एकीकरण कारक: Difference between revisions
m (11 revisions imported from alpha:एकीकरण_कारक) |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 105: | Line 105: | ||
==== उदाहरण 1 ==== | ==== उदाहरण 1 ==== | ||
उदाहरण के लिए, | उदाहरण के लिए, अवकलन समीकरण | ||
:<math>y''+2xy'+\left(x^2+1\right)y=0</math> | :<math>y''+2xy'+\left(x^2+1\right)y=0</math> | ||
गुणकों को समाकलित करके सटीक रूप से हल किया जा सकता है। उपयुक्त <math>p(x)</math>की जांच करके | गुणकों को समाकलित करके सटीक रूप से हल किया जा सकता है। उपयुक्त <math>p(x)</math>की जांच करके <math>y'</math> पद का अनुमान लगाया जा सकता है। जो की इस परिप्रेक्ष्य में, <math>2p(x)=2x</math>, <math>p(x)=x</math> हैं। <math>y</math> पद की जांच करने के उपरांत, हम देखते हैं कि वास्तव में हमारे पास <math>p(x)^2+p'(x)=x^2+1</math> है , इसलिए हम सभी पदों को समाकलन गुणक <math>e^{\int x \, dx} = e^{x^2/2}</math> से गुणा करेंगे। इससे हमेंː | ||
:<math>e^{x^2/2}y''+2e^{x^2/2}p(x)y'+e^{x^2/2}\left(p(x)^2+p'(x)\right)y=0</math> | :<math>e^{x^2/2}y''+2e^{x^2/2}p(x)y'+e^{x^2/2}\left(p(x)^2+p'(x)\right)y=0</math> प्राप्त होता है। | ||
जिसे | जिसे पुनर्व्यवस्थित करने परː | ||
:<math>\left(e^{x^2/2}y\right)''=0</math> | :<math>\left(e^{x^2/2}y\right)''=0</math> प्राप्त होता है। | ||
दो बार | दो बार समाकलित करने परː | ||
:<math>e^{x^2/2}y=c_1x+c_2</math> | :<math>e^{x^2/2}y=c_1x+c_2</math> प्राप्त होता है। | ||
समाकलन गुणक द्वारा विभाजित करने पर | जिसे समाकलन गुणक द्वारा विभाजित करने पर: | ||
:<math>y=\frac{c_1x+c_2}{e^{x^2/2}}</math> | :<math>y=\frac{c_1x+c_2}{e^{x^2/2}}</math> प्राप्त होता है। | ||
====उदाहरण 2==== | ====उदाहरण 2==== | ||
दूसरे क्रम के समाकलन गुणकों के थोड़े | दूसरे क्रम के समाकलन गुणकों के थोड़े अल्प स्पष्ट अनुप्रयोग में निम्नलिखित अवकलन समीकरण सम्मिलित हैं: | ||
:<math>y''+2\cot(x)y'-y=1</math> | :<math>y''+2\cot(x)y'-y=1</math> | ||
प्रथम दृष्टया, यह स्पष्ट रूप से दूसरे क्रम के गुणकों को समाकलित करने के लिए आवश्यक रूप में नहीं है। हमारे पास <math>y'</math>पद के सामने <math>2p(x)</math> पद है परंतु <math>y</math> के सामने कोई <math>p(x)^2+p'(x)</math> नहीं है। तथापि, | |||
:<math>p(x)^2+p'(x)=\cot^2(x)-\csc^2(x)</math> | :<math>p(x)^2+p'(x)=\cot^2(x)-\csc^2(x)</math> | ||
और कोटैंजेंट और कोसेकेंट से संबंधित पायथागॉरियन | और कोटैंजेंट और कोसेकेंट से संबंधित पायथागॉरियन इकाई से, | ||
