पुनर्प्राप्ति (धातु विज्ञान): Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[धातु]] विज्ञान में, '''पुनर्प्राप्ति''' एक प्रक्रिया है जिसमें किसी धातु या [[मिश्र धातु]] की विकृत अणुओं की स्थित ऊर्जा को उनकी [[क्रिस्टलोग्राफिक दोष|क्रिस्टल संरचना दोष]] को हटाने या पुनर्व्यवस्थित करके अपनी संग्रहीत ऊर्जा को कम किया जा सकता है। ये दोष, प्रमुखत: अव्यवस्थाएं, पदार्थ के प्लास्टिक विकृति के द्वारा प्रस्तुत की जाती हैं और उपयुक्त की उपज शक्ति को बढ़ाने का कार्य करती हैं। क्योंकि पुनर्प्राप्ति द्वारा अव्यवस्था की घनता कम होती है, इस प्रक्रिया के साथ ही सामग्री की शक्ति कम होने और एक समय समान तनिकता में वृद्धि होती है। इस परिणामस्वरूप, पुनर्प्राप्ति को परिस्थितियों के आधार पर लाभकारी या हानिकारक माना जा सकता है।  
[[धातु]] विज्ञान में, '''पुनर्प्राप्ति''' एक प्रक्रिया है जिसमें किसी धातु या [[मिश्र धातु]] की विकृत अणुओं की स्थित ऊर्जा को उनकी [[क्रिस्टलोग्राफिक दोष|क्रिस्टल संरचना दोष]] को हटाने या पुनर्व्यवस्थित करके अपनी संग्रहीत ऊर्जा को कम किया जा सकता है। ये दोष, प्रमुखत: अव्यवस्थाएं, पदार्थ के प्लास्टिक विकृति के द्वारा प्रस्तुत की जाती हैं और उपयुक्त की उपज शक्ति को बढ़ाने का कार्य करती हैं। क्योंकि पुनर्प्राप्ति द्वारा अव्यवस्था की घनता कम होती है, इस प्रक्रिया के साथ ही पदार्थ की शक्ति कम होने और एक समय समान तनिकता में वृद्धि होती है। इस परिणामस्वरूप, पुनर्प्राप्ति को परिस्थितियों के आधार पर लाभकारी या हानिकारक माना जा सकता है।  


पुनर्प्राप्ति संबंधित है समान प्रक्रियाओं के साथ जैसे कि पुनःक्रिस्टलीकरण और अनावृत्ति, जिनमें प्रत्येक एक [[एनीलिंग (धातुकर्म)]] के चरण होते हैं।पुनर्प्राप्ति पुनर्क्रिस्टलीकरण के साथ प्रतिस्पर्धा करती है, क्योंकि दोनों संग्रहीत ऊर्जा द्वारा संचालित होते हैं, परंतु इसे पुनर्क्रिस्टलीकृत अनाज के केंद्रक के लिए एक आवश्यक शर्त भी माना जाता है। इसे ऐसा इसलिए कहा जाता है क्योंकि अव्यवस्थाओं में कमी के कारण विद्युत चालकता में सुधार होता है। यह दोष-मुक्त चैनल बनाता है, जिससे इलेक्ट्रॉनों को एक बढ़ा हुआ माध्य मुक्त पथ मिलता है।<ref>{{Cite book|title=सामग्री विज्ञान और इंजीनियरिंग, एक परिचय|last=Callister|first=William D.|publisher=John Wiley & Sons, Inc.|year=2007|isbn=9780471736967}}</ref>
पुनर्प्राप्ति संबंधित है समान प्रक्रियाओं के साथ जैसे कि पुनःक्रिस्टलीकरण और अनावृत्ति, जिनमें प्रत्येक एक [[एनीलिंग (धातुकर्म)]] के चरण होते हैं। पुनर्प्राप्ति पुनर्क्रिस्टलीकरण के साथ प्रतिस्पर्धा करती है, क्योंकि दोनों संग्रहीत ऊर्जा द्वारा संचालित होते हैं, परंतु इसे पुनर्क्रिस्टलीकृत कण के केंद्रक के लिए एक आवश्यक शर्त भी माना जाता है। इसे ऐसा इसलिए कहा जाता है क्योंकि अव्यवस्थाओं में कमी के कारण विद्युत चालकता में सुधार होता है। यह दोष-मुक्त चैनल बनाता है, जिससे इलेक्ट्रॉनों को एक बढ़ा हुआ माध्य मुक्त पथ मिलता है।<ref>{{Cite book|title=सामग्री विज्ञान और इंजीनियरिंग, एक परिचय|last=Callister|first=William D.|publisher=John Wiley & Sons, Inc.|year=2007|isbn=9780471736967}}</ref>
==परिभाषा==
पुनर्प्राप्ति, पुन: क्रिस्टलीकरण और कण वृद्धि के पदनामों के अंतर्गत आने वाली भौतिक प्रक्रियाओं को सटीक विधि से अलग करना प्रायः कठिन होता है। डोहर्टी एट अल. (1998) ने कहा:


