एंट्रोपिक अनिश्चितता: Difference between revisions
(Created page with "{{Short description|Concept in information theory}} अनिश्चितता सिद्धांत#क्वांटम एन्ट्रोपिक अनिश...") |
m (5 revisions imported from alpha:एंट्रोपिक_अनिश्चितता) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in information theory}} | {{Short description|Concept in information theory}} | ||
क्वांटम यांत्रिकी, [[सूचना सिद्धांत]] और [[फूरियर विश्लेषण]] में, '''एन्ट्रोपिक अनिश्चितता''' या '''हिर्शमैन अनिश्चितता''' को अस्थायी और वर्णक्रमीय डिफरेंशियल एन्ट्रॉपी के योग के रूप में परिभाषित किया गया है। परिणाम यह निकला है कि हाइजेनबर्ग के अनिश्चितता सिद्धांत को इन एन्ट्रॉपियों के योग पर निचली सीमा के रूप में व्यक्त किया जा सकता है। यह मानक विचलन के उत्पाद के संदर्भ में अनिश्चितता सिद्धांत के सामान्य कथन से ''सशक्त'' है। | |||
1957 में,<ref name=Hirschman>{{Citation |first=I. I., Jr. |last=Hirschman |title=A note on entropy |journal=[[American Journal of Mathematics]] |year=1957 |volume=79 |issue=1 |pages=152–156 |doi=10.2307/2372390 |postscript=. |jstor=2372390 }}</ref> इसिडोर इसहाक हिर्शमैन, जूनियर ने | 1957 में,<ref name=Hirschman>{{Citation |first=I. I., Jr. |last=Hirschman |title=A note on entropy |journal=[[American Journal of Mathematics]] |year=1957 |volume=79 |issue=1 |pages=152–156 |doi=10.2307/2372390 |postscript=. |jstor=2372390 }}</ref> इसिडोर इसहाक हिर्शमैन, जूनियर ने फलन ''f'' और इसके [[फूरियर रूपांतरण]] ''g'' पर विचार किया | ||
:<math>g(y) \approx \int_{-\infty}^\infty \exp (-2\pi ixy) f(x)\, dx,\qquad f(x) \approx \int_{-\infty}^\infty \exp (2\pi ixy) g(y)\, dy ~,</math> | :<math>g(y) \approx \int_{-\infty}^\infty \exp (-2\pi ixy) f(x)\, dx,\qquad f(x) \approx \int_{-\infty}^\infty \exp (2\pi ixy) g(y)\, dy ~,</math> | ||
जहां ≈ अभिसरण को इंगित करता है {{mvar|L}}<sup>2</sup>, और सामान्यीकृत किया गया ताकि (प्लांचरेल प्रमेय द्वारा | जहां <nowiki>''≈''</nowiki> अभिसरण को इंगित करता है {{mvar|L}}<sup>2</sup>, और सामान्यीकृत किया गया ताकि (प्लांचरेल प्रमेय द्वारा प्रमाणित किया गया है), | ||
:<math> \int_{-\infty}^\infty |f(x)|^2\, dx = \int_{-\infty}^\infty |g(y)|^2 \,dy = 1~.</math> | :<math> \int_{-\infty}^\infty |f(x)|^2\, dx = \int_{-\infty}^\infty |g(y)|^2 \,dy = 1~.</math> | ||
उन्होंने दिखाया कि ऐसे किसी भी कार्य के लिए शैनन एन्ट्रॉपी का योग गैर- | उन्होंने दिखाया कि ऐसे किसी भी कार्य के लिए शैनन एन्ट्रॉपी का योग गैर-ऋणात्मक है, | ||
