वर्णक्रमीय प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 2 users not shown)
Line 6: Line 6:
वर्णक्रमीय प्रमेय विहित रूप अपघटन भी प्रदान करता है, जिसे आव्यूह का आइजन अपघटन कहा जाता है, अंतर्निहित सदिश स्थान जिस पर संचालिका कार्य करता है।
वर्णक्रमीय प्रमेय विहित रूप अपघटन भी प्रदान करता है, जिसे आव्यूह का आइजन अपघटन कहा जाता है, अंतर्निहित सदिश स्थान जिस पर संचालिका कार्य करता है।


[[ऑगस्टिन-लुई कॉची]] ने [[सममित मैट्रिक्स|सममित आव्यूह]] के लिए वर्णक्रमीय प्रमेय को सिद्ध किया, अर्थात, प्रत्येक वास्तविक, सममित आव्यूह विकर्णीय है। इसके अतिरिक्त , कॉची निर्धारकों के बारे में व्यवस्थित होने वाले पहले व्यक्ति थे।<ref>{{cite journal| doi=10.1016/0315-0860(75)90032-4 | volume=2 | title=कौची और मैट्रिसेस का वर्णक्रमीय सिद्धांत| year=1975 | journal=Historia Mathematica | pages=1–29 | last1 = Hawkins | first1 = Thomas| doi-access=free }}</ref><ref>[http://www.mathphysics.com/opthy/OpHistory.html A Short History of Operator Theory by Evans M. Harrell II]</ref> [[जॉन वॉन न्यूमैन]] द्वारा सामान्यीकृत वर्णक्रमीय प्रमेय आज संभवतः संचालिका सिद्धांत का सबसे महत्वपूर्ण परिणाम है।
[[ऑगस्टिन-लुई कॉची]] ने [[सममित मैट्रिक्स|सममित आव्यूह]] के लिए वर्णक्रमीय प्रमेय को सिद्ध किया, अर्थात प्रत्येक वास्तविक, सममित आव्यूह विकर्णीय है। इसके अतिरिक्त, कॉची निर्धारकों के बारे में व्यवस्थित होने वाले पहले व्यक्ति थे।<ref>{{cite journal| doi=10.1016/0315-0860(75)90032-4 | volume=2 | title=कौची और मैट्रिसेस का वर्णक्रमीय सिद्धांत| year=1975 | journal=Historia Mathematica | pages=1–29 | last1 = Hawkins | first1 = Thomas| doi-access=free }}</ref><ref>[http://www.mathphysics.com/opthy/OpHistory.html A Short History of Operator Theory by Evans M. Harrell II]</ref> [[जॉन वॉन न्यूमैन]] द्वारा सामान्यीकृत वर्णक्रमीय प्रमेय आज संभवतः संचालिका सिद्धांत का सबसे महत्वपूर्ण परिणाम है।
 
यह लेख मुख्य रूप से सबसे सरल प्रकार के वर्णक्रमीय प्रमेय पर केंद्रित है, जो हिल्बर्ट अंतरिक्ष पर स्वयं-आसन्न संचालिका के लिए है। चूँकि , जैसा कि ऊपर बताया गया है, स्पेक्ट्रल प्रमेय भी हिल्बर्ट स्थान पर सामान्य संचालिका के लिए है।
 
== परिमित-आयामी मामला ==


यह लेख मुख्य रूप से सबसे सरल प्रकार के वर्णक्रमीय प्रमेय पर केंद्रित है, जो हिल्बर्ट स्थान पर स्वयं-आसन्न संचालिका के लिए है। चूँकि, जैसा कि ऊपर बताया गया है, स्पेक्ट्रल प्रमेय भी हिल्बर्ट स्थान पर सामान्य संचालिका के लिए है।


== परिमित-आयामी स्थति ==
=== हर्मिटियन मानचित्र और [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] ===
=== हर्मिटियन मानचित्र और [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्यूह]] ===
हम हर्मिटियन आव्यूह पर विचार करके शुरू करते हैं <math>\mathbb{C}^n</math> (किंतु निम्नलिखित चर्चा सममित आव्यूह के अधिक प्रतिबंधात्मक मामले के अनुकूल होगी <math>\mathbb{R}^n</math>). हम [[हर्मिटियन ऑपरेटर|हर्मिटियन संचालिका]] पर विचार करते हैं {{math|''A''}} परिमित-आयामी [[जटिल संख्या]] [[आंतरिक उत्पाद स्थान]] पर {{math|''V''}} निश्चित बिलिनियर फॉर्म [[ सेस्क्विलिनियर रूप |सेस्क्विलिनियर रूप]] आंतरिक उत्पाद के साथ संपन्न <math>\langle\cdot,\cdot\rangle</math>. हर्मिटियन स्थिति चालू है <math>A</math> मतलब सभी के लिए {{math|''x'', ''y'' ∈ ''V''}},
हम <math>\mathbb{C}^n</math> पर एक हर्मिटियन मैट्रिक्स पर विचार करके प्रारंभ करते हैं (किंतु निम्नलिखित चर्चा <math>\mathbb{R}^n</math> पर सममित मैट्रिक्स के अधिक प्रतिबंधात्मक स्थिति के अनुकूल होगी) हम एक सकारात्मक निश्चित सेस्की रैखिक आंतरिक उत्पाद के साथ संपन्न परिमित-आयामी जटिल आंतरिक उत्पाद स्थान {{math|''V''}} पर एक हर्मिटियन मानचित्र <math>A</math>पर विचार करते हैं। <math>A</math> पर हर्मिटियन स्थिति का अर्थ है कि सभी {{math|''x'', ''y'' ∈ ''V''}} के लिए,


:<math> \langle A x, y \rangle =  \langle x, A y \rangle.</math>
:<math> \langle A x, y \rangle =  \langle x, A y \rangle.</math>
समतुल्य शर्त यह है {{math|1=''A''<sup>*</sup> = ''A''}}, कहाँ {{math|''A''<sup>*</sup>}} का [[हर्मिटियन संयुग्म]] है {{math|''A''}}. उस मामले में {{math|''A''}} की पहचान हर्मिटियन आव्यूह से की जाती है, जिसका आव्यूह {{math|''A''<sup>*</sup>}} को इसके संयुग्मी संक्रमण से पहचाना जा सकता है। (अगर {{math|''A''}} वास्तविक आव्यूह है, तो यह इसके समतुल्य है {{math|1=''A''<sup>T</sup> = ''A''}}, वह है, {{math|''A''}} सममित आव्यूह है।)
समतुल्य नियम यह है {{math|1=''A''<sup>*</sup> = ''A''}}, जहाँ {{math|''A''<sup>*</sup>}} का [[हर्मिटियन संयुग्म]] है {{math|''A''}}. उस स्थिति में {{math|''A''}} की पहचान हर्मिटियन आव्यूह से की जाती है, जिसका आव्यूह {{math|''A''<sup>*</sup>}} को इसके संयुग्मी संक्रमण से पहचाना जा सकता है। (यदि {{math|''A''}} वास्तविक आव्यूह है, तो यह इसके समतुल्य है {{math|1=''A''<sup>T</sup> = ''A''}}, वह है, {{math|''A''}} सममित आव्यूह है।)


इस स्थिति का तात्पर्य है कि हर्मिटियन मानचित्र के सभी eigenvalues ​​​​वास्तविक हैं: इसे उस स्थिति में प्रयुक्त करने के लिए पर्याप्त है जब {{math|1=''x'' = ''y''}} ईजेनवेक्टर है। (याद रखें कि रेखीय मानचित्र का [[आइजन्वेक्टर]] {{math|''A''}} (गैर-शून्य) वेक्टर है {{math|''x''}} ऐसा है कि {{math|1=''Ax'' = ''λx''}} कुछ अदिश के लिए {{math|''λ''}}. मूल्य {{math|''λ''}} संगत [[eigenvalue]] है। इसके अतिरिक्त , [[eigenvalues]] ​​[[विशेषता बहुपद]] की जड़ें हैं।)
इस स्थिति का तात्पर्य है कि हर्मिटियन मानचित्र के सभी आइजनमान ​​​​वास्तविक हैं: इसे उस स्थिति में प्रयुक्त करने के लिए पर्याप्त है जब {{math|1=''x'' = ''y''}} ईजेनवेक्टर है। (याद रखें कि रेखीय मानचित्र का [[आइजन्वेक्टर]] {{math|''A''}} (गैर-शून्य) वेक्टर है {{math|''x''}} ऐसा है कि {{math|1=''Ax'' = ''λx''}} कुछ अदिश के लिए {{math|''λ''}}. मान {{math|''λ''}} संगत [[eigenvalue|आइजनमान]] है। इसके अतिरिक्त , आइजनमान ​​[[विशेषता बहुपद]] की जड़ें हैं।)


प्रमेय। अगर {{math|''A''}} हर्मिटियन चालू है {{math|''V''}}, तो वहाँ का अलौकिक आधार मौजूद है {{math|''V''}} के eigenvectors से मिलकर {{math|''A''}}. प्रत्येक eigenvalue वास्तविक है।
प्रमेय। यदि {{math|''A''}} {{math|''V''}} पर हर्मिटियन है, तो {{math|''A''}} के ईजेनवेक्टरों से मिलकर {{math|''V''}} का एक ऑर्थोनॉर्मल आधार उपस्थित है। प्रत्येक ईजेनवेल्यू वास्तविक है।


हम उस मामले के लिए सबूत का स्केच प्रदान करते हैं जहां स्केलर्स का अंतर्निहित क्षेत्र सम्मिश्र संख्या है।
हम उस स्थिति के लिए प्रमाण का स्केच प्रदान करते हैं जहां स्केलर्स का अंतर्निहित क्षेत्र सम्मिश्र संख्या है।