' लेखक इस बात पर सहमत हुए हैं कि... पुनर्प्राप्ति को विकृत पदार्थों  में होने वाली सभी एनीलिंग प्रक्रियाओं के रूप में परिभाषित किया जा सकता है जो उच्च-कोण कण सीमा के प्रवास के बिना होती हैं'


==परिभाषा==
इस प्रकार इस प्रक्रिया को पुनर्क्रिस्टलीकरण और कण वृद्धि से अलग किया जा सकता है क्योंकि दोनों में उच्च-कोण कण सीमाओं की व्यापक गति होती है।
पुनर्प्राप्ति, पुन: क्रिस्टलीकरण और अनाज वृद्धि के पदनामों के अंतर्गत आने वाली भौतिक प्रक्रियाओं को सटीक तरीके से अलग करना अक्सर मुश्किल होता है। डोहर्टी एट अल. (1998) ने कहा:
<ब्लॉककोट>' लेखक इस बात पर सहमत हुए हैं कि... पुनर्प्राप्ति को विकृत सामग्रियों में होने वाली सभी एनीलिंग प्रक्रियाओं के रूप में परिभाषित किया जा सकता है जो उच्च-कोण अनाज सीमा के प्रवास के बिना होती हैं'</ब्लॉककोट>
इस प्रकार इस प्रक्रिया को पुनर्क्रिस्टलीकरण और अनाज वृद्धि से अलग किया जा सकता है क्योंकि दोनों में उच्च-कोण अनाज सीमाओं की व्यापक गति होती है।


यदि विरूपण के दौरान पुनर्प्राप्ति होती है (ऐसी स्थिति जो उच्च तापमान प्रसंस्करण में आम है) तो इसे 'गतिशील' कहा जाता है जबकि प्रसंस्करण के बाद होने वाली पुनर्प्राप्ति को 'स्थैतिक' कहा जाता है। मुख्य अंतर यह है कि गतिशील पुनर्प्राप्ति के दौरान, संग्रहीत ऊर्जा का परिचय जारी रहता है, भले ही यह पुनर्प्राप्ति प्रक्रिया द्वारा कम हो जाती है - जिसके परिणामस्वरूप [[गतिशील संतुलन]] बनता है।
यदि विरूपण के समय पुनर्प्राप्ति होती है (ऐसी स्थिति जो उच्च तापमान प्रसंस्करण में सरल है) तो इसे 'गतिशील' कहा जाता है जबकि प्रसंस्करण के बाद होने वाली पुनर्प्राप्ति को 'स्थैतिक' कहा जाता है। मुख्य अंतर यह है कि गतिशील पुनर्प्राप्ति के समय, संग्रहीत ऊर्जा का परिचय जारी रहता है, जिसके परिणामस्वरूप एक प्रकार के गतिशील समता का रूप बनता है।


==प्रक्रिया==
==प्रक्रिया==
Line 16: Line 16:


===विकृत संरचना===
===विकृत संरचना===
भारी रूप से विकृत धातु में बड़ी संख्या में अव्यवस्थाएं होती हैं जो मुख्य रूप से 'उलझनों' या 'जंगलों' में फंसी होती हैं। कम [[स्टैकिंग दोष ऊर्जा]] वाली धातु में अव्यवस्था गति अपेक्षाकृत कठिन होती है और इसलिए विरूपण के बाद अव्यवस्था वितरण काफी हद तक यादृच्छिक होता है। इसके विपरीत, मध्यम से उच्च स्टैकिंग दोष ऊर्जा वाली धातुएँ, जैसे। एल्यूमीनियम, एक सेलुलर संरचना बनाते हैं जहां कोशिका की दीवारें अव्यवस्थाओं की खुरदरी उलझनों से बनी होती हैं। कोशिकाओं के अंदरूनी हिस्सों में तदनुसार अव्यवस्था घनत्व कम हो जाता है।
एक अत्यधिक विकृत धातु में एक विशाल संख्या में विकृतियाँ होती हैं, जो प्रमुख रूप से 'टैंगल' या 'वन' में फंसी होती हैं। कम [[स्टैकिंग दोष ऊर्जा]] वाली धातु में अव्यवस्था गति अपेक्षाकृत कठिन होती है और इसलिए विरूपण के बाद अव्यवस्था वितरण बड़े हिस्से में यादृच्छिक होता है। इसके विपरीत, मध्यम से उच्च स्टैकिंग दोष ऊर्जा वाली धातुएँ, जैसे। एल्यूमीनियम, एक सेलुलर संरचना बनाते हैं जहां कोशिका की दीवारें अव्यवस्थाओं की कड़े टैंगलों से बनी होती हैं। कोशिकाओं के आंतरिक  भागों में तदनुसार अव्यवस्था घनत्व कम हो जाता है।


===विनाश===
===विनाश===
प्रत्येक अव्यवस्था एक तनाव क्षेत्र से जुड़ी होती है जो सामग्री में संग्रहीत ऊर्जा में कुछ छोटी लेकिन सीमित मात्रा का योगदान करती है। जब तापमान बढ़ जाता है - आम तौर पर पूर्ण पिघलने बिंदु के एक तिहाई से नीचे - अव्यवस्थाएं गतिशील हो जाती हैं और फिसलने (सामग्री विज्ञान), [[क्रॉस स्लिप]]|क्रॉस-स्लिप और अव्यवस्था#चढ़ने में सक्षम होती हैं। यदि विपरीत चिह्न की दो अव्यवस्थाएं मिलती हैं तो वे प्रभावी रूप से रद्द हो जाती हैं और संग्रहीत ऊर्जा में उनका योगदान समाप्त हो जाता है। जब प्रलय पूर्ण हो जायेगा तब एक प्रकार की अधिक अव्यवस्था ही शेष रह जायेगी।
प्रत्येक अव्यवस्था एक तनाव क्षेत्र से जुड़ी होती है जो पदार्थ की भंडारित ऊर्जा कुछ छोटी परंतु सीमित मात्रा का योगदान करती है। जब तापमान बढ़ता है - सामान्यतः अवशेष पिघलने के बिंदु से नीचे - तो विकृतियाँ गतिशील हो जाती हैं और वे स्लाइड, क्रॉस-स्लिप और क्लाइम्ब करने में सक्षम होती हैं। यदि अगर दो विपरीत चिन्ह की विकृतियाँ मिलती हैं तो वास्तविक रूप से वे रद्द हो जाती हैं और उनके योगदान को भंडारित ऊर्जा से हटा दी जाती है। जब समापन पूरा होता है, तब केवल एक प्रकार की अतिरिक्त विकृति बचेगी।


