wesley |year=1965 |isbn=0-8053-9021-9 |pages=19–20 }}
 
</ref>  
चूंकि कुल व्युत्पन्न एक रैखिक परिवर्तन है, सूत्र में प्रदर्शित होने वाले कार्यों को मैट्रिक्स के रूप में फिर से लिखा जा सकता है। कुल व्युत्पन्न के अनुरूप मैट्रिक्स को [[ जैकबियन मैट्रिक्स ]] कहा जाता है, और दो डेरिवेटिव का संयोजन उनके जैकोबियन मैट्रिक्स के उत्पाद से मेल खाता है। इस दृष्टिकोण से श्रृंखला नियम इसलिए कहता है:
:<math>J_{f \circ g}(\mathbf{a}) = J_{f}(g(\mathbf{a})) J_{g}(\mathbf{a}),</math>
या संक्षेप में,
:<math>J_{f \circ g} = (J_f \circ g)J_g.</math>
अर्थात्, संयुक्त फलन का जैकोबियन, रचित कार्यों के जैकोबियन का गुणनफल होता है (उपयुक्त बिंदुओं पर मूल्यांकन किया जाता है)।
 
उच्च-आयामी श्रृंखला नियम एक-आयामी श्रृंखला नियम का सामान्यीकरण है। यदि k, m, और n 1 हैं, तो {{math|''f'' : '''R''' → '''R'''}} तथा {{math|''g'' : '''R''' → '''R'''}}, फिर f और g के जैकोबियन मैट्रिसेस हैं {{math|1 × 1}}. विशेष रूप से, वे हैं:
:<math>\begin{align}
J_g(a) &= \begin{pmatrix} g'(a) \end{pmatrix}, \\
J_{f}(g(a)) &= \begin{pmatrix} f'(g(a)) \end{pmatrix}.
\end{align}</math>
f g का जैकबियन इन का गुणनफल है {{math|1 × 1}} मैट्रिक्स, तो यह है {{math|''f''′(''g''(''a''))⋅''g''′(''a'')}}, जैसा कि एक आयामी श्रृंखला नियम से अपेक्षित है। रैखिक परिवर्तनों की भाषा में, डी<sub>''a''</sub>(g) वह फलन है जो सदिश को g′(a) और D . के गुणनखंड से मापता है<sub>''g''(''a'')</sub>(एफ) वह कार्य है जो एफ' (जी (ए)) के कारक द्वारा वेक्टर को स्केल करता है। श्रृंखला नियम कहता है कि इन दो रैखिक परिवर्तनों का सम्मिश्रण रैखिक परिवर्तन है {{math|''D''<sub>''a''</sub>(''f'' ∘ ''g'')}}, और इसलिए यह फ़ंक्शन है जो वेक्टर को f′(g(a))⋅g′(a) द्वारा स्केल करता है।
 
श्रृंखला नियम लिखने का एक अन्य तरीका तब उपयोग किया जाता है जब f और g को उनके घटकों के रूप में व्यक्त किया जाता है {{math|1='''y''' = ''f''('''u''') = (''f''<sub>1</sub>('''u'''), …, ''f''<sub>''k''</sub>('''u'''))}} तथा {{math|1='''u''' = ''g''('''x''') = (''g''<sub>1</sub>('''x'''), …, ''g''<sub>''m''</sub>('''x'''))}}. इस मामले में, जैकोबियन मैट्रिसेस के लिए उपरोक्त नियम आमतौर पर इस प्रकार लिखा जाता है:
:<math>\frac{\partial(y_1, \ldots, y_k)}{\partial(x_1, \ldots, x_n)} = \frac{\partial(y_1, \ldots, y_k)}{\partial(u_1, \ldots, u_m)} \frac{\partial(u_1, \ldots, u_m)}{\partial(x_1, \ldots, x_n)}.</math>
कुल डेरिवेटिव के लिए चेन नियम आंशिक डेरिवेटिव के लिए चेन नियम का तात्पर्य है। याद रखें कि जब कुल व्युत्पन्न मौजूद होता है, तो iवें समन्वय दिशा में आंशिक व्युत्पन्न जैकबियन मैट्रिक्स को iवें आधार वेक्टर से गुणा करके पाया जाता है। उपरोक्त सूत्र के साथ ऐसा करने पर, हम पाते हैं:
:<math>\frac{\partial(y_1, \ldots, y_k)}{\partial x_i} = \frac{\partial(y_1, \ldots, y_k)}{\partial(u_1, \ldots, u_m)} \frac{\partial(u_1, \ldots, u_m)}{\partial x_i}.</math>
चूँकि जेकोबियन मैट्रिक्स की प्रविष्टियाँ आंशिक डेरिवेटिव हैं, हम प्राप्त करने के लिए उपरोक्त सूत्र को सरल बना सकते हैं:
:<math>\frac{\partial(y_1, \ldots, y_k)}{\partial x_i} = \sum_{\ell = 1}^m \frac{\partial(y_1, \ldots, y_k)}{\partial u_\ell} \frac{\partial u_\ell}{\partial x_i}.</math>
अधिक अवधारणात्मक रूप से, यह नियम इस तथ्य को व्यक्त करता है कि x . में परिवर्तन<sub>''i''</sub> दिशा बदल सकती है सभी जी<sub>1</sub> जी के माध्यम से<sub>m</sub>, और इनमें से कोई भी परिवर्तन f को प्रभावित कर सकता है।
 