बीजगणित के मौलिक प्रमेय द्वारा, की विशेषता बहुपद पर प्रयुक्त {{math|''A''}}, कम से कम eigenvalue है {{math|''λ''<sub>1</sub>}} और ईजेनवेक्टर {{math|''e''<sub>1</sub>}}. तब से
बीजगणित के मौलिक प्रमेय द्वारा, {{math|''A''}} की विशेषता बहुपद पर प्रयुक्त, कम से कम आइजनमान है {{math|''λ''<sub>1</sub>}} और ईजेनवेक्टर {{math|''e''<sub>1</sub>}} होता है। तब से
: <math>\lambda_1 \langle e_1, e_1 \rangle = \langle A (e_1), e_1 \rangle = \langle e_1, A(e_1) \rangle = \bar\lambda_1 \langle e_1, e_1 \rangle,</math> हम पाते हैं {{math|''λ''<sub>1</sub>}} यह सचमुच का है। अब अंतरिक्ष पर विचार करें {{math|1=''K'' = span{''e''<sub>1</sub>}<sup>⊥</sup>}}, का [[ऑर्थोगोनल पूरक]] {{math|''e''<sub>1</sub>}}. हर्मिटिसिटी द्वारा, {{math|''K''}} की अपरिवर्तनीय उपसमष्टि है {{math|''A''}}. इसी तर्क को प्रयुक्त करना {{math|''K''}} पता चलता है कि {{math|''A''}} में आइजनवेक्टर है {{math|''e''<sub>2</sub> ∈ ''K''}}. परिमित प्रेरण तब प्रमाण को समाप्त करता है।
: <math>\lambda_1 \langle e_1, e_1 \rangle = \langle A (e_1), e_1 \rangle = \langle e_1, A(e_1) \rangle = \bar\lambda_1 \langle e_1, e_1 \rangle,</math> हम पाते हैं {{math|''λ''<sub>1</sub>}} यह सचमुच का है। अब स्थान पर विचार करें {{math|1=''K'' = span{''e''<sub>1</sub>}<sup>⊥</sup>}}, का [[ऑर्थोगोनल पूरक]] {{math|''e''<sub>1</sub>}}. हर्मिटिसिटी द्वारा, {{math|''K''}} की अपरिवर्तनीय उपसमष्टि है {{math|''A''}}. इसी तर्क को प्रयुक्त करना {{math|''K''}} पता चलता है कि {{math|''A''}} में आइजनवेक्टर है {{math|''e''<sub>2</sub> ∈ ''K''}}. परिमित प्रेरण तब प्रमाण को समाप्त करता है।


वर्णक्रमीय प्रमेय परिमित-आयामी वास्तविक आंतरिक उत्पाद स्थानों पर सममित मानचित्रों के लिए भी है, किंतु ईजेनवेक्टर का अस्तित्व बीजगणित के मौलिक प्रमेय से तुरंत अनुसरण नहीं करता है। इसे सिद्ध करने के लिए विचार करें {{math|''A''}} हर्मिटियन आव्यूह के रूप में और इस तथ्य का उपयोग करें कि हर्मिटियन आव्यूह के सभी eigenvalues ​​​​वास्तविक हैं।
वर्णक्रमीय प्रमेय परिमित-आयामी वास्तविक आंतरिक उत्पाद स्थानों पर सममित मानचित्रों के लिए भी है, किंतु ईजेनवेक्टर का अस्तित्व बीजगणित के मौलिक प्रमेय से तुरंत अनुसरण नहीं करता है। इसे सिद्ध करने के लिए विचार करें {{math|''A''}} हर्मिटियन आव्यूह के रूप में और इस तथ्य का उपयोग करें कि हर्मिटियन आव्यूह के सभी आइजनमान ​​​​वास्तविक हैं।


का आव्यूह प्रतिनिधित्व {{math|''A''}} eigenvectors के आधार में विकर्ण है, और निर्माण के द्वारा प्रमाण पारस्परिक रूप से ऑर्थोगोनल eigenvectors का आधार देता है; यूनिट वैक्टर होने के लिए उन्हें चुनकर ईजेनवेक्टरों का ऑर्थोनॉर्मल आधार प्राप्त होता है। {{math|''A''}} को जोड़ीदार ऑर्थोगोनल अनुमानों के रैखिक संयोजन के रूप में लिखा जा सकता है, जिसे इसका वर्णक्रमीय अपघटन कहा जाता है। होने देना
का आव्यूह प्रतिनिधित्व {{math|''A''}} ईजेनवेक्टर के आधार में विकर्ण है, और निर्माण के द्वारा प्रमाण पारस्परिक रूप से ऑर्थोगोनल ईजेनवेक्टर का आधार देता है; ईकाई वैक्टर होने के लिए उन्हें चुनकर ईजेनवेक्टरों का ऑर्थोनॉर्मल आधार प्राप्त होता है। {{math|''A''}} को जोड़ीदार ऑर्थोगोनल अनुमानों के रैखिक संयोजन के रूप में लिखा जा सकता है, जिसे इसका वर्णक्रमीय अपघटन कहा जाता है।  


: <math>V_\lambda = \{v \in V: A v = \lambda v\}</math>
: <math>V_\lambda = \{v \in V: A v = \lambda v\}</math>
एक आइगेनवैल्यू के अनुरूप आइगेनस्थान हो {{math|''λ''}}. ध्यान दें कि परिभाषा विशिष्ट eigenvectors के किसी भी विकल्प पर निर्भर नहीं करती है। {{math|''V''}} रिक्त स्थान का ऑर्थोगोनल प्रत्यक्ष योग है {{math|''V''<sub>''λ''</sub>}} जहां सूचकांक eigenvalues ​​​​से अधिक है।
एक आइगेनमान के अनुरूप आइगेनस्थान हो {{math|''λ''}}. ध्यान दें कि परिभाषा विशिष्ट ईजेनवेक्टर के किसी भी विकल्प पर निर्भर नहीं करती है। {{math|''V''}} रिक्त स्थान का ऑर्थोगोनल प्रत्यक्ष योग है {{math|''V''<sub>''λ''</sub>}} जहां सूचकांक आइजनमान ​​​​से अधिक है।


दूसरे शब्दों में, अगर {{math|''P''<sub>''λ''</sub>}} ओर्थोगोनल प्रोजेक्शन#ऑर्थोगोनल प्रोजेक्शन को दर्शाता है {{math|''V''<sub>''λ''</sub>}}, और {{math|''λ''<sub>1</sub>, ..., ''λ''<sub>''m''</sub>}} के आइगेनवैल्यू हैं {{math|''A''}}, तो वर्णक्रमीय अपघटन के रूप में लिखा जा सकता है
दूसरे शब्दों में, यदि {{math|''P''<sub>''λ''</sub>}} ओर्थोगोनल प्रक्षेपण या ऑर्थोगोनल प्रक्षेपण को दर्शाता है {{math|''V''<sub>''λ''</sub>}}, और {{math|''λ''<sub>1</sub>, ..., ''λ''<sub>''m''</sub>}} के आइगेनमान हैं {{math|''A''}}, तो वर्णक्रमीय अपघटन के रूप में लिखा जा सकता है
: <math>A = \lambda_1 P_{\lambda_1} + \cdots + \lambda_m P_{\lambda_m}.</math>
: <math>A = \lambda_1 P_{\lambda_1} + \cdots + \lambda_m P_{\lambda_m}.</math>
यदि A का वर्णक्रमीय अपघटन है <math>A = \lambda_1 P_1 + \cdots + \lambda_m P_m</math>, तब <math>A^2 = (\lambda_1)^2 P_1 + \cdots + (\lambda_m)^2 P_m</math> और <math>\mu A = \mu \lambda_1 P_1 + \cdots + \mu \lambda_m P_m</math> किसी भी अदिश के लिए <math>\mu.</math> यह किसी भी बहुपद के लिए अनुसरण करता है {{mvar|f}} किसी के पास
यदि A का वर्णक्रमीय अपघटन <math>A = \lambda_1 P_1 + \cdots + \lambda_m P_m</math> है, तो <math>A^2 = (\lambda_1)^2 P_1 + \cdots + (\lambda_m)^2 P_m</math> और <math>\mu A = \mu \lambda_1 P_1 + \cdots + \mu \lambda_m P_m</math> किसी भी अदिश \mu के लिए। यह इस प्रकार है कि किसी भी बहुपद {{mvar|f}} के लिए एक है
: <math>f(A) = f(\lambda_1) P_1 + \cdots + f(\lambda_m) P_m.</math>
: <math>f(A) = f(\lambda_1) P_1 + \cdots + f(\lambda_m) P_m.</math>
वर्णक्रमीय अपघटन [[शूर अपघटन]] और एकवचन मूल्य अपघटन दोनों का विशेष मामला है।
वर्णक्रमीय अपघटन [[शूर अपघटन]] और एकवचन मान अपघटन दोनों का विशेष स्थति है।


=== सामान्य आव्यूह ===
=== सामान्य आव्यूह ===
{{main|Normal matrix}}
{{main|सामान्य आव्यूह}}
वर्णक्रमीय प्रमेय मैट्रिसेस के अधिक सामान्य वर्ग तक फैला हुआ है। होने देना {{math|''A''}} परिमित-आयामी आंतरिक उत्पाद स्थान पर संचालिका बनें। {{math|''A''}} को [[सामान्य मैट्रिक्स|सामान्य आव्यूह]] कहा जाता है यदि {{math|1=''A''<sup>*</sup>''A'' = ''AA''<sup>*</sup>}}. कोई यह दिखा सकता है {{math|''A''}} सामान्य है अगर और केवल अगर यह एकात्मक रूप से विकर्ण है। प्रमाण: शूर अपघटन द्वारा, हम किसी भी आव्यूह को लिख सकते हैं {{math|1=''A'' = ''UTU''<sup>*</sup>}}, कहाँ {{math|''U''}} एकात्मक है और {{math|''T''}} ऊपरी-त्रिकोणीय है।
वर्णक्रमीय प्रमेय मैट्रिसेस के अधिक सामान्य वर्ग तक फैला हुआ है। होने देना {{math|''A''}} परिमित-आयामी आंतरिक उत्पाद स्थान पर संचालिका बनें। {{math|''A''}} को [[सामान्य मैट्रिक्स|सामान्य आव्यूह]] कहा जाता है यदि {{math|1=''A''<sup>*</sup>''A'' = ''AA''<sup>*</sup>}}. कोई यह दिखा सकता है {{math|''A''}} सामान्य है यदि और केवल यदि यह एकात्मक रूप से विकर्ण है। प्रमाण: शूर अपघटन द्वारा, हम किसी भी आव्यूह को लिख सकते हैं {{math|1=''A'' = ''UTU''<sup>*</sup>}}, जहाँ {{math|''U''}} एकात्मक है और {{math|''T''}} ऊपरी-त्रिकोणीय है।
अगर {{math|''A''}} सामान्य है, तो कोई देखता है {{math|1=''TT''<sup>*</sup> = ''T''<sup>*</sup>''T''}}. इसलिए, {{math|''T''}} विकर्ण होना चाहिए क्योंकि सामान्य ऊपरी त्रिकोणीय आव्यूह विकर्ण होता है (सामान्य आव्यूह #परिणाम देखें)। उलटा स्पष्ट है।
 