===पुनर्व्यवस्था===
===पुनर्व्यवस्था===
विनाश के बाद कोई भी शेष अव्यवस्था स्वयं को क्रमबद्ध सरणियों में संरेखित कर सकती है जहां संग्रहीत ऊर्जा में उनका व्यक्तिगत योगदान उनके तनाव क्षेत्रों के ओवरलैपिंग से कम हो जाता है। सबसे सरल मामला समान बर्गर वेक्टर के किनारे अव्यवस्थाओं की एक श्रृंखला का है। यह आदर्श मामला एक एकल क्रिस्टल को मोड़कर तैयार किया जा सकता है जो एकल स्लिप सिस्टम (1949 में काह्न द्वारा किया गया मूल प्रयोग) पर विकृत हो जाएगा। किनारे की अव्यवस्थाएं खुद को झुकाव की सीमाओं में पुनर्व्यवस्थित कर लेंगी, जो निम्न-कोण अनाज सीमा का एक सरल उदाहरण है। अनाज सीमा सिद्धांत भविष्यवाणी करता है कि सीमा गलत अभिविन्यास में वृद्धि से सीमा की ऊर्जा में वृद्धि होगी लेकिन प्रति विस्थापन ऊर्जा में कमी आएगी। इस प्रकार, कम, अधिक अत्यधिक भ्रामक सीमाएँ उत्पन्न करने के लिए एक प्रेरक शक्ति है। अत्यधिक विकृत, पॉलीक्रिस्टलाइन सामग्रियों में स्थिति स्वाभाविक रूप से अधिक जटिल है। विभिन्न बर्गर के वेक्टर के कई अव्यवस्थाएं जटिल 2-डी नेटवर्क बनाने के लिए बातचीत कर सकती हैं।
समापन के बाद, बची हुई किसी भी विकृति को आदर्शित सरणियों में संरेखित किया जा सकता है जहाँ उनके व्यक्तिगत योगदान को उनके तन्तुभूक प्राणियों के आपसी चढ़ाव के कारण कम किया जाता है। सबसे सरल विषय है एक ऐसे दिशा अव्यवस्थाओं की एक श्रृंखला का जिनका बर्गर्स का सदिश एक समान हो। यह आदर्शित प्रकरण एक ही सिंगल स्लिप प्रणाली पर विकृत होने वाले एक सिंगल क्रिस्टल को मोड़कर बनाया जा सकता है जो मूल अनुशंसा 1949 में कैन द्वारा की गई थी। एज विकृतियाँ अपने आप को टिल्ट सीमाओं में पुनर्व्यवस्थित कर देंगी, एक कम-कोण दाना सीमा का सरल उदाहरण है।
 
कण सीमा सिद्धांत पूर्वगणना करता है कि सीमा असंगति में वृद्धि सीमा की ऊर्जा को बढ़ाएगी, परंतु विकृति प्रति ऊर्जा को कम करेगी। इस प्रकार, कम और अधिक असंगत सीमाएँ उत्पन्न करने के लिए एक प्रेरक शक्ति होता है। अत्यधिक विकृत, पॉलीक्रिस्टलाइन पदार्थों  में परिस्थिति स्वाभाविक रूप से अधिक जटिल होती है। विभिन्न बर्गर के सदिश वाली बहुत सारी विकृतियाँ एक-दूसरे के साथ प्रविष्ट हो सकती हैं और जटिल 2-डी नेटवर्क बनाने के लिए सहयोग कर सकती हैं।
 
 


==उपसंरचना का विकास==
==उपसंरचना का विकास==
जैसा कि ऊपर उल्लेख किया गया है, विकृत संरचना अक्सर एक 3-डी सेलुलर संरचना होती है जिसकी दीवारें अव्यवस्था वाली उलझनों से युक्त होती हैं। जैसे-जैसे पुनर्प्राप्ति आगे बढ़ती है, ये कोशिका दीवारें एक वास्तविक उपग्रेन संरचना की ओर संक्रमण से गुजरेंगी। यह बाहरी अव्यवस्थाओं के क्रमिक उन्मूलन और शेष अव्यवस्थाओं को निम्न-कोण अनाज सीमाओं में पुनर्व्यवस्थित करने के माध्यम से होता है।
जैसा कि ऊपर उल्लेख किया गया है, विकृत संरचना प्रायः एक 3-डी कोशिका संरचना होती है जिसकी दीवारें अव्यवस्था वाली उलझनों से युक्त होती हैं। जैसे-जैसे पुनर्प्राप्ति आगे बढ़ती है, ये कोशिका दीवारें एक वास्तविक उपकण संरचना की ओर संक्रमण से गुजरती है। यह बाहरी अव्यवस्थाओं के क्रमिक उन्मूलन और शेष अव्यवस्थाओं को निम्न-कोण कण सीमाओं में पुनर्व्यवस्थित करने के माध्यम से होता है।
 