विशेष मामले में जहां {{math|1=''k'' = 1}}, ताकि f एक वास्तविक-मूल्यवान कार्य हो, तो यह सूत्र और भी सरल हो जाता है:
:<math>\frac{\partial y}{\partial x_i} = \sum_{\ell = 1}^m \frac{\partial y}{\partial u_\ell} \frac{\partial u_\ell}{\partial x_i}.</math>
इसे [[ डॉट उत्पाद ]] के रूप में फिर से लिखा जा सकता है। याद है कि {{math|'''u''' {{=}} (''g''<sub>1</sub>, …, ''g''<sub>''m''</sub>)}}, आंशिक व्युत्पन्न {{math|∂'''u''' / ∂''x''<sub>''i''</sub>}} एक सदिश भी है, और श्रृंखला नियम कहता है कि:
:<math>\frac{\partial y}{\partial x_i} = \nabla y \cdot \frac{\partial \mathbf{u}}{\partial x_i}.</math>
 
====उदाहरण====
दिया गया {{math|1=''u''(''x'', ''y'') = ''x''<sup>2</sup> + 2''y''}} कहाँ पे {{math|1=''x''(''r'', ''t'') = ''r'' sin(''t'')}} तथा {{math|1=''y''(''r'',''t'') = sin<sup>2</sup>(''t'')}}, का मान निर्धारित करें {{math|∂''u'' / ∂''r''}} तथा {{math|∂''u'' / ∂''t''}} श्रृंखला नियम का उपयोग करना।
:<math>\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = (2x)(\sin(t)) + (2)(0) = 2r \sin^2(t),</math>
तथा
:<math>\begin{align}\frac{\partial u}{\partial t}
&= \frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t} \\
&= (2x)(r\cos(t)) + (2)(2\sin(t)\cos(t)) \\
&= (2r\sin(t))(r\cos(t)) + 4\sin(t)\cos(t) \\
&= 2(r^2 + 2) \sin(t)\cos(t) \\
&= (r^2 + 2) \sin(2t).\end{align}</math>
 
====बहुपरिवर्तनीय कार्यों के उच्च डेरिवेटिव====
{{Main|Faà di Bruno's formula#Multivariate version}}
एकल-चर कार्यों के उच्च-क्रम डेरिवेटिव के लिए Faà di Bruno का सूत्र बहु-परिवर्तनीय मामले को सामान्यीकृत करता है। यदि {{math|''y'' {{=}} ''f''('''u''')}} का एक कार्य है {{math|1='''u''' = ''g''('''x''')}} ऊपर के रूप में, फिर का दूसरा व्युत्पन्न {{math|''f'' ∘ ''g''}} है:
:<math>\frac{\partial^2 y}{\partial x_i \partial x_j} = \sum_k \left(\frac{\partial y}{\partial u_k}\frac{\partial^2 u_k}{\partial x_i \partial x_j}\right) + \sum_{k, \ell} \left(\frac{\partial^2 y}{\partial u_k \partial u_\ell}\frac{\partial u_k}{\partial x_i}\frac{\partial u_\ell}{\partial x_j}\right).</math>
 
==आगे सामान्यीकरण==
कलन के सभी विस्तारों में एक श्रृंखला नियम होता है। इनमें से अधिकांश में, सूत्र वही रहता है, हालाँकि उस सूत्र का अर्थ बहुत भिन्न हो सकता है।
 
एक सामान्यीकरण कई गुना है। इस स्थिति में, श्रृंखला नियम इस तथ्य का प्रतिनिधित्व करता है कि का व्युत्पन्न {{math|''f'' ∘ ''g''}} f के व्युत्पन्न और g के व्युत्पन्न का सम्मिश्र है। यह प्रमेय ऊपर दिए गए उच्च आयामी श्रृंखला नियम का एक तात्कालिक परिणाम है, और इसका बिल्कुल वही सूत्र है।
 