यदि {{math|''A''}} सामान्य है, तो कोई देखता है {{math|1=''TT''<sup>*</sup> = ''T''<sup>*</sup>''T''}}. इसलिए, {{math|''T''}} विकर्ण होना चाहिए क्योंकि सामान्य ऊपरी त्रिकोणीय आव्यूह विकर्ण होता है (सामान्य आव्यूह या परिणाम देखें) व्युत्क्रम स्पष्ट है।


दूसरे शब्दों में, {{math|''A''}} सामान्य है अगर और केवल अगर [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] मौजूद है {{math|''U''}} ऐसा है कि
 
दूसरे शब्दों में, {{math|''A''}} सामान्य है यदि और केवल यदि [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] उपस्थित है {{math|''U''}} ऐसा है कि


: <math>A = U D U^*,</math>
: <math>A = U D U^*,</math>
कहाँ {{math|''D''}} विकर्ण आव्यूह है। फिर, के विकर्ण की प्रविष्टियाँ {{math|''D''}} के आइगेनवैल्यू हैं {{math|''A''}}. के स्तंभ वैक्टर {{math|''U''}} के ईजेनवेक्टर हैं {{math|''A''}} और वे अलौकिक हैं। हर्मिटियन मामले के विपरीत, की प्रविष्टियाँ {{math|''D''}} वास्तविक होने की आवश्यकता नहीं है।
जहां {{math|''D''}} एक विकर्ण आव्यूह है। फिर, {{math|''D''}} के विकर्ण की प्रविष्टियाँ {{math|''A''}} के आइगेनमान हैं। {{math|''U''}} के स्तंभ वैक्टर {{math|''A''}} के ईजेनवेक्टर हैं और वे ऑर्थोनॉर्मल हैं। हर्मिटियन स्थिति के विपरीत, {{math|''D''}} की प्रविष्टियाँ वास्तविक होने की आवश्यकता नहीं है।


== कॉम्पैक्ट स्व-आसन्न संचालिका ==
== कॉम्पैक्ट स्व-आसन्न संचालिका ==
{{main|Compact operator on Hilbert space}}
{{main|हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटर}}
हिल्बर्ट रिक्त स्थान की अधिक सामान्य सेटिंग में, जिसमें अनंत आयाम हो सकता है, [[कॉम्पैक्ट ऑपरेटर|कॉम्पैक्ट संचालिका]] स्व-आसन्न संचालिका ों के लिए वर्णक्रमीय प्रमेय का कथन वस्तुतः परिमित-आयामी मामले के समान है।
हिल्बर्ट रिक्त स्थान की अधिक सामान्य सेटिंग में, जिसमें अनंत आयाम हो सकता है, [[कॉम्पैक्ट ऑपरेटर|कॉम्पैक्ट संचालिका]] स्व-आसन्न संचालिका के लिए वर्णक्रमीय प्रमेय का कथन वस्तुतः परिमित-आयामी स्थिति के समान है।


प्रमेय। कल्पना करना {{math|''A''}} हिल्बर्ट स्थान (वास्तविक या जटिल) पर कॉम्पैक्ट सेल्फ-एडजॉइंट संचालिका है {{math|''V''}}. फिर इसका अलौकिक आधार है {{math|''V''}} के eigenvectors से मिलकर {{math|''A''}}. प्रत्येक eigenvalue वास्तविक है।
प्रमेय कल्पना करना {{math|''A''}} हिल्बर्ट स्थान (वास्तविक या जटिल) पर कॉम्पैक्ट स्वयं संलग्न संचालिका है {{math|''V''}}. फिर इसका अलौकिक आधार है {{math|''V''}} के ईजेनवेक्टर से मिलकर {{math|''A''}}. प्रत्येक आइजनमान वास्तविक है।


हर्मिटियन मेट्रिसेस के लिए, मुख्य बिंदु कम से कम नॉनजीरो ईजेनवेक्टर के अस्तित्व को साबित करना है। ईजेनवेल्यूज के अस्तित्व को दिखाने के लिए निर्धारकों पर भरोसा नहीं किया जा सकता है, किंतु आइगेनवैल्यूज के वैरिएबल कैरेक्टराइजेशन के अनुरूप अधिकतमकरण तर्क का उपयोग किया जा सकता है।
हर्मिटियन मेट्रिसेस के लिए, मुख्य बिंदु कम से कम अशून्य ईजेनवेक्टर के अस्तित्व को प्रमाण करना है। ईजेनवेल्यूज के अस्तित्व को दिखाने के लिए निर्धारकों पर भरोसा नहीं किया जा सकता है, किंतु आइगेनवैल्यूज के चर निस्र्पण के अनुरूप अधिकतमकरण तर्क का उपयोग किया जा सकता है।


यदि संहतता धारणा को हटा दिया जाता है, तो यह सच नहीं है कि प्रत्येक स्व-संलग्न संचालिका के ईजेनवेक्टर होते हैं।
यदि संहतता धारणा को हटा दिया जाता है, तो यह सच नहीं है कि प्रत्येक स्व-संलग्न संचालिका के ईजेनवेक्टर होते हैं।                                                      


== परिबद्ध स्व-आसन्न संकारक ==
== परिबद्ध स्व-आसन्न संकारक ==
{{See also|Eigenfunction|Self-adjoint operator#Spectral theorem}}
{{See also|आइजन कार्य |स्व-आसन्न संकारक या स्पेक्ट्रल प्रमेय}}


=== ईजेनवेक्टरों की संभावित अनुपस्थिति ===
=== ईजेनवेक्टरों की संभावित अनुपस्थिति                                                 ===


हम जिस अगले सामान्यीकरण पर विचार करते हैं, वह हिल्बर्ट स्थान पर [[परिबद्ध संचालिका]] सेल्फ-एडजॉइंट संचालिका ्स का है। ऐसे संचालिका ों के पास कोई eigenvalues ​​​​नहीं हो सकता है: उदाहरण के लिए चलो {{math|''A''}} गुणन का संचालक हो {{math|''t''}} पर <math>L^2([0,1])</math>, वह है,<ref>{{harvnb|Hall|2013}} Section 6.1</ref>
हम जिस अगले सामान्यीकरण पर विचार करते हैं, वह हिल्बर्ट स्थान पर [[परिबद्ध संचालिका]] स्वयं संलग्न संचालिका का है। ऐसे संचालिका के पास कोई आइजनमान ​​​​नहीं हो सकता है: उदाहरण के लिए चलो {{math|''A''}} गुणन का संचालक हो {{math|''t''}} पर <math>L^2([0,1])</math>, वह है,<ref>{{harvnb|Hall|2013}} Section 6.1</ref>
:<math> [A \varphi](t) = t \varphi(t). \;</math>
:<math> [A \varphi](t) = t \varphi(t). \;</math>
इस संचालिका के पास कोई आइजनवेक्टर नहीं है <math>L^2([0,1])</math>, चूँकि इसमें बड़ी जगह में ईजेनवेक्टर हैं। अर्थात् [[वितरण (गणित)]] <math>\varphi(t)=\delta(t-t_0)</math>, कहाँ <math>\delta</math> [[डिराक डेल्टा समारोह]] है, उपयुक्त अर्थ में लगाए जाने पर ईजेनवेक्टर है। डिराक डेल्टा फ़ंक्शन चूँकि शास्त्रीय अर्थों में फ़ंक्शन नहीं है और हिल्बर्ट स्थान में नहीं है {{math|''L''<sup>2</sup>[0, 1]}} या कोई अन्य [[बनच स्थान]]। इस प्रकार, डेल्टा-फ़ंक्शन सामान्यीकृत ईजेनवेक्टर हैं <math>A</math> किंतु सामान्य अर्थों में ईजेनवेक्टर नहीं।
इस संचालिका के पास <math>L^2([0,1])</math> में कोई ईजेनवेक्टर नहीं है, चूँकि इसमें बड़ी जगह में ईजेनवेक्टर हैं। अर्थात् वितरण <math>\varphi(t)=\delta(t-t_0)</math>, जहाँ <math>\delta</math> डेल्टा कार्य है, जब एक उपयुक्त अर्थ में निर्मित किया जाता है, तो यह एक ईजेनवेक्टर होता है। डायराक डेल्टा कार्य चूँकि मौलिक अर्थों में एक कार्य नहीं है और हिल्बर्ट स्थान {{math|''L''<sup>2</sup>[0, 1]}} या किसी अन्य बानाच स्थान में नहीं है। इस प्रकार, डेल्टा-कार्य <math>A</math> के "सामान्यीकृत ईजेनवेक्टर" हैं, किंतु सामान्य अर्थों में ईजेनवेक्टर नहीं हैं।


=== स्पेक्ट्रल उप-स्थान और प्रक्षेपण-मूल्यवान उपाय ===
=== स्पेक्ट्रल उप-स्थान और प्रक्षेपण-मूल्यवान उपाय ===