:<math> H(|f|^2) + H(|g|^2) \equiv - \int_{-\infty}^\infty |f(x)|^2 \log |f(x)|^2\, dx - \int_{-\infty}^\infty |g(y)|^2 \log |g(y)|^2 \,dy \ge 0. </math> | :<math> H(|f|^2) + H(|g|^2) \equiv - \int_{-\infty}^\infty |f(x)|^2 \log |f(x)|^2\, dx - \int_{-\infty}^\infty |g(y)|^2 \log |g(y)|^2 \,dy \ge 0. </math> | ||
एक सख्त | एक सख्त बाउंड, | ||
{{Equation box 1 | {{Equation box 1 | ||
|indent =: | |indent =: | ||
Line 17: | Line 17: | ||
|border colour = #0073CF | |border colour = #0073CF | ||
|bgcolor=#F9FFF7}} | |bgcolor=#F9FFF7}} | ||
हिर्शमैन द्वारा अनुमान लगाया गया था<ref name=Hirschman/>और [[ह्यूग एवरेट]],<ref>[[Hugh Everett]], III. The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. [https://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf Everett's Dissertation]</ref> 1975 में | हिर्शमैन द्वारा अनुमान लगाया गया था<ref name=Hirschman/>और [[ह्यूग एवरेट]],<ref>[[Hugh Everett]], III. The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. [https://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf Everett's Dissertation]</ref> 1975 में डब्ल्यू. बेकनर (गणितज्ञ) द्वारा सिद्ध किया गया था। बेकनर<ref name="Beckner">{{Citation |first=W. |last=Beckner |title=Inequalities in Fourier analysis |journal=[[Annals of Mathematics]] |volume=102 |issue=6 |year=1975 |pages=159–182 |doi=10.2307/1970980 |postscript=. |jstor=1970980 |pmid=16592223 |pmc=432369 }}</ref> और उसी वर्ष [[बियालिनिकी-बिरूला]] और मायसील्स्की द्वारा एक सामान्यीकृत क्वांटम यांत्रिक अनिश्चितता सिद्धांत के रूप में व्याख्या की गई थी।<ref name="BBM">{{Citation |first1=I. |last1=Bialynicki-Birula|last2= Mycielski|first2=J.|title=Uncertainty Relations for Information Entropy in Wave Mechanics|journal=[[Communications in Mathematical Physics]] |volume=44 |year=1975 |pages=129 |doi=10.1007/BF01608825 |issue=2|bibcode = 1975CMaPh..44..129B |s2cid=122277352|url=http://projecteuclid.org/euclid.cmp/1103899297}}</ref> [[गाऊसी वितरण|गॉसियन वितरण]] के स्थिति में समानता कायम है।<ref>{{cite journal |last1=Ozaydin |first1=Murad |last2=Przebinda |first2=Tomasz |year=2004 |title=स्थानीय रूप से कॉम्पैक्ट एबेलियन समूह के लिए एन्ट्रॉपी-आधारित अनिश्चितता सिद्धांत|journal=Journal of Functional Analysis |volume=215 |issue=1 |pages=241–252 |publisher=Elsevier Inc.|doi= 10.1016/j.jfa.2003.11.008|url=http://redwood.berkeley.edu/w/images/9/95/2002-26.pdf |access-date=2011-06-23 |doi-access=free }}</ref> हालाँकि, ध्यान देने की बात है कि उपरोक्त एन्ट्रोपिक अनिश्चितता फलन [[चरण स्थान|अवस्था स्थान]] में दर्शाए गए क्वांटम [[वॉन न्यूमैन एन्ट्रापी]] से स्पष्ट रूप से भिन्न है। | ||
[[गाऊसी वितरण]] के | |||
हालाँकि, ध्यान | |||
==प्रमाण का रेखाचित्र== | ==प्रमाण का रेखाचित्र== | ||