बानाच रिक्त स्थान में फ्रेचेट डेरिवेटिव के लिए श्रृंखला नियम भी मान्य है। वही फार्मूला पहले जैसा है।<nowiki><ref></nowiki>{{cite book |first=Ward |last=Cheney |author-link=Elliott Ward Cheney Jr. |title=अनुप्रयुक्त गणित के लिए विश्लेषण|location=New York |publisher=Springer |year=2001 |chapter=The Chain Rule and Mean Value Theorems |pages=121–125 |isbn=0-387-95279-9 }}</ref>  


विभेदक बीजगणित में, व्युत्पन्न की व्याख्या काहलर अवकलन के मॉड्यूल के आकारिकी के रूप में की जाती है। विनिमेय वलयों का वलय समरूपता {{math|''f'' : ''R'' → ''S''}} काहलर विभेदकों के आकारिकी को निर्धारित करता है {{math|''Df'' : Ω<sub>''R''</sub> → Ω<sub>''S''</sub>}} जो D(F(R)) को अंतर बाहरी तत्व F(R) भेजता है। इस संदर्भ में सूत्र {{math|1=''D''(''f'' ∘ ''g'') = ''Df'' ∘ ''Dg''}}  भी रखता है।
विभेदक बीजगणित में, व्युत्पन्न की व्याख्या काहलर अवकलन के मॉड्यूल के आकारिकी के रूप में की जाती है। विनिमेय वलयों का वलय समरूपता {{math|''f'' : ''R'' → ''S''}} काहलर विभेदकों के आकारिकी को निर्धारित करता है {{math|''Df'' : Ω<sub>''R''</sub> → Ω<sub>''S''</sub>}} जो D(F(R)) को अंतर बाहरी तत्व F(R) भेजता है। इस संदर्भ में सूत्र {{math|1=''D''(''f'' ∘ ''g'') = ''Df'' ∘ ''Dg''}}  भी रखता है।
Line 314: Line 266:


{{Calculus topics}}
{{Calculus topics}}
[[Category:साक्ष्य युक्त लेख]]
[[Category: विभेदीकरण नियम]]
[[Category: विश्लेषण में प्रमेय]]
[[Category: कलन में प्रमेय]]


 
[[Category:All articles with unsourced statements]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from February 2016]]
[[Category:Articles with unsourced statements from September 2022]]
[[Category:Collapse templates]]
[[Category:Created On 13/11/2022]]
[[Category:Created On 13/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:कलन में प्रमेय]]
[[Category:विभेदीकरण नियम]]
[[Category:विश्लेषण में प्रमेय]]
[[Category:साक्ष्य युक्त लेख]]

Latest revision as of 14:39, 24 November 2022

Template:गणना

गणना में, श्रृंखला नियम एक सूत्र है जो f और g के डेरिवेटिव के संदर्भ में दो विभिन्न फलन f और g की संरचना के व्युत्पन्न को व्यक्त करता है. यदि कार्यऐसा है कि तो x के लिए, लैग्रेंज के अंकन में श्रृंखला नियम है:

या, समकक्ष:

श्रृंखला नियम को लाइबनिज के अंकन में भी व्यक्त किया जा सकता है। यदि चर z, चर y पर निर्भर करता है, जो स्वयं चर x पर निर्भर करता है (अर्थात, y और z आश्रित चर हैं), तो z मध्यवर्ती चर y के माध्यम से x पर भी निर्भर करता है. इस मामले में, श्रृंखला नियम के रूप में व्यक्त किया गया है

तथा

यह इंगित करने के लिए कि किन बिंदुओं पर डेरिवेटिव का मूल्यांकन किया जाना है।

अभिन्न में, श्रृंखला नियम का समकक्ष प्रतिस्थापन नियम है।

सहज व्याख्या

सहज रूप से, श्रृंखला नियम कहता है कि y के सापेक्ष z के परिवर्तन की तात्कालिक दर और x के सापेक्ष y के परिवर्तन की तात्कालिक दर को जानने से व्यक्ति को परिवर्तन की दो दरों के उत्पाद के रूप में x के सापेक्ष z के परिवर्तन की तात्कालिक दर की गणना करने की अनुमति मिलती है।

जैसा कि जॉर्ज एफ. सीमन्स ने कहा है: "यदि कार साइकिल से दोगुनी गति से चलती है और साइकिल चलने वाले व्यक्ति की गति से चार गुना तेज है, तो कार व्यक्ति की गति से 2 × 4 = 8 गुना गति से चलती है" [1] उदाहरण और श्रृंखला नियम के बीच का संबंध इस प्रकार है। z, y तथा x क्रमशः कार, साइकिल और चलने वाले आदमी की (चर) स्थितियाँ हैं। कार और साइकिल की आपेक्षिक स्थिति में परिवर्तन की दर है इसी प्रकार, तो, कार और चलने वाले आदमी की सापेक्ष स्थिति में परिवर्तन की दर है:

स्थिति परिवर्तन की दर गति का अनुपात है, और गति समय के संबंध में स्थिति का व्युत्पन्न है;

या, समकक्ष,

जो श्रृंखला नियम का भी अनुप्रयोग है।

इतिहास

ऐसा प्रतीत होता है कि श्रृंखला नियम का प्रयोग सबसे पहले गॉटफ्राइड विल्हेम लिबनिज़ो ने किया था। उन्होंने इसका उपयोग व्युत्पन्न की गणना वर्गमूल कार्य और कार्य के संयोजन के रूप में के लिए किया. उन्होंने पहली बार इसका उल्लेख 1676 के संस्मरण (गणना में सांकेतिक त्रुटि के साथ) में किया था। श्रृंखला नियम का सामान्य संकेतन लाइबनिज के कारण है।[2] गुइलौमे डे ल'हॉपिटल ने अपने अतिसूक्ष्म जीवों के विश्लेषण में निहित रूप से श्रृंखला नियम का इस्तेमाल किया। लियोनहार्ड यूलर की किसी भी विश्लेषण पुस्तक में श्रृंखला नियम प्रकट नहीं होता है, भले ही वे लीबनिज की खोज के सौ साल बाद लिखे गए हों।[citation needed]

कथन

श्रृंखला नियम का सबसे सरल रूप वास्तविक संख्या चर के वास्तविक-मूल्यवान फलनके लिए है। इसमें कहा गया है कि यदि g ऐसा कार्य है जो बिंदु c पर अवकलनीय है (अर्थात् व्युत्पन्न g′(c) मौजूद है) और f ऐसा कार्य है जो g(c) पर अवकलनीय है, तो संयुक्त कार्य c पर अवकलनीय है, और व्युत्पन्न है:[3]

नियम को कभी-कभी संक्षिप्त किया प्रवृत्तहै

यदि y = f(u) तथा u = g(x), तो यह संक्षिप्त रूप लाइबनिज़ संकेतन में इस प्रकार लिखा प्रवृत्तहै :

जिन बिंदुओं पर डेरिवेटिव का मूल्यांकन किया प्रवृत्तहै, उन्हें भी स्पष्ट रूप से बताया जा सकता है:

उसी तर्क को आगे बढ़ाते हुए, दिए गए n कार्य समग्र कार्य के साथ , यदि प्रत्येक कार्य इसके तत्काल इनपुट पर अवकलनीय है, तो मिश्रित फलनभी चेन नियम के बार-बार आवेदन से भिन्न होता है, जहां व्युत्पन्न है (लीबनिज़ के संकेतन में):

अनुप्रयोग

दो से अधिक फलनके सम्मिश्रण

शृंखला नियम दो से अधिक फलनके संयोजनों पर लागू किया जा सकता है। दो से अधिक फलनके सम्मिश्र का व्युत्पन्न लेने के लिए, ध्यान दें कि f, g, और h का सम्मिश्र (उसी क्रम में) gh के साथ f का सम्मिश्र है. श्रृंखला नियम बताता है कि: fgh के अवकलज की गणना करने के लिए, f के अवकलज और gh के अवकलज की गणना करना पर्याप्त है। f के व्युत्पन्न की गणना सीधे की जा सकती है, और जीएच के व्युत्पन्न की गणना श्रृंखला नियम को फिर से लागू करके की जा सकती है।

संक्षिप्तता के लिए, फलनपर विचार करें

इसे तीन फलनके सम्मिश्र के रूप में विघटित किया जा सकता है:

उनके डेरिवेटिव हैं:

श्रृंखला नियम बताता है कि बिंदु (x = a) पर उनके संमिश्र का व्युत्पन्न है:

लाइबनिज के संकेतन में, यह है:

या संक्षेप में,

व्युत्पन्न कार्य इसलिए है:

इस अवकलज की गणना करने का दूसरा तरीका संयुक्त कार्य fgh को fg और h के सम्मिश्र के रूप में देखना है। श्रृंखला नियम को इस तरीके से लागू करने से प्राप्त होगा:

यह वही है जो ऊपर गणना की गई थी। इसकी अपेक्षा की जानी चाहिए क्योंकि (fg) ∘ h = f ∘ (gh).