(सच्चे) ईजेनवेक्टरों की अनुपस्थिति में, लगभग ईजेनवेक्टरों से युक्त उप-स्थानों की तलाश की जा सकती है। उपरोक्त उदाहरण में, उदाहरण के लिए, कहाँ <math> [A \varphi](t) = t \varphi(t), \;</math> हम छोटे अंतराल पर समर्थित कार्यों के उप-स्थान पर विचार कर सकते हैं <math>[a,a+\varepsilon]</math> अंदर <math>[0,1]</math>. के अंतर्गत यह स्थान अपरिवर्तनीय है <math>A</math> और किसी के लिए <math>\varphi</math> इस उपक्षेत्र में, <math>A\varphi</math> के बहुत निकट है <math>a\varphi</math>. वर्णक्रमीय प्रमेय के इस दृष्टिकोण में, यदि <math>A</math> बंधा हुआ स्वयं-आसन्न संकारक है, तो कोई ऐसे वर्णक्रमीय उप-स्थानों के बड़े परिवारों की तलाश करता है।<ref>{{harvnb|Hall|2013}} Theorem 7.2.1</ref> प्रत्येक उप-स्थान, बदले में, संबंधित प्रक्षेपण संचालिका द्वारा एन्कोड किया गया है, और सभी उप-स्थानों का संग्रह तब प्रक्षेपण-मूल्यवान माप द्वारा दर्शाया गया है।
(सच्चे) ईजेनवेक्टरों की अनुपस्थिति में, लगभग ईजेनवेक्टरों से युक्त उप-स्थानों की खोज की जा सकती है। उपरोक्त उदाहरण में, उदाहरण के लिए, जहाँ <math> [A \varphi](t) = t \varphi(t), \;</math> हम छोटे अंतराल पर समर्थित कार्यों के उप-स्थान पर विचार कर सकते हैं <math>[a,a+\varepsilon]</math> अंदर <math>[0,1]</math>. के अंतर्गत यह स्थान अपरिवर्तनीय है <math>A</math> और किसी के लिए <math>\varphi</math> इस उपक्षेत्र में, <math>A\varphi</math> के बहुत निकट है <math>a\varphi</math>. वर्णक्रमीय प्रमेय के इस दृष्टिकोण में, यदि <math>A</math> बंधा हुआ स्वयं-आसन्न संकारक है, तो कोई ऐसे वर्णक्रमीय उप-स्थानों के बड़े वर्गों की खोज करता है।<ref>{{harvnb|Hall|2013}} Theorem 7.2.1</ref> प्रत्येक उप-स्थान, बदले में, संबंधित प्रक्षेपण संचालिका द्वारा एन्कोड किया गया है, और सभी उप-स्थानों का संग्रह तब प्रक्षेपण-मूल्यवान माप द्वारा दर्शाया गया है।  


वर्णक्रमीय प्रमेय का सूत्रीकरण संचालिका को व्यक्त करता है {{math|''A''}} संचालिका के ईजेनवेक्टर#अनंत आयामों पर समन्वय समारोह के अभिन्न अंग के रूप में <math>\sigma(A)</math> प्रक्षेपण-मूल्यवान माप के संबंध में।<ref>{{harvnb|Hall|2013}} Theorem 7.12</ref>
 
स्पेक्ट्रल प्रमेय का एक सूत्रीकरण संचालिका {{math|''A''}} को प्रक्षेपण-मूल्य माप के संबंध में संचालिका के स्पेक्ट्रम <math>\sigma(A)</math> पर समन्वय कार्य के अभिन्न अंग के रूप में व्यक्त करता है। <ref>{{harvnb|Hall|2013}} Theorem 7.12</ref>
: <math> A = \int_{\sigma(A)} \lambda \, d E_{\lambda} .</math>
: <math> A = \int_{\sigma(A)} \lambda \, d E_{\lambda} .</math>
जब प्रश्न में स्व-आसन्न संचालिका कॉम्पैक्ट संचालिका होता है, तो स्पेक्ट्रल प्रमेय का यह संस्करण उपरोक्त परिमित-आयामी स्पेक्ट्रल प्रमेय के समान कुछ कम हो जाता है, सिवाय इसके कि संचालिका को अनुमानों के परिमित या अनगिनत अनंत रैखिक संयोजन के रूप में व्यक्त किया जाता है, अर्थात माप में केवल परमाणु होते हैं।
जब प्रश्न में स्व-आसन्न संचालिका कॉम्पैक्ट संचालिका होता है, तो स्पेक्ट्रल प्रमेय का यह संस्करण उपरोक्त परिमित-आयामी स्पेक्ट्रल प्रमेय के समान कुछ कम हो जाता है, अतिरिक्त इसके कि संचालिका को अनुमानों के परिमित या अनगिनत अनंत रैखिक संयोजन के रूप में व्यक्त किया जाता है, अर्थात माप में केवल परमाणु होते हैं।


=== गुणन संचालिका संस्करण ===
=== गुणन संचालिका संस्करण ===
Line 88: Line 89:
and <math>\|T\| = \|f\|_\infty</math>.}}
and <math>\|T\| = \|f\|_\infty</math>.}}


स्पेक्ट्रल प्रमेय [[ऑपरेटर सिद्धांत|संचालिका सिद्धांत]] नामक कार्यात्मक विश्लेषण के विशाल शोध क्षेत्र की शुरुआत है; स्पेक्ट्रल माप # स्पेक्ट्रल माप भी देखें।
स्पेक्ट्रल प्रमेय [[ऑपरेटर सिद्धांत|संचालिका सिद्धांत]] नामक कार्यात्मक विश्लेषण के विशाल शोध क्षेत्र की प्रारंभ है; स्पेक्ट्रल माप या स्पेक्ट्रल माप भी देखें।


हिल्बर्ट रिक्त स्थान पर बंधे सामान्य संचालिका ों के लिए समान वर्णक्रमीय प्रमेय भी है। निष्कर्ष में केवल इतना ही अंतर है कि अब {{math|''f''}} जटिल-मूल्यवान हो सकता है।
हिल्बर्ट रिक्त स्थान पर बंधे सामान्य संचालिका के लिए समान वर्णक्रमीय प्रमेय भी है। निष्कर्ष में केवल इतना ही अंतर है कि अब {{math|''f''}} जटिल-मूल्यवान हो सकता है।


=== [[प्रत्यक्ष अभिन्न]] ===
=== [[प्रत्यक्ष अभिन्न]] ===
डायरेक्ट इंटीग्रल के संदर्भ में वर्णक्रमीय प्रमेय का सूत्रीकरण भी है। यह गुणन-संचालक सूत्रीकरण के समान है, किंतु अधिक विहित है।
प्रत्यक्ष अभिन्न के संदर्भ में वर्णक्रमीय प्रमेय का सूत्रीकरण भी है। यह गुणन-संचालक सूत्रीकरण के समान है, किंतु अधिक विहित है।
 
मान लीजिए <math>A</math> एक परिबद्ध स्व-आसन्न संकारक है और <math>\sigma (A)</math> को <math>A</math> का स्पेक्ट्रम होने दें। वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न सूत्रीकरण दो मात्राओं को <math>A</math> से जोड़ता है। सबसे पहले,<math>\mu</math> पर <math>\sigma (A)</math>, और दूसरा, हिल्बर्ट स्पेसेस का एक परिवार<math>\{H_{\lambda}\},\,\,\lambda\in\sigma (A).</math>फिर हम प्रत्यक्ष अभिन्न हिल्बर्ट स्थान बनाते हैं


होने देना <math>A</math> बाउंडेड सेल्फ-एडजॉइंट संचालिका बनें और दें <math>\sigma (A)</math> का स्पेक्ट्रम हो <math>A</math>. वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न सूत्रीकरण दो मात्राओं को जोड़ता है <math>A</math>. सबसे पहले, उपाय <math>\mu</math> पर <math>\sigma (A)</math>, और दूसरा, हिल्बर्ट स्पेसेस का परिवार <math>\{H_{\lambda}\},\,\,\lambda\in\sigma (A).</math> फिर हम डायरेक्ट इंटीग्रल हिल्बर्ट स्थान बनाते हैं
<math display="block"> \int_\mathbf{R}^\oplus H_{\lambda}\, d \mu(\lambda). </math>
<math display="block"> \int_\mathbf{R}^\oplus H_{\lambda}\, d \mu(\lambda). </math>
इस स्थान के तत्व कार्य (या खंड) हैं <math>s(\lambda),\,\,\lambda\in\sigma(A),</math> ऐसा है कि <math>s(\lambda)\in H_{\lambda}</math> सभी के लिए <math>\lambda</math>.
 
 
इस स्थान के तत्व कार्य (या खंड) हैं <math>s(\lambda),\,\,\lambda\in\sigma(A),</math> ऐसा है कि <math>s(\lambda)\in H_{\lambda}</math> सभी <math>\lambda</math> के लिए .
 
वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न संस्करण निम्नानुसार व्यक्त किया जा सकता है:<ref>{{harvnb|Hall|2013}} Theorem 7.19</ref>
वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न संस्करण निम्नानुसार व्यक्त किया जा सकता है:<ref>{{harvnb|Hall|2013}} Theorem 7.19</ref>
{{math theorem|math_statement= If <math>A</math> is a bounded self-adjoint operator, then <math>A</math> is unitarily equivalent to the "multiplication by <math>\lambda</math>" operator on <math display="block"> \int_\mathbf{R}^\oplus H_{\lambda}\, d \mu(\lambda) </math>
for some measure <math>\mu</math> and some family <math>\{H_{\lambda}\}</math> of Hilbert spaces. The measure <math>\mu</math> is uniquely determined by <math>A</math> up to measure-theoretic equivalence; that is, any two measure associated to the same <math>A</math> have the same sets of measure zero. The dimensions of the Hilbert spaces <math>H_{\lambda}</math> are uniquely determined by <math>A</math> up to a set of <math>\mu</math>-measure zero.}}


रिक्त स्थान <math>H_{\lambda}</math> के लिए eigenspaces जैसी किसी चीज़ के बारे में सोचा जा सकता है <math>A</math>. हालाँकि, ध्यान दें कि जब तक कि एक-तत्व सेट न हो <math>{\lambda}</math> सकारात्मक उपाय है, अंतरिक्ष <math>H_{\lambda}</math> वास्तव में प्रत्यक्ष समाकलन की उपसमष्टि नहीं है। इस प्रकार <math>H_{\lambda}</math>को सामान्यीकृत ईजेनस्थान के रूप में सोचा जाना चाहिए-अर्थात, के तत्व <math>H_{\lambda}</math> ईजेनवेक्टर हैं जो वास्तव में हिल्बर्ट स्थान से संबंधित नहीं हैं।
{{math theorem|math_statement= यदि  <math>A</math> तब एक परिबद्ध स्व-आसन्न संकारक है <math>A</math>एकात्मक रूप से "गुणा" के समान है <math>\lambda</math>" ऑपरेटर चालू <math display="block"> \int_\mathbf{R}^\oplus H_{\lambda}\, d \mu(\lambda) </math>
किसी उपाय के लिए <math>\mu</math> और कुछ वर्ग <math>\{H_{\lambda}\}</math> हिल्बर्ट रिक्त स्थान की। मापदंड <math>\mu</math> द्वारा विशिष्ट रूप से निर्धारित किया जाता है<math>A</math>माप-सैद्धांतिक तुल्यता तक; अर्थात्, कोई दो माप उसी से संबंधित हैं <math>A</math> माप शून्य के समान सेट हैं। हिल्बर्ट रिक्त स्थान के आयाम <math>H_{\lambda}</math> द्वारा विशिष्ट रूप से निर्धारित किया जाता है <math>A</math> के एक सेट तक <math>\mu</math>-शून्य को मापें।}}
 