:<math>\cot^2(x)-\csc^2(x)=-1</math> | :<math>\cot^2(x)-\csc^2(x)=-1</math> | ||
तो वास्तव में हमारे सामने आवश्यक पद | तो वास्तव में हमारे सामने आवश्यक पद <math>y</math> है और समाकलन गुणकों का उपयोग कर सकते हैं। | ||
:<math>e^{\int \cot(x)\,dx}=e^{\ln(\sin(x))}=\sin(x)</math> | :<math>e^{\int \cot(x)\,dx}=e^{\ln(\sin(x))}=\sin(x)</math> | ||
प्रत्येक पद को | प्रत्येक पद को <math>\sin(x)</math> से गुणा करने पर | ||
:<math>\sin(x)y''+2\cot(x)\sin(x)y'-\sin(x)y=\sin(x)</math> | :<math>\sin(x)y''+2\cot(x)\sin(x)y'-\sin(x)y=\sin(x)</math> प्राप्त होता है। | ||
जिसे पुनर्व्यवस्थित किया गया है | जिसे पुनर्व्यवस्थित किया गया है | ||
Line 145: | Line 145: | ||
:<math>\sin(x)y=-\sin(x)+c_1x+c_2</math> | :<math>\sin(x)y=-\sin(x)+c_1x+c_2</math> | ||
अंत में, समाकलन गुणक द्वारा विभाजित करने | अंत में, समाकलन गुणक द्वारा विभाजित करने परː | ||
:<math>y=c_1x\csc(x)+c_2\csc(x)-1</math> | :<math>y=c_1x\csc(x)+c_2\csc(x)-1</math> प्राप्त होता है। | ||
=== nवें क्रम के रैखिक अवकल समीकरणों | === nवें क्रम के रैखिक अवकल समीकरणों का हल === | ||
समाकलन गुणकों को किसी भी क्रम तक | समाकलन गुणकों को किसी भी क्रम तक प्रवर्धित किया जा सकता है, यद्यपि उन्हें लागू करने के लिए आवश्यक समीकरण का रूप क्रम बढ़ने के साथ और अधिक विशिष्ट होता जाता है, जिससे वे क्रम 3 और उससे ऊपर के लिए कम उपयोगी हो जाते हैं। सामान्य विचार फलन <math>M(x)y</math> का <math>n</math> बार अवकलन करने के उपरांत <math>n</math>वें क्रम का अवकल समीकरण और समान पदों को संयोजित करना है। इससे निम्नलिखित रूप में एक समीकरण प्राप्त होगा | ||
:<math>M(x)F\!\left(y,y',y'',\ldots,y^{(n)}\right)</math> | :<math>M(x)F\!\left(y,y',y'',\ldots,y^{(n)}\right)</math> | ||
यदि एक <math>n</math>वें क्रम का समीकरण | यदि एक <math>n</math>वें क्रम का समीकरण <math>F\!\left(y,y',y'',\ldots,y^{(n)}\right)</math> रूप के समान रूप में होता है जो <math>n</math> बार अवकलन करने के बाद प्राप्त होता है। हम सभी पदों को समाकलन गुणक से गुणा कर सकतें है तथा <math>h(x)M(x)</math> को <math>n</math> बार समाकलित करने के उपरांत अंतिम परिणाम प्राप्त करने के लिए प्राप्त पद को दोनों पक्षों के समाकलन गुणक द्वारा विभाजित किया जाता है। | ||
==== उदाहरण ==== | ==== उदाहरण ==== | ||
समाकलन गुणकों का | समाकलन गुणकों के तीसरे क्रम का उपयोग करने पर है | ||
:<math>(M(x)y)'''=M(x)\left(y''' + 3p(x)y'' + \left(3p(x)^2+3p'(x)\right)y' + \left(p(x)^3+3p(x)p'(x)+p''(x)\right)y\right)</math> | :<math>(M(x)y)'''=M(x)\left(y''' + 3p(x)y'' + \left(3p(x)^2+3p'(x)\right)y' + \left(p(x)^3+3p(x)p'(x)+p''(x)\right)y\right)</math> प्राप्त होता है। | ||