इस सख्त असमानता का प्रमाण फूरियर परिवर्तन के तथाकथित (''q'', ''p'')-मानदंड पर निर्भर करता है। (इस मानदंड को स्थापित करना प्रमाण का सबसे कठिन हिस्सा है।) | इस सख्त असमानता का प्रमाण फूरियर परिवर्तन के तथाकथित '''(''q'', ''p'')-मानदंड''' पर निर्भर करता है। (इस मानदंड को स्थापित करना प्रमाण का सबसे कठिन हिस्सा है।) | ||
इस मानदंड से, कोई (अंतर) | इस मानदंड से, कोई (अंतर) रेनी एन्ट्रॉपी के योग पर निचली सीमा स्थापित करने में सक्षम है, {{math| ''H<sub>α</sub>({{!}}f{{!}}²)+H<sub>β</sub>({{!}}g{{!}}²)'' }}, जहाँ {{math|''1/α + 1/β'' {{=}} 2}}, जो शैनन एन्ट्रॉपी को सामान्यीकृत करता है। सरलता के लिए, हम इस असमानता को केवल एक आयाम में मानते हैं; कई आयामों का विस्तार सीधा है और उद्धृत साहित्य में पाया जा सकता है। | ||
===बेबेंको-बेकनेर असमानता=== | ===बेबेंको-बेकनेर असमानता=== | ||
(''q'', ''p'')- | फूरियर रूपांतरण के '''(''q'', ''p'')-मानदंड''' को परिभाषित किया गया है<ref name=Bialynicki>{{Cite journal | doi = 10.1103/PhysRevA.74.052101| title = Formulation of the uncertainty relations in terms of the Rényi entropies| journal = Physical Review A| volume = 74| issue = 5| pages = 052101| year = 2006| last1 = Bialynicki-Birula | first1 = I. |arxiv = quant-ph/0608116 |bibcode = 2006PhRvA..74e2101B | s2cid = 19123961}}</ref> | ||
:<math>\|\mathcal F\|_{q,p} = \sup_{f\in L^p(\mathbb R)} \frac{\|\mathcal Ff\|_q}{\|f\|_p},</math> | :<math>\|\mathcal F\|_{q,p} = \sup_{f\in L^p(\mathbb R)} \frac{\|\mathcal Ff\|_q}{\|f\|_p},</math> जहाँ <math>1 < p \le 2~,</math> और <math>\frac 1 p + \frac 1 q = 1.</math> | ||
1961 में, बबेंको<ref>K.I. Babenko. ''An inequality in the theory of Fourier integrals.'' Izv. Akad. Nauk SSSR, Ser. Mat. '''25''' (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) '''44''', pp. 115-128</ref> q के सम पूर्णांक मानों के लिए यह मानदंड पाया गया। आख़िरकार, 1975 में, | 1961 में, बबेंको<ref>K.I. Babenko. ''An inequality in the theory of Fourier integrals.'' Izv. Akad. Nauk SSSR, Ser. Mat. '''25''' (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) '''44''', pp. 115-128</ref> ''q'' के ''सम'' पूर्णांक मानों के लिए यह मानदंड पाया गया। आख़िरकार, 1975 में,फूरियर ट्रांसफॉर्म, बेकनर के आइजनफंक्शन के रूप में [[हर्मिट कार्य करता है|हर्मिट फंक्शन करता है]] का उपयोग करना<ref name=Beckner/>साबित हुआ कि सभी q ≥ 2 के लिए इस मानदंड का मान (एक आयाम में) है | ||
फूरियर ट्रांसफॉर्म, बेकनर के आइजनफंक्शन के रूप में [[हर्मिट कार्य करता है]] का उपयोग करना<ref name=Beckner/>साबित हुआ कि सभी q ≥ 2 के लिए इस मानदंड का मान (एक आयाम में) है | |||