रिक्त स्थान <math>H_{\lambda}</math> के लिए आइजनस्पेस जैसी किसी चीज़ के बारे में सोचा जा सकता है <math>A</math>. चूँकि , ध्यान दें कि जब तक कि एक-तत्व स्थित न हो <math>{\lambda}</math> सकारात्मक उपाय है, स्थान <math>H_{\lambda}</math> वास्तव में प्रत्यक्ष समाकलन की उपसमष्टि नहीं है। इस प्रकार <math>H_{\lambda}</math>को सामान्यीकृत ईजेनस्थान के रूप में सोचा जाना चाहिए-अर्थात, के तत्व <math>H_{\lambda}</math> ईजेनवेक्टर हैं जो वास्तव में हिल्बर्ट स्थान से संबंधित नहीं हैं।


यद्यपि वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष अभिन्न सूत्रीकरण दोनों स्व-संयोजक संकारक को गुणन संकारक के समान रूप से व्यक्त करते हैं, प्रत्यक्ष अभिन्न दृष्टिकोण अधिक विहित है। सबसे पहले, वह सेट जिस पर डायरेक्ट इंटीग्रल होता है (संचालिका का स्पेक्ट्रम) विहित है। दूसरा, जिस फ़ंक्शन से हम गुणा कर रहे हैं वह प्रत्यक्ष-अभिन्न दृष्टिकोण में कैननिकल है: बस फ़ंक्शन <math>\lambda\mapsto\lambda</math>.
यद्यपि वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष अभिन्न सूत्रीकरण दोनों स्व-संयोजक संकारक को गुणन संकारक के समान रूप से व्यक्त करते हैं, प्रत्यक्ष अभिन्न दृष्टिकोण अधिक विहित है। सबसे पहले, वह स्थित जिस पर प्रत्यक्ष अभिन्न होता है (संचालिका का स्पेक्ट्रम) विहित है। दूसरा, जिस कार्य से हम गुणा कर रहे हैं वह प्रत्यक्ष-अभिन्न दृष्टिकोण में कैननिकल है: बस कार्य <math>\lambda\mapsto\lambda</math> है।


=== चक्रीय वैक्टर और सरल स्पेक्ट्रम ===
=== चक्रीय वैक्टर और सरल स्पेक्ट्रम ===
एक सदिश <math>\varphi</math> के लिए चक्रीय सदिश कहलाता है <math>A</math> यदि वैक्टर <math>\varphi,A\varphi,A^2\varphi,\ldots</math> हिल्बर्ट अंतरिक्ष के घने उप-क्षेत्र में फैला हुआ है। कल्पना करना <math>A</math> परिबद्ध स्व-आसन्न संकारक है जिसके लिए चक्रीय वेक्टर मौजूद है। उस मामले में, वर्णक्रमीय प्रमेय के प्रत्यक्ष-अभिन्न और गुणन-संचालक योगों के बीच कोई अंतर नहीं है। दरअसल, उस मामले में उपाय है <math>\mu</math> स्पेक्ट्रम पर <math>\sigma(A)</math> का <math>A</math> ऐसा है कि <math>A</math> एकात्मक रूप से गुणन के बराबर है <math>\lambda</math>संचालिका चालू <math>L^2(\sigma(A),\mu)</math>.<ref>{{harvnb|Hall|2013}} Lemma 8.11</ref> यह परिणाम दर्शाता है <math>A</math> साथ गुणन संचालिका के रूप में और प्रत्यक्ष अभिन्न के रूप में, चूंकि <math>L^2(\sigma(A),\mu)</math> केवल सीधा अभिन्न अंग है जिसमें प्रत्येक हिल्बर्ट स्थान <math>H_{\lambda}</math> बस है <math>\mathbb{C}</math>.
एक सदिश <math>\varphi</math> को <math>A</math> के लिए चक्रीय सदिश कहलाता है यदि वैक्टर <math>\varphi,A\varphi,A^2\varphi,\ldots</math> हिल्बर्ट स्थान के घने उप-क्षेत्र में फैला हुआ है। मान लीजिए <math>A</math> परिबद्ध स्व-आसन्न संकारक है जिसके लिए चक्रीय वेक्टर उपस्थित है। उस स्थिति में, वर्णक्रमीय प्रमेय के प्रत्यक्ष-अभिन्न और गुणन-संचालक योगों के बीच कोई अंतर नहीं है। चूँकि , उस स्थिति में उपाय है <math>\mu</math> स्पेक्ट्रम पर <math>\sigma(A)</math> का <math>A</math> ऐसा है कि <math>A</math> एकात्मक रूप से गुणन के समान है <math>\lambda</math>संचालिका <math>L^2(\sigma(A),\mu)</math>.<ref>{{harvnb|Hall|2013}} Lemma 8.11</ref> यह परिणाम दर्शाता है <math>A</math> साथ गुणन संचालिका के रूप में और प्रत्यक्ष अभिन्न के रूप में, चूंकि <math>L^2(\sigma(A),\mu)</math> केवल सीधा अभिन्न अंग है जिसमें प्रत्येक हिल्बर्ट स्थान <math>H_{\lambda}</math> सिर्फ <math>\mathbb{C}</math>. है
 
.


प्रत्येक परिबद्ध स्व-संलग्न संकारक चक्रीय सदिश को स्वीकार नहीं करता; वास्तव में, प्रत्यक्ष अभिन्न अपघटन में अद्वितीयता से, यह तभी हो सकता है जब सभी <math>H_{\lambda}</math>का आयाम है। जब ऐसा होता है, तो हम कहते हैं <math>A</math> स्व-आसन्न_संचालक#स्पेक्ट्रल_बहुलता_सिद्धांत के अर्थ में सरल स्पेक्ट्रम है। यही है, चक्रीय सदिश को स्वीकार करने वाले बाध्य स्व-आसन्न संचालिका को अलग-अलग eigenvalues ​​​​के साथ स्व-संलग्न आव्यूह के अनंत-आयामी सामान्यीकरण के रूप में माना जाना चाहिए (यानी, प्रत्येक eigenvalue में बहुलता है)।
प्रत्येक परिबद्ध स्व-संलग्न संकारक चक्रीय सदिश को स्वीकार नहीं करता; वास्तव में, प्रत्यक्ष अभिन्न अपघटन में अद्वितीयता से, यह तभी हो सकता है जब सभी <math>H_{\lambda}</math>का आयाम है। जब ऐसा होता है, तो हम कहते हैं <math>A</math> स्व-आसन्न_संचालक या स्पेक्ट्रल_बहुलता_सिद्धांत के अर्थ में सरल स्पेक्ट्रम है। यही है, चक्रीय सदिश को स्वीकार करने वाले बाध्य स्व-आसन्न संचालिका को अलग-अलग आइजनमान ​​​​के साथ स्व-संलग्न आव्यूह के अनंत-आयामी सामान्यीकरण के रूप में माना जाना चाहिए (जिससे , प्रत्येक आइजनमान में बहुलता है)।


चूँकि हर नहीं <math>A</math> चक्रीय सदिश को स्वीकार करता है, यह देखना आसान है कि हम हिल्बर्ट अंतरिक्ष को अपरिवर्तनीय उप-स्थानों के प्रत्यक्ष योग के रूप में विघटित कर सकते हैं <math>A</math> चक्रीय वेक्टर है। यह अवलोकन वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष-अभिन्न रूपों के प्रमाणों की कुंजी है।
चूँकि हर नहीं <math>A</math> चक्रीय सदिश को स्वीकार करता है, यह देखना आसान है कि हम हिल्बर्ट स्थान को अपरिवर्तनीय उप-स्थानों के प्रत्यक्ष योग के रूप में विघटित कर सकते हैं <math>A</math> चक्रीय वेक्टर है। यह अवलोकन वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष-अभिन्न रूपों के प्रमाणों की कुंजी है।


===कार्यात्मक कलन===
===कार्यात्मक कलन===
स्पेक्ट्रल प्रमेय (किसी भी रूप में) का महत्वपूर्ण अनुप्रयोग कार्यात्मक पथरी को परिभाषित करने का विचार है। यानी फंक्शन दिया <math>f</math> के स्पेक्ट्रम पर परिभाषित किया गया है <math>A</math>, हम संचालिका को परिभाषित करना चाहते हैं <math>f(A)</math>. अगर <math>f</math> बस सकारात्मक शक्ति है, <math>f(x)=x^n</math>, तब <math>f(A)</math> बस है <math>n\mathrm{th}</math> किसकी सत्ता <math>A</math>, <math>A^n</math>. दिलचस्प मामले कहां हैं <math>f</math> गैर-बहुपद कार्य है जैसे कि वर्गमूल या घातांक। स्पेक्ट्रल प्रमेय के किसी भी संस्करण में ऐसी कार्यात्मक गणना प्रदान की जाती है।<ref>E.g., {{harvnb|Hall|2013}} Definition 7.13</ref> प्रत्यक्ष-अभिन्न संस्करण में, उदाहरण के लिए, <math>f(A)</math> गुणा के रूप में कार्य करता है <math>f</math>डायरेक्ट इंटीग्रल में संचालिका :
स्पेक्ट्रल प्रमेय (किसी भी रूप में) का एक महत्वपूर्ण अनुप्रयोग कार्यात्मक पथरी को परिभाषित करने का विचार है। अर्थात्, <math>A</math> के स्पेक्ट्रम पर परिभाषित एक फलन <math>f</math> दिया गया है, हम एक संकारक <math>f(A)</math> को परिभाषित करना चाहते हैं। यदि <math>f</math> केवल एक सकारात्मक शक्ति है,<math>f(x)=x^n</math>, तो <math>f(A)</math> <math>n\mathrm{th}</math> की केवल <math>A</math> <math>A^n</math> शक्ति है रोचक स्थिति हैं जहां <math>f</math> एक गैर-बहुपद कार्य है जैसे कि वर्गमूल या एक घातीय स्पेक्ट्रल प्रमेय का कोई भी संस्करण इस तरह की एक कार्यात्मक कलन प्रदान करता है। प्रत्यक्ष अभिन्न संस्करण में, उदाहरण के लिए, <math>f(A)</math> डायरेक्ट इंटीग्रल में "गुणा द्वारा <math>f</math>" संचालिका के रूप में कार्य करता है:<ref>E.g., {{harvnb|Hall|2013}} Definition 7.13</ref>
:<math>[f(A)s](\lambda)=f(\lambda)s(\lambda)</math>.
:<math>[f(A)s](\lambda)=f(\lambda)s(\lambda)</math>.
यानी हर जगह <math>H_{\lambda}</math> प्रत्यक्ष अभिन्न में (सामान्यीकृत) आइगेनस्थान है <math>f(A)</math> आइगेनवैल्यू के साथ <math>f(\lambda)</math>.
कहने का तात्पर्य यह है कि प्रत्यक्ष समाकल में प्रत्येक स्थान <math>H_{\lambda}</math> <math>f(A)</math> के लिए आइगेनमान <math>f(\lambda)</math>के साथ एक (सामान्यीकृत) आइगेनस्थान है।