उप-कण निर्माण के बाद उप-कण का मोटा होना होता है, जहां औसत आकार बढ़ जाता है जबकि उप-कणों की संख्या घट जाती है। इससे कण की सीमा का कुल क्षेत्रफल कम हो जाता है और इसलिए पदार्थ में संग्रहीत ऊर्जा कम हो जाती है। उप-कण मोटे कण में कण की वृद्धि के साथ कई विशेषताएं होती हैं।


उप-अनाज निर्माण के बाद उप-अनाज का मोटा होना होता है, जहां औसत आकार बढ़ जाता है जबकि उप-अनाजों की संख्या घट जाती है। इससे अनाज की सीमा का कुल क्षेत्रफल कम हो जाता है और इसलिए सामग्री में संग्रहीत ऊर्जा कम हो जाती है। सबग्रेन मोटे अनाज में अनाज की वृद्धि के साथ कई विशेषताएं होती हैं।


यदि उप-संरचना को त्रिज्या R और सीमा ऊर्जा γ के गोलाकार उपसमूहों की एक श्रृंखला के रूप में अनुमानित किया जा सकता है<sub>s</sub>; संग्रहित ऊर्जा एक समान है; और सीमा पर बल समान रूप से वितरित है, ड्राइविंग दबाव P द्वारा दिया गया है:
यदि उप-संरचना को त्रिज्या R और सीमा ऊर्जा γ<sub>s</sub> के गोलाकार उपसमूहों की एक श्रृंखला के रूप में अनुमानित किया जा सकता है; संग्रहित ऊर्जा एक समान है; और सीमा पर बल समान रूप से वितरित है, प्रेरक दबाव P द्वारा दिया गया है:


: <math> P = -\alpha\;R \frac{d}{dR} \left (\frac{\gamma\;_s}{R} \right )  \,\! </math>
: <math> P = -\alpha\;R \frac{d}{dR} \left (\frac{\gamma\;_s}{R} \right )  \,\! </math>
चूँकि γ<sub>s</sub> आस-पास के उप-अनाजों की सीमा गलत अभिविन्यास पर निर्भर है, मोटे होने के दौरान ड्राइविंग दबाव आम तौर पर स्थिर नहीं रहता है।
चूँकि γ<sub>s</sub> आस-पास के उप-कणों की सीमा गलत अभिविन्यास पर निर्भर है, मोटे होने के समय  प्रेरक दबाव सामान्यतः स्थिर नहीं रहता है।


==संदर्भ==
==संदर्भ==
Line 44: Line 49:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/08/2023]]
[[Category:Created On 10/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:30, 28 September 2023

धातु विज्ञान में, पुनर्प्राप्ति एक प्रक्रिया है जिसमें किसी धातु या मिश्र धातु की विकृत अणुओं की स्थित ऊर्जा को उनकी क्रिस्टल संरचना दोष को हटाने या पुनर्व्यवस्थित करके अपनी संग्रहीत ऊर्जा को कम किया जा सकता है। ये दोष, प्रमुखत: अव्यवस्थाएं, पदार्थ के प्लास्टिक विकृति के द्वारा प्रस्तुत की जाती हैं और उपयुक्त की उपज शक्ति को बढ़ाने का कार्य करती हैं। क्योंकि पुनर्प्राप्ति द्वारा अव्यवस्था की घनता कम होती है, इस प्रक्रिया के साथ ही पदार्थ की शक्ति कम होने और एक समय समान तनिकता में वृद्धि होती है। इस परिणामस्वरूप, पुनर्प्राप्ति को परिस्थितियों के आधार पर लाभकारी या हानिकारक माना जा सकता है।