:<math>\|\mathcal F\|_{q,p} = \sqrt{p^{1/p}/q^{1/q}}.</math> | :<math>\|\mathcal F\|_{q,p} = \sqrt{p^{1/p}/q^{1/q}}.</math> | ||
इस प्रकार हमारे पास बबेंको-बेकनर असमानता है | इस प्रकार हमारे पास '''बबेंको-बेकनर असमानता''' है | ||
:<math>\|\mathcal Ff\|_q \le \left(p^{1/p}/q^{1/q}\right)^{1/2} \|f\|_p.</math> | :<math>\|\mathcal Ff\|_q \le \left(p^{1/p}/q^{1/q}\right)^{1/2} \|f\|_p.</math> | ||
===रेनी एन्ट्रॉपी बाउंड=== | ===रेनी एन्ट्रॉपी बाउंड=== | ||
इस असमानता से, रेनी एन्ट्रॉपी के संदर्भ में अनिश्चितता सिद्धांत की अभिव्यक्ति प्राप्त की जा सकती है।<ref name=Bialynicki/><ref>H.P. Heinig and M. Smith, ''Extensions of the Heisenberg–Weil inequality.'' Internat. J. Math. & Math. Sci., Vol. 9, No. 1 (1986) pp. 185–192. [http://www.hindawi.com/GetArticle.aspx?doi=10.1155/S0161171286000212]</ref> | इस असमानता से, रेनी एन्ट्रॉपी के संदर्भ में अनिश्चितता सिद्धांत की अभिव्यक्ति प्राप्त की जा सकती है।<ref name=Bialynicki/><ref>H.P. Heinig and M. Smith, ''Extensions of the Heisenberg–Weil inequality.'' Internat. J. Math. & Math. Sci., Vol. 9, No. 1 (1986) pp. 185–192. [http://www.hindawi.com/GetArticle.aspx?doi=10.1155/S0161171286000212]</ref>मान लीजिये <math>g=\mathcal Ff</math>, 2α=p, और 2β=q, ताकि {{math|''1/α + 1/β'' {{=}} 2}} और 1/2<α<1<β, हमारे पास है | ||
:<math>\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)^{1/2\beta} | :<math>\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)^{1/2\beta} | ||
\le \frac{(2\alpha)^{1/4\alpha}}{(2\beta)^{1/4\beta}} | \le \frac{(2\alpha)^{1/4\alpha}}{(2\beta)^{1/4\beta}} | ||
Line 49: | Line 45: | ||
</math> | </math> | ||
दोनों पक्षों को गुणा करने पर | दोनों पक्षों को गुणा करने पर | ||
:<math>\frac{\beta}{1-\beta}=-\frac{\alpha}{1-\alpha}</math> असमानता की भावना को | :<math>\frac{\beta}{1-\beta}=-\frac{\alpha}{1-\alpha}</math> असमानता की भावना को प्रतिलोम (रिवर्स) कर देता है, | ||
:<math>\frac {1}{1-\beta} \log\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right) | :<math>\frac {1}{1-\beta} \log\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right) | ||
\ge \frac\alpha{2(\alpha-1)}\log\frac{(2\alpha)^{1/\alpha}}{(2\beta)^{1/\beta}} | \ge \frac\alpha{2(\alpha-1)}\log\frac{(2\alpha)^{1/\alpha}}{(2\beta)^{1/\beta}} | ||
Line 60: | Line 56: | ||
</math> | </math> | ||
:<math> H_\alpha(|f|^2) + H_\beta(|g|^2) \ge \frac 1 2 \left(\frac{\log\alpha}{\alpha-1}+\frac{\log\beta}{\beta-1}\right) - \log 2 ~.</math> | :<math> H_\alpha(|f|^2) + H_\beta(|g|^2) \ge \frac 1 2 \left(\frac{\log\alpha}{\alpha-1}+\frac{\log\beta}{\beta-1}\right) - \log 2 ~.</math> | ||