== सामान्य स्व-आसन्न संकारक ==
== सामान्य स्व-आसन्न संकारक ==
[[गणितीय विश्लेषण]] में पाए जाने वाले कई महत्वपूर्ण रेखीय संकारक, जैसे अवकल संकारक, अबाधित होते हैं। स्व-संलग्न संचालकों के लिए वर्णक्रमीय प्रमेय भी है जो इन मामलों में प्रयुक्त होता है। उदाहरण देने के लिए, प्रत्येक स्थिर-गुणांक अंतर संकारक गुणन संकारक के समतुल्य है। वास्तव में, एकात्मक संकारक जो इस तुल्यता को प्रयुक्त करता है, [[फूरियर रूपांतरण]] है; गुणा संचालिका प्रकार का [[गुणक (फूरियर विश्लेषण)]] है।
[[गणितीय विश्लेषण]] में पाए जाने वाले कई महत्वपूर्ण रेखीय संकारक, जैसे अवकल संकारक, अबाधित होते हैं। स्व-संलग्न संचालकों के लिए वर्णक्रमीय प्रमेय भी है जो इन स्थिति में प्रयुक्त होता है। उदाहरण देने के लिए, प्रत्येक स्थिर-गुणांक अंतर संकारक गुणन संकारक के समतुल्य है। वास्तव में, एकात्मक संकारक जो इस तुल्यता को प्रयुक्त करता है, [[फूरियर रूपांतरण]] है; गुणा संचालिका प्रकार का [[गुणक (फूरियर विश्लेषण)]] है।
 
सामान्यतः , स्व-संलग्न संचालिका ों के लिए वर्णक्रमीय प्रमेय कई समकक्ष रूप ले सकता है।<ref>See Section 10.1 of {{harvnb|Hall|2013}}</ref> विशेष रूप से, पिछले अनुभाग में दिए गए सभी फॉर्मूले सीमित स्व-आसन्न संचालिका ों के लिए दिए गए हैं - प्रोजेक्शन-वैल्यू माप संस्करण, गुणन-संचालक संस्करण, और प्रत्यक्ष-अभिन्न संस्करण - छोटे के साथ अनबाउंड स्व-आसन्न संचालिका ों के लिए जारी है डोमेन मुद्दों से निपटने के लिए तकनीकी संशोधन।
 
'''संस्करण, गुणन-संचालक संस्करण, और प्रत्यक्ष-अभिन्न संस्करण - छोटे के साथ अनबाउंड स्व-आसन्न संचालिका ों के लिए जारी है डोमेन मुद्दों से निपटने के लिए तकनीकी संशोधन।'''


== यह भी देखें ==
सामान्यतः , स्व-संलग्न संचालिका के लिए वर्णक्रमीय प्रमेय कई समकक्ष रूप ले सकता है।<ref>See Section 10.1 of {{harvnb|Hall|2013}}</ref> विशेष रूप से, पिछले अनुभाग में दिए गए सभी सूत्रों सीमित स्व-आसन्न संचालिका के लिए दिए गए हैं - प्रक्षेपण -मान माप संस्करण, गुणन-संचालक संस्करण, और प्रत्यक्ष-अभिन्न संस्करण - छोटे के साथ अनबाउंड स्व-आसन्न संचालिका के लिए जारी है डोमेन उद्देश्यों से निपटने के लिए प्रौद्योगिकी संशोधन है ।
* {{annotated link|Hahn-Hellinger theorem}}
== यह भी देखें                             ==
* [[कॉम्पैक्ट ऑपरेटरों का वर्णक्रमीय सिद्धांत|कॉम्पैक्ट संचालिका ों का वर्णक्रमीय सिद्धांत]]
* {{annotated link|हैन-हेलिंगर प्रमेय}}
* [[कॉम्पैक्ट ऑपरेटरों का वर्णक्रमीय सिद्धांत|कॉम्पैक्ट संचालिका का वर्णक्रमीय सिद्धांत]]
* सामान्य सी * - बीजगणित का वर्णक्रमीय सिद्धांत
* सामान्य सी * - बीजगणित का वर्णक्रमीय सिद्धांत
* बोरेल कार्यात्मक पथरी
* बोरेल कार्यात्मक पथरी
* वर्णक्रमीय सिद्धांत
* वर्णक्रमीय सिद्धांत
* [[मैट्रिक्स अपघटन|आव्यूह अपघटन]]
* [[मैट्रिक्स अपघटन|आव्यूह अपघटन]]      
* कानूनी फॉर्म
* कानूनी फॉर्म
* [[जॉर्डन सामान्य रूप]], जिसमें वर्णक्रमीय अपघटन विशेष मामला है।
* [[जॉर्डन सामान्य रूप]], जिसमें वर्णक्रमीय अपघटन विशेष स्थति है।
* विलक्षण मूल्य अपघटन, मनमाना मैट्रिसेस के लिए वर्णक्रमीय प्रमेय का सामान्यीकरण।
* विलक्षण मान अपघटन, मनमाना मैट्रिसेस के लिए वर्णक्रमीय प्रमेय का सामान्यीकरण।
* आव्यूह का आइगेनडीकम्पोज़िशन
* आव्यूह का आइगेनडीकम्पोज़िशन
* वीनर-खिनचिन प्रमेय
* वीनर-खिनचिन प्रमेय


== टिप्पणियाँ ==
== टिप्पणियाँ         ==
{{reflist}}
{{reflist}}


Line 158: Line 163:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:07, 8 October 2023

गणित में, विशेष रूप से रैखिक बीजगणित और कार्यात्मक विश्लेषण, वर्णक्रमीय प्रमेय परिणाम है जब रैखिक संचालिका या आव्यूह (गणित) विकर्ण आव्यूह हो सकता है (अर्थात, किसी आधार पर विकर्ण आव्यूह के रूप में प्रतिनिधित्व किया जाता है)। यह अत्यंत उपयोगी है क्योंकि विकर्ण आव्यूह को साम्मिलित करने वाली संगणनाओं को अधिकांशतः संबंधित विकर्ण आव्यूह को साम्मिलित करते हुए बहुत सरल संगणनाओं में घटाया जा सकता है। परिमित-आयामी वेक्टर रिक्त स्थान पर संचालिका के लिए विकर्णकरण की अवधारणा अपेक्षाकृत सीधी है, किंतु अनंत-आयामी रिक्त स्थान पर संचालिका के लिए कुछ संशोधन की आवश्यकता है। सामान्यतः , स्पेक्ट्रल प्रमेय रैखिक संचालिका के वर्ग की पहचान करता है जिसे गुणन संचालिका द्वारा प्रतिरूपित किया जा सकता है, जो उतना ही सरल है जितना कोई खोजने की उम्मीद कर सकता है। अधिक अमूर्त भाषा में, वर्णक्रमीय प्रमेय क्रमविनिमेय सी * - बीजगणित के बारे में कथन है। ऐतिहासिक परिप्रेक्ष्य के लिए स्पेक्ट्रल सिद्धांत भी देखें।

संचालिका के उदाहरण जिनके लिए स्पेक्ट्रल प्रमेय प्रयुक्त होता है वे स्व-संबद्ध संचालिका या हिल्बर्ट रिक्त स्थान पर अधिक सामान्यतः सामान्य संचालिका होते हैं।

वर्णक्रमीय प्रमेय विहित रूप अपघटन भी प्रदान करता है, जिसे आव्यूह का आइजन अपघटन कहा जाता है, अंतर्निहित सदिश स्थान जिस पर संचालिका कार्य करता है।

ऑगस्टिन-लुई कॉची ने सममित आव्यूह के लिए वर्णक्रमीय प्रमेय को सिद्ध किया, अर्थात प्रत्येक वास्तविक, सममित आव्यूह विकर्णीय है। इसके अतिरिक्त, कॉची निर्धारकों के बारे में व्यवस्थित होने वाले पहले व्यक्ति थे।[1][2] जॉन वॉन न्यूमैन द्वारा सामान्यीकृत वर्णक्रमीय प्रमेय आज संभवतः संचालिका सिद्धांत का सबसे महत्वपूर्ण परिणाम है।

यह लेख मुख्य रूप से सबसे सरल प्रकार के वर्णक्रमीय प्रमेय पर केंद्रित है, जो हिल्बर्ट स्थान पर स्वयं-आसन्न संचालिका के लिए है। चूँकि, जैसा कि ऊपर बताया गया है, स्पेक्ट्रल प्रमेय भी हिल्बर्ट स्थान पर सामान्य संचालिका के लिए है।