कभी-कभी, फॉर्म की मनमाने ढंग से लंबी संरचना को अलग करना आवश्यक होता है . इस मामले में, परिभाषित करें

जहां पे तथा जब . तब श्रृंखला नियम रूप लेता है

या, लैग्रेंज संकेतन में,

भागफल नियम

कुछ प्रसिद्ध विभेदन नियमों को प्राप्त करने के लिए श्रृंखला नियम का उपयोग किया जा सकता है। उदाहरण के लिए, भागफल नियम श्रृंखला नियम और उत्पाद नियम का परिणाम है। इसे देखने के लिए, कार्य f ( x )/ g ( x ) को गुणनफल f ( x ) · 1/ g ( x ) के रूप में लिखें. पहले उत्पाद नियम लागू करें:

1/ g ( x ) के अवकलज की गणना करने के लिए, ध्यान दें कि यह व्युत्क्रम कार्य के साथ g का सम्मिश्र है, अर्थात, वह कार्य जो x को 1/ x पर भेजता है. पारस्परिक कार्य का व्युत्पन्न है . श्रृंखला नियम लागू करने पर, अंतिम व्यंजक बन प्रवृत्तहै:

जो भागफल नियम का सामान्य सूत्र है।

व्युत्क्रम कार्य के डेरिवेटिव्स

मान लीजिए कि y = g(x) व्युत्क्रम कार्य है। इसके व्युत्क्रम कार्य f को कॉल करें ताकि हमारे पास हो x = f(y) हो. g के व्युत्पन्न के संदर्भ में f के व्युत्पन्न के लिए सूत्र है. इसे देखने के लिए ध्यान दें कि f तथा g सूत्र को संतुष्ट करते हैं

और क्योंकि कार्य और x समान हैं, उनके डेरिवेटिव समान होने चाहिए। x का व्युत्पन्न मान 1 के साथ स्थिर कार्य है, और इसका व्युत्पन्न है श्रृंखला नियम द्वारा निर्धारित किया प्रवृत्तहै। इसलिए, हमारे पास है:

f' को स्वतंत्र चर y के कार्य के रूप में व्यक्त करने के लिए, जहां भी x दिखाई देता है हम प्रतिस्थापित करते हैं। तब हम f' के लिए हल कर सकते हैं

उदाहरण के लिए, कार्य g(x) = ex पर विचार करें. इसका व्युत्क्रम है f(y) = ln y है. चूँकि g ′( x ) = e x, उपरोक्त सूत्र कहता है:

यह सूत्र तब सत्य होता है जब g अवकलनीय होता है और इसका व्युत्क्रम f भी अवकलनीय होता है। यह सूत्र तब विफल हो सकता है जब इनमें से कोई स्थिति सत्य न हो। उदाहरण के लिए g(x) = x3 पर विचार करें. इसका व्युत्क्रम f(y) = y1/3 है, जो शून्य पर अवकलनीय नहीं है। यदि हम शून्य पर f के व्युत्पन्न की गणना करने के लिए उपरोक्त सूत्र का उपयोग करने का प्रयास करते हैं, तो हमें 1/g′(f(0)) का मूल्यांकन करना चाहिए. चूँकि f(0) = 0 तथा g′(0) = 0, हमें 1/0 का मूल्यांकन करना चाहिए, जो अपरिभाषित है। इसलिए, इस मामले में सूत्र विफल हो जाता। यह आश्चर्यजनक नहीं है क्योंकि f शून्य पर अवकलनीय नहीं है।

उच्चतर डेरिवेटिव

फा डी ब्रूनो का सूत्र श्रृंखला नियम को उच्च डेरिवेटिव के लिए सामान्यीकृत करता है। यह मानते हुए कि y = f(u) तथा u = g(x), तो पहले कुछ डेरिवेटिव हैं:

प्रमाण

पहला प्रमाण

श्रृंखला नियम का प्रमाण समग्र कार्य fg के व्युत्पन्न को परिभाषित करने से प्रारम्भ होता है, जहां हम fg के लिए अंतर भागफल की सीमा लेते हैं, जब x a की ओर अग्रसर होता है :

फिलहाल के लिए मान लीजिए , के बराबर नही हैं. उस दशा में पिछली अभिव्यक्ति दो कारकों के उत्पाद के बराबर है:

यदि , a के निकट दोलन करता है, तो ऐसा हो सकता है कि कोई व्यक्ति a के कितने भी करीब क्यों न हो , हमेशा x भी करीब होता है जैसे g ( x ) = g ( a ). उदाहरण के लिए, यह x = 0 और g ( x ) = x 2 sin(1/ x ) के लिए g ( x ) = 0 द्वारा परिभाषित निरंतर कार्य g के लिए a = 0 के निकट होता है। अन्यथा, जब भी ऐसा होता है, उपरोक्त व्यंजक अपरिभाषित होता है क्योंकि इसमें शून्य से विभाजन करना उपस्थित होता है।

हम दिखाएंगे कि fg के लिए अंतर भागफल हमेशा बराबर होता है:

जब भी g ( x ) g ( a ) के बराबर नहीं होता है , यह स्पष्ट होता है क्योंकि g ( x ) − g ( a ) के कारक रद्द हो जाते हैं। जब g ( x ) g ( a ) के बराबर होता है, तो fg के लिए अंतर भागफल शून्य होता है क्योंकि f ( g ( x )) f ( g ( a ) ) के बराबर होता है, और उपरोक्त गुणनफल शून्य है क्योंकि यह f ′( g ( a )) गुणा शून्य के बराबर है। इसलिए उपरोक्त उत्पाद हमेशा अंतर भागफल के बराबर होता है, और यह दिखाने के लिए कि a पर fg का व्युत्पन्न मौजूद है और इसके मूल्य को निर्धारित करने के लिए, हमें केवल यह दिखाने की आवश्यकता है कि x के रूप में उपरोक्त उत्पाद की सीमा मौजूद है और यह इसका मूल्य निर्धारित करती है।

ऐसा करने के लिए, याद रखें कि उत्पाद की सीमा तब मौजूद होती है जब उसके कारकों की सीमा मौजूद होती है। जब ऐसा होता है, तो इन दो कारकों के उत्पाद की सीमा कारकों की सीमा के उत्पाद के बराबर होगी। दो कारक Q ( g ( x )) और ( g ( x ) − g ( a )) / ( xa ) हैं। उत्तरार्द्ध a पर g के लिए अंतर भागफल है, और क्योंकि g धारणा के आधार पर भिन्न होता है, इसकी सीमा x के रूप में मौजूद होती है और g'(a) के बराबर होती है.

Q( g ( x )) के लिए, ध्यान दें कि जहाँ भी f है, Q परिभाषित है। इसके अलावा, f अनुमान के अनुसार g( a ) पर अवकलनीय है, इसलिए व्युत्पन्न की परिभाषा के अनुसार Q g ( a ) पर निरंतर है। फलन g a पर सतत है क्योंकि यह a पर अवकलनीय है, और इसलिए Qg a पर सतत है। तो x के रूप में इसकी सीमा a तक जाती हैऔर Q ( g ( a )) f ′( g ( a )) के बराबर है।

इससे पता चलता है कि दोनों कारकों की सीमाएं मौजूद हैं और वे क्रमश: f′(g(a)) तथा g′(a) के बराबर है। इसलिए, a पर fg का अवकलज मौजूद है और f ′( g ( a )) g ′( a ) के बराबर है।

दूसरा प्रमाण

श्रृंखला नियम को सिद्ध करने का अन्य तरीका व्युत्पन्न द्वारा निर्धारित रैखिक सन्निकटन में त्रुटि को मापना है। इस प्रमाण का यह लाभ है कि यह कई चरों का सामान्यीकरण करता है। यह बिंदु पर अवकलनीयता की निम्नलिखित समतुल्य परिभाषा पर निर्भर करता है: फलन g पर अवकलनीय है यदि वास्तविक संख्या g′(a) और फलन ε(h) मौजूद होता है जो h के शून्य की ओर प्रवृत्त होता है, और इसके अलावा

यहाँ बाएँ हाथ की ओर a और a + h पर g के मान के बीच सही अंतर का प्रतिनिधित्व करता है, जबकि दाएँ हाथ की ओर व्युत्पन्न और त्रुटि शब्द द्वारा निर्धारित सन्निकटन का प्रतिनिधित्व करता है।

श्रृंखला नियम की स्थिति में, ऐसा फलन ε अस्तित्व में है क्योंकि g को a पर अवकलनीय माना प्रवृत्तहै। धारणा के अनुसार, g ( a ) पर f के लिए समान कार्य भी मौजूद है। हमारे पास है

उपरोक्त परिभाषा η (0) पर कोई बाधा नहीं डालती है, भले ही यह माना जाता है कि η ( के ) शून्य हो जाता है क्योंकि के शून्य हो जाता है। अगर हम η (0) = 0 सेट करते हैं , तो η 0 पर निरंतर है।

प्रमेय को सिद्ध करने के लिए अंतर f ( g ( a + h )) - f ( g ( a )) का अध्ययन करने की आवश्यकता है क्योंकि h शून्य की ओर जाता है। a पर g की अवकलनीयता की परिभाषा का प्रयोग करते हुए पहला कदम g ( a + h ) को प्रतिस्थापित करना है :

अगला चरण g ( a ) पर f की अवकलनीयता की परिभाषा का उपयोग करना है। इसके लिए कुछ k के लिए f ( g ( a ) + k ) रूप के पद की आवश्यकता होती है। उपरोक्त समीकरण में, सही k h के साथ भिन्न होता है। k h = g ′( a ) h + ε ( h ) h सेट करें और दाहिने हाथ की ओर f ( g ( a ) + k h ) बन जाता है. व्युत्पन्न की परिभाषा को लागू करना:

इस व्यंजक के व्यवहार का अध्ययन करने के लिए जब h शून्य की ओर प्रवृत्त होता है. शर्तों को पुनर्समूहित करने के बाद, दाहिनी ओर प्रवृत्त होता है:

चूँकि ε(h) और η(kh) शून्य की ओर प्रवृत्त होते हैं जब h शून्य की ओर प्रवृत्त होता है, पहले दो कोष्ठक वाले शब्द शून्य की ओर प्रवृत्त होते हैं जब h शून्य की ओर प्रवृत्त होता है। सीमाओं के गुणनफल पर उसी प्रमेय को लागू करने पर जैसा कि पहले प्रमाण में है, तीसरे कोष्ठक वाले पद में भी शून्य की प्रवृत्ति होती है। क्योंकि उपरोक्त अभिव्यक्ति अंतर के बराबर है f ( g ( a + h )) - f ( g ( a )), डेरिवेटिव की परिभाषा के अनुसार fg एक पर अवकलनीय है और इसका डेरिवेटिव है h'(g(a)) g'(a)। पहले प्रमाण में Q की भूमिका इस प्रमाण में η द्वारा निभाई जाती है। वे समीकरण से संबंधित हैं:

Q को g(a) पर परिभाषित करने की आवश्यकता शून्य पर η को परिभाषित करने की आवश्यकता के अनुरूप है ।

तीसरा प्रमाण

कॉन्स्टेंटिन कैराथोडोरी फलन की भिन्नता वैकल्पिक परिभाषा का उपयोग श्रृंखला नियम का सुंदर प्रमाण देने के लिए किया जा सकता है।[4] इस परिभाषा के अंतर्गत, कार्य f बिंदु a पर अवकलनीय है यदि कोई फलन q है,जो a पर सतत है और ऐसा है कि f ( x ) − f ( a ) = q ( x )( xa ) । ऐसा अधिक से अधिक एक फलन होता है, और यदि f , a पर अवकलनीय है तो f '( a ) = q ( a )

तथा

इसलिए,

लेकिन h(x) = q(g(x))r(x) द्वारा दिया गया फलन a पर सतत है, और हमें इसके लिए a मिलता है

समान दृष्टिकोण कई चरों के निरंतर भिन्न (वेक्टर-) कार्यों के लिए काम करता है। फैक्टरिंग की यह विधि अवकलनीयता के मजबूत रूपों के लिए एकीकृत दृष्टिकोण की भी अनुमति देती है, जब व्युत्पन्न को लिप्सचिट्ज़ निरंतर , होल्डर निरंतर , आदि की आवश्यकता होती है। विभेदन को स्वयं बहुपद शेष प्रमेय (थोड़ा बेज़ाउट प्रमेय, या कारक प्रमेय)के रूप में देखा जा सकता है।[citation needed]

अत्यल्प मात्राओं के माध्यम से प्रमाण

यदि तथा फिर अनंत को चुनना हम इसी की गणना करते हैं और फिर संबंधित , ताकि

और हमारे द्वारा प्राप्त मानक भाग को लागू करना

जो श्रृंखला नियम है।

बहुविकल्पीय स्थिति

बहु-चर कार्य के लिए श्रृंखला नियम का सामान्यीकरण तकनीक है। हालांकि, फॉर्म के फलन के मामले में लिखना आसान है

चूंकि यह मामला अक्सर चर फलन के अध्ययन में होता है, इसलिए इसे अलग से वर्णन करना उचित है।

f(g1(x), ... , gk(x)) की स्थिति

फॉर्म के फंक्शन के लिए चेन रूल:

f(g1(x), ... , gk(x)),

किसी को इसके k तर्कों के संबंध में f के आंशिक डेरिवेटिव की आवश्यकता होती है। आंशिक डेरिवेटिव के लिए सामान्य अंकन में कार्य के तर्कों के लिए नाम उपस्थित होते हैं। चूंकि उपरोक्त सूत्र में इन तर्कों का नाम नहीं दिया गया है, इसलिए इसे निरूपित करना सरल और स्पष्ट है