ध्यान दें कि यह असमानता इसके संबंध में सममित है {{mvar|α}} और {{mvar|β}}: अब किसी को ऐसा मानने की जरूरत नहीं है {{math|'' α<β''}}; केवल इतना कि वे | ध्यान दें कि यह असमानता इसके संबंध में सममित है {{mvar|α}} और {{mvar|β}}: अब किसी को ऐसा मानने की जरूरत नहीं है {{math|'' α<β''}}; केवल इतना कि वे धनात्मक हैं और दोनों एक नहीं हैं, और 1/α + 1/β = 2. इस समरूपता को देखने के लिए, बस फूरियर ट्रांसफॉर्म में ''i'' और ''−i'' की भूमिकाओं का आदान-प्रदान करें। | ||
===शैनन एन्ट्रापी बाउंड=== | ===शैनन एन्ट्रापी बाउंड=== | ||
इस अंतिम असमानता की सीमा को α, β → 1 के रूप में लेने से | इस अंतिम असमानता की सीमा को ''α, β → 1'' के रूप में लेने से निम्न सामान्य शैनन एन्ट्रापी असमानता प्राप्त होती है, | ||
:<math>H(|f|^2) + H(|g|^2) \ge \log\frac e 2,\quad\textrm{where}\quad g(y) \approx \int_{\mathbb R} e^{-2\pi ixy}f(x)\,dx~,</math> | :<math>H(|f|^2) + H(|g|^2) \ge \log\frac e 2,\quad\textrm{where}\quad g(y) \approx \int_{\mathbb R} e^{-2\pi ixy}f(x)\,dx~,</math> | ||
लघुगणक के किसी भी आधार के लिए मान्य है, जब तक हम सूचना की उपयुक्त इकाई, [[ अंश ]], [[नेट (इकाई)]], आदि चुनते हैं। | लघुगणक के किसी भी आधार के लिए मान्य है, जब तक हम सूचना की उपयुक्त इकाई, [[ अंश | बिट]] , [[नेट (इकाई)]], आदि चुनते हैं। | ||
हालांकि, फूरियर ट्रांसफॉर्म के एक अलग सामान्यीकरण के लिए स्थिरांक अलग होगा, (जैसे कि | हालांकि, फूरियर ट्रांसफॉर्म के एक अलग सामान्यीकरण के लिए स्थिरांक अलग होगा, (जैसे कि सामान्यतः भौतिकी में उपयोग किया जाता है, सामान्यीकरण के साथ चुना जाता है ताकि ''ħ=1'' ), यानी, | ||
:<math>H(|f|^2) + H(|g|^2) \ge \log(\pi e)\quad\textrm{for}\quad g(y) \approx \frac 1{\sqrt{2\pi}}\int_{\mathbb R} e^{-ixy}f(x)\,dx~.</math> | :<math>H(|f|^2) + H(|g|^2) \ge \log(\pi e)\quad\textrm{for}\quad g(y) \approx \frac 1{\sqrt{2\pi}}\int_{\mathbb R} e^{-ixy}f(x)\,dx~.</math> | ||
इस | इस स्थिति में, फूरियर का फैलाव 2 के कारक द्वारा पूर्ण वर्ग में बदल जाता है{{mvar|π}} बस लॉग(2) जोड़ता है{{mvar|π}}) इसकी एन्ट्रापी के लिए। | ||
==एन्ट्रॉपी बनाम विचरण सीमा== | ==एन्ट्रॉपी बनाम विचरण सीमा== | ||
गॉसियन या [[सामान्य संभाव्यता वितरण]] विचरण और विभेदक एन्ट्रॉपी के बीच संबंध में एक महत्वपूर्ण भूमिका निभाता है: यह भिन्नताओं की गणना की एक समस्या है जो यह दर्शाती है कि यह वितरण किसी दिए गए विचरण के लिए एन्ट्रापी को अधिकतम करता है, और साथ ही विचरण को न्यूनतम करता | गॉसियन या [[सामान्य संभाव्यता वितरण]] विचरण और विभेदक एन्ट्रॉपी के बीच संबंध में एक महत्वपूर्ण भूमिका निभाता है: यह भिन्नताओं की गणना की एक समस्या है जो यह दर्शाती है कि यह वितरण किसी दिए गए विचरण के लिए एन्ट्रापी को अधिकतम करता है, और साथ ही विचरण के लिए एन्ट्रापी को न्यूनतम करता है।वास्तव में, किसी भी संभाव्यता घनत्व फलन के लिए <math>\phi</math> वास्तविक रेखा पर, शैनन की एन्ट्रापी असमानता निर्दिष्ट करती है: | ||