परिमित-आयामी स्थति

हर्मिटियन मानचित्र और हर्मिटियन आव्यूह

हम पर एक हर्मिटियन मैट्रिक्स पर विचार करके प्रारंभ करते हैं (किंतु निम्नलिखित चर्चा पर सममित मैट्रिक्स के अधिक प्रतिबंधात्मक स्थिति के अनुकूल होगी) हम एक सकारात्मक निश्चित सेस्की रैखिक आंतरिक उत्पाद के साथ संपन्न परिमित-आयामी जटिल आंतरिक उत्पाद स्थान V पर एक हर्मिटियन मानचित्र पर विचार करते हैं। पर हर्मिटियन स्थिति का अर्थ है कि सभी x, yV के लिए,

समतुल्य नियम यह है A* = A, जहाँ A* का हर्मिटियन संयुग्म है A. उस स्थिति में A की पहचान हर्मिटियन आव्यूह से की जाती है, जिसका आव्यूह A* को इसके संयुग्मी संक्रमण से पहचाना जा सकता है। (यदि A वास्तविक आव्यूह है, तो यह इसके समतुल्य है AT = A, वह है, A सममित आव्यूह है।)

इस स्थिति का तात्पर्य है कि हर्मिटियन मानचित्र के सभी आइजनमान ​​​​वास्तविक हैं: इसे उस स्थिति में प्रयुक्त करने के लिए पर्याप्त है जब x = y ईजेनवेक्टर है। (याद रखें कि रेखीय मानचित्र का आइजन्वेक्टर A (गैर-शून्य) वेक्टर है x ऐसा है कि Ax = λx कुछ अदिश के लिए λ. मान λ संगत आइजनमान है। इसके अतिरिक्त , आइजनमान ​​विशेषता बहुपद की जड़ें हैं।)

प्रमेय। यदि A V पर हर्मिटियन है, तो A के ईजेनवेक्टरों से मिलकर V का एक ऑर्थोनॉर्मल आधार उपस्थित है। प्रत्येक ईजेनवेल्यू वास्तविक है।

हम उस स्थिति के लिए प्रमाण का स्केच प्रदान करते हैं जहां स्केलर्स का अंतर्निहित क्षेत्र सम्मिश्र संख्या है।

बीजगणित के मौलिक प्रमेय द्वारा, A की विशेषता बहुपद पर प्रयुक्त, कम से कम आइजनमान है λ1 और ईजेनवेक्टर e1 होता है। तब से

हम पाते हैं λ1 यह सचमुच का है। अब स्थान पर विचार करें K = span{e1}, का ऑर्थोगोनल पूरक e1. हर्मिटिसिटी द्वारा, K की अपरिवर्तनीय उपसमष्टि है A. इसी तर्क को प्रयुक्त करना K पता चलता है कि A में आइजनवेक्टर है e2K. परिमित प्रेरण तब प्रमाण को समाप्त करता है।

वर्णक्रमीय प्रमेय परिमित-आयामी वास्तविक आंतरिक उत्पाद स्थानों पर सममित मानचित्रों के लिए भी है, किंतु ईजेनवेक्टर का अस्तित्व बीजगणित के मौलिक प्रमेय से तुरंत अनुसरण नहीं करता है। इसे सिद्ध करने के लिए विचार करें A हर्मिटियन आव्यूह के रूप में और इस तथ्य का उपयोग करें कि हर्मिटियन आव्यूह के सभी आइजनमान ​​​​वास्तविक हैं।

का आव्यूह प्रतिनिधित्व A ईजेनवेक्टर के आधार में विकर्ण है, और निर्माण के द्वारा प्रमाण पारस्परिक रूप से ऑर्थोगोनल ईजेनवेक्टर का आधार देता है; ईकाई वैक्टर होने के लिए उन्हें चुनकर ईजेनवेक्टरों का ऑर्थोनॉर्मल आधार प्राप्त होता है। A को जोड़ीदार ऑर्थोगोनल अनुमानों के रैखिक संयोजन के रूप में लिखा जा सकता है, जिसे इसका वर्णक्रमीय अपघटन कहा जाता है।

एक आइगेनमान के अनुरूप आइगेनस्थान हो λ. ध्यान दें कि परिभाषा विशिष्ट ईजेनवेक्टर के किसी भी विकल्प पर निर्भर नहीं करती है। V रिक्त स्थान का ऑर्थोगोनल प्रत्यक्ष योग है Vλ जहां सूचकांक आइजनमान ​​​​से अधिक है।

दूसरे शब्दों में, यदि Pλ ओर्थोगोनल प्रक्षेपण या ऑर्थोगोनल प्रक्षेपण को दर्शाता है Vλ, और λ1, ..., λm के आइगेनमान हैं A, तो वर्णक्रमीय अपघटन के रूप में लिखा जा सकता है

यदि A का वर्णक्रमीय अपघटन है, तो और किसी भी अदिश \mu के लिए। यह इस प्रकार है कि किसी भी बहुपद f के लिए एक है

वर्णक्रमीय अपघटन शूर अपघटन और एकवचन मान अपघटन दोनों का विशेष स्थति है।

सामान्य आव्यूह

वर्णक्रमीय प्रमेय मैट्रिसेस के अधिक सामान्य वर्ग तक फैला हुआ है। होने देना A परिमित-आयामी आंतरिक उत्पाद स्थान पर संचालिका बनें। A को सामान्य आव्यूह कहा जाता है यदि A*A = AA*. कोई यह दिखा सकता है A सामान्य है यदि और केवल यदि यह एकात्मक रूप से विकर्ण है। प्रमाण: शूर अपघटन द्वारा, हम किसी भी आव्यूह को लिख सकते हैं A = UTU*, जहाँ U एकात्मक है और T ऊपरी-त्रिकोणीय है।

यदि A सामान्य है, तो कोई देखता है TT* = T*T. इसलिए, T विकर्ण होना चाहिए क्योंकि सामान्य ऊपरी त्रिकोणीय आव्यूह विकर्ण होता है (सामान्य आव्यूह या परिणाम देखें) व्युत्क्रम स्पष्ट है।


दूसरे शब्दों में, A सामान्य है यदि और केवल यदि एकात्मक आव्यूह उपस्थित है U ऐसा है कि

जहां D एक विकर्ण आव्यूह है। फिर, D के विकर्ण की प्रविष्टियाँ A के आइगेनमान हैं। U के स्तंभ वैक्टर A के ईजेनवेक्टर हैं और वे ऑर्थोनॉर्मल हैं। हर्मिटियन स्थिति के विपरीत, D की प्रविष्टियाँ वास्तविक होने की आवश्यकता नहीं है।

कॉम्पैक्ट स्व-आसन्न संचालिका

हिल्बर्ट रिक्त स्थान की अधिक सामान्य सेटिंग में, जिसमें अनंत आयाम हो सकता है, कॉम्पैक्ट संचालिका स्व-आसन्न संचालिका के लिए वर्णक्रमीय प्रमेय का कथन वस्तुतः परिमित-आयामी स्थिति के समान है।

प्रमेय कल्पना करना A हिल्बर्ट स्थान (वास्तविक या जटिल) पर कॉम्पैक्ट स्वयं संलग्न संचालिका है V. फिर इसका अलौकिक आधार है V के ईजेनवेक्टर से मिलकर A. प्रत्येक आइजनमान वास्तविक है।

हर्मिटियन मेट्रिसेस के लिए, मुख्य बिंदु कम से कम अशून्य ईजेनवेक्टर के अस्तित्व को प्रमाण करना है। ईजेनवेल्यूज के अस्तित्व को दिखाने के लिए निर्धारकों पर भरोसा नहीं किया जा सकता है, किंतु आइगेनवैल्यूज के चर निस्र्पण के अनुरूप अधिकतमकरण तर्क का उपयोग किया जा सकता है।

यदि संहतता धारणा को हटा दिया जाता है, तो यह सच नहीं है कि प्रत्येक स्व-संलग्न संचालिका के ईजेनवेक्टर होते हैं।

परिबद्ध स्व-आसन्न संकारक

ईजेनवेक्टरों की संभावित अनुपस्थिति

हम जिस अगले सामान्यीकरण पर विचार करते हैं, वह हिल्बर्ट स्थान पर परिबद्ध संचालिका स्वयं संलग्न संचालिका का है। ऐसे संचालिका के पास कोई आइजनमान ​​​​नहीं हो सकता है: उदाहरण के लिए चलो A गुणन का संचालक हो t पर , वह है,[3]

इस संचालिका के पास में कोई ईजेनवेक्टर नहीं है, चूँकि इसमें बड़ी जगह में ईजेनवेक्टर हैं। अर्थात् वितरण , जहाँ डेल्टा कार्य है, जब एक उपयुक्त अर्थ में निर्मित किया जाता है, तो यह एक ईजेनवेक्टर होता है। डायराक डेल्टा कार्य चूँकि मौलिक अर्थों में एक कार्य नहीं है और हिल्बर्ट स्थान L2[0, 1] या किसी अन्य बानाच स्थान में नहीं है। इस प्रकार, डेल्टा-कार्य के "सामान्यीकृत ईजेनवेक्टर" हैं, किंतु सामान्य अर्थों में ईजेनवेक्टर नहीं हैं।

स्पेक्ट्रल उप-स्थान और प्रक्षेपण-मूल्यवान उपाय

(सच्चे) ईजेनवेक्टरों की अनुपस्थिति में, लगभग ईजेनवेक्टरों से युक्त उप-स्थानों की खोज की जा सकती है। उपरोक्त उदाहरण में, उदाहरण के लिए, जहाँ हम छोटे अंतराल पर समर्थित कार्यों के उप-स्थान पर विचार कर सकते हैं अंदर . के अंतर्गत यह स्थान अपरिवर्तनीय है और किसी के लिए इस उपक्षेत्र में, के बहुत निकट है . वर्णक्रमीय प्रमेय के इस दृष्टिकोण में, यदि बंधा हुआ स्वयं-आसन्न संकारक है, तो कोई ऐसे वर्णक्रमीय उप-स्थानों के बड़े वर्गों की खोज करता है।[4] प्रत्येक उप-स्थान, बदले में, संबंधित प्रक्षेपण संचालिका द्वारा एन्कोड किया गया है, और सभी उप-स्थानों का संग्रह तब प्रक्षेपण-मूल्यवान माप द्वारा दर्शाया गया है।


स्पेक्ट्रल प्रमेय का एक सूत्रीकरण संचालिका A को प्रक्षेपण-मूल्य माप के संबंध में संचालिका के स्पेक्ट्रम पर समन्वय कार्य के अभिन्न अंग के रूप में व्यक्त करता है। [5]

जब प्रश्न में स्व-आसन्न संचालिका कॉम्पैक्ट संचालिका होता है, तो स्पेक्ट्रल प्रमेय का यह संस्करण उपरोक्त परिमित-आयामी स्पेक्ट्रल प्रमेय के समान कुछ कम हो जाता है, अतिरिक्त इसके कि संचालिका को अनुमानों के परिमित या अनगिनत अनंत रैखिक संयोजन के रूप में व्यक्त किया जाता है, अर्थात माप में केवल परमाणु होते हैं।

गुणन संचालिका संस्करण

वर्णक्रमीय प्रमेय का वैकल्पिक सूत्रीकरण कहता है कि प्रत्येक परिबद्ध स्व-संयोजक संकारक गुणन संकारक के समतुल्य है। इस परिणाम का महत्व यह है कि गुणन संचालक कई तरह से समझने में आसान हैं।

Theorem.[6] — Let A be a bounded self-adjoint operator on a Hilbert space H. Then there is a measure space (X, Σ, μ) and a real-valued essentially bounded measurable function f on X and a unitary operator U:HL2(X, μ) such that

where T is the multiplication operator:
and .