पुनर्प्राप्ति संबंधित है समान प्रक्रियाओं के साथ जैसे कि पुनःक्रिस्टलीकरण और अनावृत्ति, जिनमें प्रत्येक एक एनीलिंग (धातुकर्म) के चरण होते हैं। पुनर्प्राप्ति पुनर्क्रिस्टलीकरण के साथ प्रतिस्पर्धा करती है, क्योंकि दोनों संग्रहीत ऊर्जा द्वारा संचालित होते हैं, परंतु इसे पुनर्क्रिस्टलीकृत कण के केंद्रक के लिए एक आवश्यक शर्त भी माना जाता है। इसे ऐसा इसलिए कहा जाता है क्योंकि अव्यवस्थाओं में कमी के कारण विद्युत चालकता में सुधार होता है। यह दोष-मुक्त चैनल बनाता है, जिससे इलेक्ट्रॉनों को एक बढ़ा हुआ माध्य मुक्त पथ मिलता है।[1]

परिभाषा

पुनर्प्राप्ति, पुन: क्रिस्टलीकरण और कण वृद्धि के पदनामों के अंतर्गत आने वाली भौतिक प्रक्रियाओं को सटीक विधि से अलग करना प्रायः कठिन होता है। डोहर्टी एट अल. (1998) ने कहा:

' लेखक इस बात पर सहमत हुए हैं कि... पुनर्प्राप्ति को विकृत पदार्थों में होने वाली सभी एनीलिंग प्रक्रियाओं के रूप में परिभाषित किया जा सकता है जो उच्च-कोण कण सीमा के प्रवास के बिना होती हैं'

इस प्रकार इस प्रक्रिया को पुनर्क्रिस्टलीकरण और कण वृद्धि से अलग किया जा सकता है क्योंकि दोनों में उच्च-कोण कण सीमाओं की व्यापक गति होती है।

यदि विरूपण के समय पुनर्प्राप्ति होती है (ऐसी स्थिति जो उच्च तापमान प्रसंस्करण में सरल है) तो इसे 'गतिशील' कहा जाता है जबकि प्रसंस्करण के बाद होने वाली पुनर्प्राप्ति को 'स्थैतिक' कहा जाता है। मुख्य अंतर यह है कि गतिशील पुनर्प्राप्ति के समय, संग्रहीत ऊर्जा का परिचय जारी रहता है, जिसके परिणामस्वरूप एक प्रकार के गतिशील समता का रूप बनता है।

प्रक्रिया

चित्र 1. एक क्रिस्टल जाली में किनारे की अव्यवस्थाओं की एक श्रृंखला का विनाश और पुनर्गठन
चित्र 2. क्रिस्टल जाली में किनारे की अव्यवस्थाओं के विनाश और पुनर्गठन का एनीमेशन

विकृत संरचना

एक अत्यधिक विकृत धातु में एक विशाल संख्या में विकृतियाँ होती हैं, जो प्रमुख रूप से 'टैंगल' या 'वन' में फंसी होती हैं। कम स्टैकिंग दोष ऊर्जा वाली धातु में अव्यवस्था गति अपेक्षाकृत कठिन होती है और इसलिए विरूपण के बाद अव्यवस्था वितरण बड़े हिस्से में यादृच्छिक होता है। इसके विपरीत, मध्यम से उच्च स्टैकिंग दोष ऊर्जा वाली धातुएँ, जैसे। एल्यूमीनियम, एक सेलुलर संरचना बनाते हैं जहां कोशिका की दीवारें अव्यवस्थाओं की कड़े टैंगलों से बनी होती हैं। कोशिकाओं के आंतरिक भागों में तदनुसार अव्यवस्था घनत्व कम हो जाता है।

विनाश

प्रत्येक अव्यवस्था एक तनाव क्षेत्र से जुड़ी होती है जो पदार्थ की भंडारित ऊर्जा कुछ छोटी परंतु सीमित मात्रा का योगदान करती है। जब तापमान बढ़ता है - सामान्यतः अवशेष पिघलने के बिंदु से नीचे - तो विकृतियाँ गतिशील हो जाती हैं और वे स्लाइड, क्रॉस-स्लिप और क्लाइम्ब करने में सक्षम होती हैं। यदि अगर दो विपरीत चिन्ह की विकृतियाँ मिलती हैं तो वास्तविक रूप से वे रद्द हो जाती हैं और उनके योगदान को भंडारित ऊर्जा से हटा दी जाती है। जब समापन पूरा होता है, तब केवल एक प्रकार की अतिरिक्त विकृति बचेगी।