इस प्रकार हमारे समीकरण का | इस प्रकार हमारे समीकरण का निम्नलिखित रूप में होना आवश्यक है | ||
:<math>y''' + 3p(x)y'' + \left(3p(x)^2+3p'(x)\right)y' + \left(p(x)^3+3p(x)p'(x)+p''(x)\right)y = h(x)</math> | :<math>y''' + 3p(x)y'' + \left(3p(x)^2+3p'(x)\right)y' + \left(p(x)^3+3p(x)p'(x)+p''(x)\right)y = h(x)</math> | ||
उदाहरण के लिए | उदाहरण के लिए निम्नलिखित अवकलन समीकरण में | ||
:<math>y''' + 3x^2y'' + \left(3x^4+6x\right)y' + \left(x^6+6x^3+2\right)y = 0</math> | :<math>y''' + 3x^2y'' + \left(3x^4+6x\right)y' + \left(x^6+6x^3+2\right)y = 0</math> | ||
हमारे पास <math>p(x)=x^2</math>है, तो हमारा समाकलन गुणक <math>e^{x^3/3}</math> है। पुनर्व्यवस्थित करने परː | |||
:<math>\left(e^{x^3/3}y\right)'''=0</math> | :<math>\left(e^{x^3/3}y\right)'''=0</math> प्राप्त होता है। | ||
तीन बार समाकलन करने और समाकलन गुणक से भाग देने पर परिणाम प्राप्त | तीन बार समाकलन करने और समाकलन गुणक से भाग देने पर निम्नलिखित परिणाम प्राप्त होता हैं। | ||
:<math>y=\frac{c_1x^2+c_2x+c_3}{e^{x^3/3}}</math> | :<math>y=\frac{c_1x^2+c_2x+c_3}{e^{x^3/3}}</math> | ||
Line 192: | Line 192: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 10/08/2023]] | [[Category:Created On 10/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:18, 28 September 2023
अंतर समीकरण |
---|
दायरा |
वर्गीकरण |
समाधान |
लोग |
गणित में, समाकलन गुणक एक ऐसा फलन होता है जिसे किसी दिए गए अवकलन के साथ विभिन्न समीकरणों को हल करने के लिए चयनित किया जाता है। इसका उपयोग प्रायः सामान्य अवकलन समीकरणों को हल करने के लिए किया जाता है, परंतु इसका उपयोग बहुपरिवर्तनीय कलन के लिए भी किया जाता है जब एक समाकलन गुणक द्वारा गुणा करने से किसी अपरिमित अवकलन को एक सटीक अवकलन में परिवर्तित किया जा सकता है जिसे बाद में एक अदिश क्षेत्र देने के लिए समाकलित किया जा सकता है। यह ऊष्मप्रवैगिकी में विशेष रूप से उपयोगी है जहां तापमान, समाकलन गुणक बन जाता है जो एन्ट्रापी को सटीक अवकलन बनाता है।
प्रयोग
समाकलन गुणक, ऐसी अभिव्यक्ति है जिसे समाकलन की सुविधा के लिए एक अवकलन समीकरण से गुणा किया जाता है। उदाहरण के लिए, अरेखीय दूसरे क्रम का समीकरण
को समाकलन गुणक के रूप में मानते हैं:
समाकलन करने के लिए, ध्यान दें कि समीकरण के दोनों पक्षों को श्रृंखला नियम के साथ पीछे जाकर व्युत्पन्न के रूप में व्यक्त किया जा सकता है:
इसलिए,
जहाँ एक स्थिरांक है.