स्पेक्ट्रल प्रमेय संचालिका सिद्धांत नामक कार्यात्मक विश्लेषण के विशाल शोध क्षेत्र की प्रारंभ है; स्पेक्ट्रल माप या स्पेक्ट्रल माप भी देखें।

हिल्बर्ट रिक्त स्थान पर बंधे सामान्य संचालिका के लिए समान वर्णक्रमीय प्रमेय भी है। निष्कर्ष में केवल इतना ही अंतर है कि अब f जटिल-मूल्यवान हो सकता है।

प्रत्यक्ष अभिन्न

प्रत्यक्ष अभिन्न के संदर्भ में वर्णक्रमीय प्रमेय का सूत्रीकरण भी है। यह गुणन-संचालक सूत्रीकरण के समान है, किंतु अधिक विहित है।

मान लीजिए एक परिबद्ध स्व-आसन्न संकारक है और को का स्पेक्ट्रम होने दें। वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न सूत्रीकरण दो मात्राओं को से जोड़ता है। सबसे पहले, पर , और दूसरा, हिल्बर्ट स्पेसेस का एक परिवारफिर हम प्रत्यक्ष अभिन्न हिल्बर्ट स्थान बनाते हैं


इस स्थान के तत्व कार्य (या खंड) हैं ऐसा है कि सभी के लिए .

वर्णक्रमीय प्रमेय का प्रत्यक्ष-अभिन्न संस्करण निम्नानुसार व्यक्त किया जा सकता है:[7]

Theorem — यदि तब एक परिबद्ध स्व-आसन्न संकारक है एकात्मक रूप से "गुणा" के समान है " ऑपरेटर चालू

किसी उपाय के लिए और कुछ वर्ग हिल्बर्ट रिक्त स्थान की। मापदंड द्वारा विशिष्ट रूप से निर्धारित किया जाता हैमाप-सैद्धांतिक तुल्यता तक; अर्थात्, कोई दो माप उसी से संबंधित हैं माप शून्य के समान सेट हैं। हिल्बर्ट रिक्त स्थान के आयाम द्वारा विशिष्ट रूप से निर्धारित किया जाता है के एक सेट तक -शून्य को मापें।

रिक्त स्थान के लिए आइजनस्पेस जैसी किसी चीज़ के बारे में सोचा जा सकता है . चूँकि , ध्यान दें कि जब तक कि एक-तत्व स्थित न हो सकारात्मक उपाय है, स्थान वास्तव में प्रत्यक्ष समाकलन की उपसमष्टि नहीं है। इस प्रकार को सामान्यीकृत ईजेनस्थान के रूप में सोचा जाना चाहिए-अर्थात, के तत्व ईजेनवेक्टर हैं जो वास्तव में हिल्बर्ट स्थान से संबंधित नहीं हैं।

यद्यपि वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष अभिन्न सूत्रीकरण दोनों स्व-संयोजक संकारक को गुणन संकारक के समान रूप से व्यक्त करते हैं, प्रत्यक्ष अभिन्न दृष्टिकोण अधिक विहित है। सबसे पहले, वह स्थित जिस पर प्रत्यक्ष अभिन्न होता है (संचालिका का स्पेक्ट्रम) विहित है। दूसरा, जिस कार्य से हम गुणा कर रहे हैं वह प्रत्यक्ष-अभिन्न दृष्टिकोण में कैननिकल है: बस कार्य है।

चक्रीय वैक्टर और सरल स्पेक्ट्रम

एक सदिश को के लिए चक्रीय सदिश कहलाता है यदि वैक्टर हिल्बर्ट स्थान के घने उप-क्षेत्र में फैला हुआ है। मान लीजिए परिबद्ध स्व-आसन्न संकारक है जिसके लिए चक्रीय वेक्टर उपस्थित है। उस स्थिति में, वर्णक्रमीय प्रमेय के प्रत्यक्ष-अभिन्न और गुणन-संचालक योगों के बीच कोई अंतर नहीं है। चूँकि , उस स्थिति में उपाय है स्पेक्ट्रम पर का ऐसा है कि एकात्मक रूप से गुणन के समान है संचालिका .[8] यह परिणाम दर्शाता है साथ गुणन संचालिका के रूप में और प्रत्यक्ष अभिन्न के रूप में, चूंकि केवल सीधा अभिन्न अंग है जिसमें प्रत्येक हिल्बर्ट स्थान सिर्फ . है

.

प्रत्येक परिबद्ध स्व-संलग्न संकारक चक्रीय सदिश को स्वीकार नहीं करता; वास्तव में, प्रत्यक्ष अभिन्न अपघटन में अद्वितीयता से, यह तभी हो सकता है जब सभी का आयाम है। जब ऐसा होता है, तो हम कहते हैं स्व-आसन्न_संचालक या स्पेक्ट्रल_बहुलता_सिद्धांत के अर्थ में सरल स्पेक्ट्रम है। यही है, चक्रीय सदिश को स्वीकार करने वाले बाध्य स्व-आसन्न संचालिका को अलग-अलग आइजनमान ​​​​के साथ स्व-संलग्न आव्यूह के अनंत-आयामी सामान्यीकरण के रूप में माना जाना चाहिए (जिससे , प्रत्येक आइजनमान में बहुलता है)।

चूँकि हर नहीं चक्रीय सदिश को स्वीकार करता है, यह देखना आसान है कि हम हिल्बर्ट स्थान को अपरिवर्तनीय उप-स्थानों के प्रत्यक्ष योग के रूप में विघटित कर सकते हैं चक्रीय वेक्टर है। यह अवलोकन वर्णक्रमीय प्रमेय के गुणन-संचालक और प्रत्यक्ष-अभिन्न रूपों के प्रमाणों की कुंजी है।

कार्यात्मक कलन

स्पेक्ट्रल प्रमेय (किसी भी रूप में) का एक महत्वपूर्ण अनुप्रयोग कार्यात्मक पथरी को परिभाषित करने का विचार है। अर्थात्, के स्पेक्ट्रम पर परिभाषित एक फलन दिया गया है, हम एक संकारक को परिभाषित करना चाहते हैं। यदि केवल एक सकारात्मक शक्ति है,, तो की केवल शक्ति है रोचक स्थिति हैं जहां एक गैर-बहुपद कार्य है जैसे कि वर्गमूल या एक घातीय स्पेक्ट्रल प्रमेय का कोई भी संस्करण इस तरह की एक कार्यात्मक कलन प्रदान करता है। प्रत्यक्ष अभिन्न संस्करण में, उदाहरण के लिए, डायरेक्ट इंटीग्रल में "गुणा द्वारा " संचालिका के रूप में कार्य करता है:[9]

.

कहने का तात्पर्य यह है कि प्रत्यक्ष समाकल में प्रत्येक स्थान के लिए आइगेनमान के साथ एक (सामान्यीकृत) आइगेनस्थान है।

सामान्य स्व-आसन्न संकारक

गणितीय विश्लेषण में पाए जाने वाले कई महत्वपूर्ण रेखीय संकारक, जैसे अवकल संकारक, अबाधित होते हैं। स्व-संलग्न संचालकों के लिए वर्णक्रमीय प्रमेय भी है जो इन स्थिति में प्रयुक्त होता है। उदाहरण देने के लिए, प्रत्येक स्थिर-गुणांक अंतर संकारक गुणन संकारक के समतुल्य है। वास्तव में, एकात्मक संकारक जो इस तुल्यता को प्रयुक्त करता है, फूरियर रूपांतरण है; गुणा संचालिका प्रकार का गुणक (फूरियर विश्लेषण) है।

सामान्यतः , स्व-संलग्न संचालिका के लिए वर्णक्रमीय प्रमेय कई समकक्ष रूप ले सकता है।[10] विशेष रूप से, पिछले अनुभाग में दिए गए सभी सूत्रों सीमित स्व-आसन्न संचालिका के लिए दिए गए हैं - प्रक्षेपण -मान माप संस्करण, गुणन-संचालक संस्करण, और प्रत्यक्ष-अभिन्न संस्करण - छोटे के साथ अनबाउंड स्व-आसन्न संचालिका के लिए जारी है डोमेन उद्देश्यों से निपटने के लिए प्रौद्योगिकी संशोधन है ।

यह भी देखें

टिप्पणियाँ

  1. Hawkins, Thomas (1975). "कौची और मैट्रिसेस का वर्णक्रमीय सिद्धांत". Historia Mathematica. 2: 1–29. doi:10.1016/0315-0860(75)90032-4.
  2. A Short History of Operator Theory by Evans M. Harrell II
  3. Hall 2013 Section 6.1
  4. Hall 2013 Theorem 7.2.1
  5. Hall 2013 Theorem 7.12
  6. Hall 2013 Theorem 7.20
  7. Hall 2013 Theorem 7.19
  8. Hall 2013 Lemma 8.11
  9. E.g., Hall 2013 Definition 7.13
  10. See Section 10.1 of Hall 2013


संदर्भ