पुनर्व्यवस्था

समापन के बाद, बची हुई किसी भी विकृति को आदर्शित सरणियों में संरेखित किया जा सकता है जहाँ उनके व्यक्तिगत योगदान को उनके तन्तुभूक प्राणियों के आपसी चढ़ाव के कारण कम किया जाता है। सबसे सरल विषय है एक ऐसे दिशा अव्यवस्थाओं की एक श्रृंखला का जिनका बर्गर्स का सदिश एक समान हो। यह आदर्शित प्रकरण एक ही सिंगल स्लिप प्रणाली पर विकृत होने वाले एक सिंगल क्रिस्टल को मोड़कर बनाया जा सकता है जो मूल अनुशंसा 1949 में कैन द्वारा की गई थी। एज विकृतियाँ अपने आप को टिल्ट सीमाओं में पुनर्व्यवस्थित कर देंगी, एक कम-कोण दाना सीमा का सरल उदाहरण है।

कण सीमा सिद्धांत पूर्वगणना करता है कि सीमा असंगति में वृद्धि सीमा की ऊर्जा को बढ़ाएगी, परंतु विकृति प्रति ऊर्जा को कम करेगी। इस प्रकार, कम और अधिक असंगत सीमाएँ उत्पन्न करने के लिए एक प्रेरक शक्ति होता है। अत्यधिक विकृत, पॉलीक्रिस्टलाइन पदार्थों में परिस्थिति स्वाभाविक रूप से अधिक जटिल होती है। विभिन्न बर्गर के सदिश वाली बहुत सारी विकृतियाँ एक-दूसरे के साथ प्रविष्ट हो सकती हैं और जटिल 2-डी नेटवर्क बनाने के लिए सहयोग कर सकती हैं।


उपसंरचना का विकास

जैसा कि ऊपर उल्लेख किया गया है, विकृत संरचना प्रायः एक 3-डी कोशिका संरचना होती है जिसकी दीवारें अव्यवस्था वाली उलझनों से युक्त होती हैं। जैसे-जैसे पुनर्प्राप्ति आगे बढ़ती है, ये कोशिका दीवारें एक वास्तविक उपकण संरचना की ओर संक्रमण से गुजरती है। यह बाहरी अव्यवस्थाओं के क्रमिक उन्मूलन और शेष अव्यवस्थाओं को निम्न-कोण कण सीमाओं में पुनर्व्यवस्थित करने के माध्यम से होता है।

उप-कण निर्माण के बाद उप-कण का मोटा होना होता है, जहां औसत आकार बढ़ जाता है जबकि उप-कणों की संख्या घट जाती है। इससे कण की सीमा का कुल क्षेत्रफल कम हो जाता है और इसलिए पदार्थ में संग्रहीत ऊर्जा कम हो जाती है। उप-कण मोटे कण में कण की वृद्धि के साथ कई विशेषताएं होती हैं।


यदि उप-संरचना को त्रिज्या R और सीमा ऊर्जा γs के गोलाकार उपसमूहों की एक श्रृंखला के रूप में अनुमानित किया जा सकता है; संग्रहित ऊर्जा एक समान है; और सीमा पर बल समान रूप से वितरित है, प्रेरक दबाव P द्वारा दिया गया है:

चूँकि γs आस-पास के उप-कणों की सीमा गलत अभिविन्यास पर निर्भर है, मोटे होने के समय प्रेरक दबाव सामान्यतः स्थिर नहीं रहता है।

संदर्भ

  1. Callister, William D. (2007). सामग्री विज्ञान और इंजीनियरिंग, एक परिचय. John Wiley & Sons, Inc. ISBN 9780471736967.
  • RD Doherty; DA Hughes; FJ Humphreys; JJ Jonas; D Juul Jenson; ME Kassner; WE King; TR McNelley; HJ McQueen; AD Rollett (1997). "Current Issues In Recrystallisation: A Review". Materials Science and Engineering. A238: 219–274.