अनुप्रयोग के आधार पर यह रूप अधिक उपयोगी हो सकता है। चरों का पृथक्करण करने से निम्नलिखित समीकरण प्राप्त होगा
यह एक अवकलन्निहित फलन समाधान है जिसमें एक गैर-प्राथमिक समाकलन सम्मिलित है। सरल लोलक की अवधि को हल करने के लिए इसी विधि का उपयोग किया जाता है।
प्रथम कोटि रैखिक सामान्य अवकल समीकरणों का हल
समाकलन गुणक सामान्य अवकलन समीकरणों को हल करने के लिए उपयोगी होते हैं जिन्हें निम्नलिखित रूप में व्यक्त किया जा सकता है
हमारा मुख्य उद्देश्य एक ऐसा फलन ढूंढना है, जिसे समाकलन गुणक कहा जाता है, जिसे हम बाएं पक्ष को एक सामान्य व्युत्पन्न के अवकलन्गत लाने के लिए अपने अवकलन समीकरण के माध्यम से गुणा कर सकते हैं। ऊपर दिखाए गए विहित प्रथम-क्रम रैखिक अवकलन समीकरण के लिए, समाकलन गुणक है।
ध्यान दें कि समाकलन में यादृच्छिक स्थिरांक, या जहाँ समाकलन में लघुगणक सम्मिलित है, के परिप्रेक्ष्य में निरपेक्ष मानों को सम्मिलित करना आवश्यक नहीं है। सबसे पहले, हमें समीकरण को हल करने के लिए केवल एक समाकलन गुणक की आवश्यकता है, सभी संभावित गुणकों की नहीं; दूसरे, ऐसे स्थिरांक और निरपेक्ष मान सम्मिलित होने पर भी रद्द हो जाएंगे। निरपेक्ष मानों के लिए, इसे लिखकर देखा जा सकता है , जहाँ साइन फलन को संदर्भित करता है, जो एक अंतराल पर स्थिर रहेगा यदि सतत है। के लिए अपरिभाषित है , और प्रतिअवकलन में एक लघुगणक केवल तभी प्रकट होता है जब मूल फलन में लघुगणक या व्युत्क्रम सम्मिलित होता है जिनमें से कोई भी 0 के लिए परिभाषित नहीं होता है, ऐसा अंतराल हमारे समाधान की वैधता का अंतराल होगा।
इसे प्राप्त करने के लिए आइए प्रथम कोटि के रैखिक अवकल समीकरण का समाकलन गुणक इस प्रकार हो कि गुणा करने पर आंशिक अवकलन को पूर्ण अवकलन में परिवर्तित किया जा सके, फिर:
चरण 2 से चरण 3 तक जाने के लिए की आवश्यकता होती है , जो चरों का अवकलन है, जिसका समाधान , के रूप में प्राप्त होता है:
सत्यापित करने के लिए, से गुणा करने पर निम्नलिखित समीकरण प्राप्त होता है
गुणन नियम को व्युत्क्रम रूप में लागू करने से, हम देखते हैं कि बाएँ पक्ष को एकल अवकलन के रूप में व्यक्त किया जा सकता है।
हम इस तथ्य का उपयोग अपने समीकरण को सरल बनाने के लिए करते हैं
के सापेक्ष दोनों पक्षों को समाकलित करने पर
जहाँ एक स्थिरांक है.
घातांक को दाईं ओर ले जाने पर, साधारण अवकलन समीकरण का सामान्य समाधान निम्नलिखित है:
एक समरूप अवकलन समीकरण के परिप्रेक्ष्य में, है और साधारण अवकलन, समीकरण का सामान्य समाधान है:
- .
उदाहरण के लिए, निम्नलिखित अवकलन समीकरण पर विचार करें
हम इसे इस परिप्रेक्ष्य में देख सकते हैं की
दोनों पक्षों को से गुणा करने परː
- प्राप्त होता है।
उपरोक्त समीकरण को इस प्रकार पुनः लिखा जा सकता है
x के सापेक्ष दोनों पक्षों को समाकलित करने पर हमें निम्नलिखित समीकरण प्राप्त होता है
या
निम्नलिखित अभिगम का उपयोग करके समान परिणाम प्राप्त किया जा सकता है
भागफल नियम को उत्क्रमित करने से निम्नलिखित प्राप्त होता है
या
या
जहाँ एक स्थिरांक है.