इसके i वें तर्क के संबंध में f का आंशिक व्युत्पन्न

z पर इस अवकलन का मान ।

इस अंकन के साथ, श्रृंखला नियम है

उदाहरण: अंकगणितीय संक्रियाएँ

यदि कार्यf योग है, यदि

फिर तथा . इस प्रकार, श्रृंखला नियम देता है

गुणन के लिए

आंशिक हैं तथा . इस प्रकार,

घातांक का मामला

थोड़ा और जटिल है, जैसे

और जैसे

यह इस प्रकार है कि

सामान्य नियम

सामान्य मामले में श्रृंखला नियम लिखने का सबसे आसान तरीका कुल व्युत्पन्न का उपयोग करना है, जो रैखिक परिवर्तन है जो सभी दिशात्मक डेरिवेटिव को सूत्र में प्रग्रहण करता है। विभिन्न कार्यपर विचार करें f : RmRk तथा g : RnRm, और बिंदु a में Rn. होने देना Da g के कुल व्युत्पन्न को निरूपित करें g पर a तथा Dg(a) f के कुल व्युत्पन्न को निरूपित करें f पर g(a). ये दो व्युत्पन्न रैखिक परिवर्तन हैं RnRm तथा RmRk, क्रमशः, इसलिए उनकी रचना की जा सकती है। कुल डेरिवेटिव के लिए श्रृंखला नियम यह है कि उनका सम्मिश्र का कुल डेरिवेटिव है fg पर a:

या संक्षेप में,

ऊपर दिए गए दूसरे प्रमाण के समान तकनीक का उपयोग करके उच्च-आयामी श्रृंखला नियम को सिद्ध किया जा सकता है।[5]

विभेदक बीजगणित में, व्युत्पन्न की व्याख्या काहलर अवकलन के मॉड्यूल के आकारिकी के रूप में की जाती है। विनिमेय वलयों का वलय समरूपता f : RS काहलर विभेदकों के आकारिकी को निर्धारित करता है Df : ΩR → ΩS जो D(F(R)) को अंतर बाहरी तत्व F(R) भेजता है। इस संदर्भ में सूत्र D(fg) = DfDg भी रखता है।

इन उदाहरणों की सामान्य विशेषता यह है कि वे इस विचार की अभिव्यक्ति हैं कि व्युत्पन्न ऑपरेटर का हिस्सा है। ऑपरेटर रिक्त स्थान पर ऑपरेशन है और उनके बीच कार्य करता है। यह प्रत्येक स्थान को नई जगह से जोड़ता है और प्रत्येक कार्य को दो रिक्त स्थान के बीच संबंधित नई जगहों के बीच नया कार्य जोड़ता है। उपरोक्त प्रत्येक मामले में, ऑपरेटर प्रत्येक स्थान को उसके स्पर्शरेखा बंडल में भेजता है और यह प्रत्येक कार्य को उसके डेरिवेटिव में भेजता है। उदाहरण के लिए, कई गुना मामले में, व्युत्पन्न Cr-मैनिफोल्ड (इसकी स्पर्शरेखा बंडल) और Cr−1को Cr-मैनिफोल्ड भेजता है। इसके लिए एकऑपरेटर होने की आवश्यकता है, अर्थात् सम्मिश्र का व्युत्पन्न डेरिवेटिव का सम्मिश्र होना चाहिए। सूत्र है D ( fg ) = DfDg

स्टोकेस्टिक कलन में श्रृंखला नियम भी हैं। इनमें से एक, इटो लेम्मा, इटो प्रक्रिया (या आम तौर पर सेमीमार्टिंगलेस) dX t के संयोजन को दो बार विभिन्न कार्यf के साथ व्यक्त करता है। इटो लेम्मा में, समग्र कार्य का व्युत्पन्न न केवल dX t और f के व्युत्पन्न पर निर्भर करता है बल्कि f के दूसरे व्युत्पन्न पर भी निर्भर करता है । दूसरे व्युत्पन्न पर निर्भरता गैर-शून्य द्विघात भिन्नता का परिणाम है, जिसका मोटे तौर पर मतलब है कि प्रक्रिया बहुत मोटे तरीके से ऊपर और नीचे जा सकती है। श्रृंखला नियम का यह प्रकार ऑपरेटर का उदाहरण नहीं है क्योंकि दो कार्यों की रचना विभिन्न प्रकार की होती है।

यह भी देखें

संदर्भ

  1. George F. Simmons, Calculus with Analytic Geometry (1985), p. 93.
  2. Rodríguez, Omar Hernández; López Fernández, Jorge M. (2010). "चेन रूल के डिडक्टिक्स पर एक लाक्षणिक प्रतिबिंब". The Mathematics Enthusiast. 7 (2): 321–332. doi:10.54870/1551-3440.1191. S2CID 29739148. Retrieved 2019-08-04.
  3. Apostol, Tom (1974). गणितीय विश्लेषण (2nd ed.). Addison Wesley. Theorem 5.5.
  4. Kuhn, Stephen (1991). "कैराथियोडोरी का व्युत्पन्न". The American Mathematical Monthly. 98 (1): 40–44. doi:10.2307/2324035. JSTOR 2324035.
  5. Spivak, Michael (1965). Calculus on Manifolds. Boston: Addison-Wesley. pp. 19–20. ISBN 0-8053-9021-9.


बाहरी संबंध