दूसरे क्रम के सामान्य रैखिक अवकल समीकरणों का हल
पहले क्रम के समीकरणों के लिए गुणकों को समाकलित करने की विधि को स्वाभाविक रूप से दूसरे क्रम के समीकरणों तक भी प्रवर्धित किया जा सकता है। प्रथम कोटि के समीकरणों को हल करने का मुख्य लक्ष्य एक समाकलन गुणक खोजना था। इस प्रकार को इस गुणक से गुणा करने पर प्राप्त किया जा सके रहा है, जिसके बाद के सापेक्ष पुनः समाकलन करने पर प्राप्त हो। दूसरे क्रम के रैखिक अवकल समीकरणों के लिए, यदि हम को गुणक बनाना चाहे तोː
इसका तात्पर्य यह है कि समाकलन गुणक का प्रयोग योग्य होने के लिए दूसरे क्रम का समीकरण बिल्कुल रूप में होना चाहिए।
उदाहरण 1
उदाहरण के लिए, अवकलन समीकरण
गुणकों को समाकलित करके सटीक रूप से हल किया जा सकता है। उपयुक्त की जांच करके पद का अनुमान लगाया जा सकता है। जो की इस परिप्रेक्ष्य में, , हैं। पद की जांच करने के उपरांत, हम देखते हैं कि वास्तव में हमारे पास है , इसलिए हम सभी पदों को समाकलन गुणक से गुणा करेंगे। इससे हमेंː
- प्राप्त होता है।
जिसे पुनर्व्यवस्थित करने परː
- प्राप्त होता है।
दो बार समाकलित करने परː
- प्राप्त होता है।
जिसे समाकलन गुणक द्वारा विभाजित करने पर:
- प्राप्त होता है।
उदाहरण 2
दूसरे क्रम के समाकलन गुणकों के थोड़े अल्प स्पष्ट अनुप्रयोग में निम्नलिखित अवकलन समीकरण सम्मिलित हैं:
प्रथम दृष्टया, यह स्पष्ट रूप से दूसरे क्रम के गुणकों को समाकलित करने के लिए आवश्यक रूप में नहीं है। हमारे पास पद के सामने पद है परंतु के सामने कोई नहीं है। तथापि,
और कोटैंजेंट और कोसेकेंट से संबंधित पायथागॉरियन इकाई से,
तो वास्तव में हमारे सामने आवश्यक पद है और समाकलन गुणकों का उपयोग कर सकते हैं।
प्रत्येक पद को से गुणा करने पर
- प्राप्त होता है।
जिसे पुनर्व्यवस्थित किया गया है
दो बार समाकलित करने से लाभ मिलता है
अंत में, समाकलन गुणक द्वारा विभाजित करने परː
- प्राप्त होता है।
nवें क्रम के रैखिक अवकल समीकरणों का हल
समाकलन गुणकों को किसी भी क्रम तक प्रवर्धित किया जा सकता है, यद्यपि उन्हें लागू करने के लिए आवश्यक समीकरण का रूप क्रम बढ़ने के साथ और अधिक विशिष्ट होता जाता है, जिससे वे क्रम 3 और उससे ऊपर के लिए कम उपयोगी हो जाते हैं। सामान्य विचार फलन का बार अवकलन करने के उपरांत वें क्रम का अवकल समीकरण और समान पदों को संयोजित करना है। इससे निम्नलिखित रूप में एक समीकरण प्राप्त होगा
यदि एक वें क्रम का समीकरण रूप के समान रूप में होता है जो बार अवकलन करने के बाद प्राप्त होता है। हम सभी पदों को समाकलन गुणक से गुणा कर सकतें है तथा को बार समाकलित करने के उपरांत अंतिम परिणाम प्राप्त करने के लिए प्राप्त पद को दोनों पक्षों के समाकलन गुणक द्वारा विभाजित किया जाता है।
उदाहरण
समाकलन गुणकों के तीसरे क्रम का उपयोग करने पर है
- प्राप्त होता है।
इस प्रकार हमारे समीकरण का निम्नलिखित रूप में होना आवश्यक है
उदाहरण के लिए निम्नलिखित अवकलन समीकरण में
हमारे पास है, तो हमारा समाकलन गुणक है। पुनर्व्यवस्थित करने परː
- प्राप्त होता है।
तीन बार समाकलन करने और समाकलन गुणक से भाग देने पर निम्नलिखित परिणाम प्राप्त होता हैं।
यह भी देखें
- मापदंडों का परिवर्तन
- विभेदक समीकरण
- प्रॉडक्ट नियम
- भागफल नियम
- सटीक अवकलन
- मैट्रिक्स घातांक
संदर्भ
- Munkhammar, Joakim, "Integrating Factor", MathWorld.