:<math>H(\phi) \le \log \sqrt {2\pi eV(\phi)},</math> | :<math>H(\phi) \le \log \sqrt {2\pi eV(\phi)},</math> | ||
जहां | जहां ''H'' शैनन एन्ट्रापी है और ''V'' विचरण है, एक असमानता जो केवल [[सामान्य वितरण]] के स्थिति में संतृप्त होती है। | ||
इसके अलावा, | इसके अलावा, गॉसियन संभाव्यता आयाम फलन का फूरियर रूपांतरण भी गॉसियन है - और इन दोनों के पूर्ण वर्ग भी गॉसियन हैं। इसके बाद इसका उपयोग उपरोक्त एंट्रोपिक असमानता से सामान्य रॉबर्टसन विचरण अनिश्चितता असमानता को प्राप्त करने के लिए किया जा सकता है, जो बाद वाले को ''पूर्व की तुलना में अधिक सख्त बनाने में सक्षम बनाता है''। वह है (ħ=1 के लिए), हिर्शमैन असमानता को प्रतिपादित करना और ऊपर शैनन की अभिव्यक्ति का उपयोग करना, | ||
:<math>1/2 \le \exp (H(|f|^2)+H(|g|^2)) /(2e\pi) \le \sqrt {V(|f|^2)V(|g|^2)}~.</math> | :<math>1/2 \le \exp (H(|f|^2)+H(|g|^2)) /(2e\pi) \le \sqrt {V(|f|^2)V(|g|^2)}~.</math> | ||
हिर्शमन<ref name=Hirschman/> ने यह समझाया है कि एन्ट्रॉपी - एन्ट्रॉपी का उनका संस्करण शैनन के संस्करण का ऋणात्मक था - छोटे माप के एक सेट में [एक संभाव्यता वितरण] की एकाग्रता का एक माप है। <nowiki>''</nowiki>''इस प्रकार निम्न या बृहत् ऋणात्मक शैनन एन्ट्रॉपी का तात्पर्य है कि संभाव्यता वितरण का एक बड़ा द्रव्यमान छोटे माप के एक सेट तक ही सीमित है।'' | |||
ध्यान | ध्यान देने की बात है कि छोटे माप के इस सेट को सन्निहित होने की आवश्यकता नहीं है; संभाव्यता वितरण में छोटे माप के अंतरालों में द्रव्यमान की कई सांद्रताएं हो सकती हैं, और एन्ट्रापी अभी भी निम्न हो सकती है, भले ही वे अंतराल कितने व्यापक रूप से बिखरे हुए हों। विचरण के स्थिति में ऐसा नहीं है: विचरण वितरण के माध्य के बारे में द्रव्यमान की सांद्रता को मापता है, और निम्न विचरण का तात्पर्य है कि संभाव्यता वितरण का एक बड़ा द्रव्यमान छोटे माप के सन्निहित अंतराल में केंद्रित है। | ||
इस भेद को औपचारिक रूप देने के लिए, हम कहते हैं कि दो संभाव्यता घनत्व कार्य करते हैं <math>\phi_1</math> और <math>\phi_2</math> यदि समान मापनीय हैं | इस भेद को औपचारिक रूप देने के लिए, हम कहते हैं कि दो संभाव्यता घनत्व कार्य करते हैं <math>\phi_1</math> और <math>\phi_2</math> यदि समान मापनीय हैं | ||
:<math>\forall \delta > 0,\,\mu\{x\in\mathbb R|\phi_1(x)\ge\delta\} = \mu\{x\in\mathbb R|\phi_2(x)\ge\delta\},</math> | :<math>\forall \delta > 0,\,\mu\{x\in\mathbb R|\phi_1(x)\ge\delta\} = \mu\{x\in\mathbb R|\phi_2(x)\ge\delta\},</math> | ||
जहाँ {{mvar|μ}} [[लेब्सेग माप]] है। किन्हीं दो समान मापनीय संभाव्यता घनत्व कार्यों में समान शैनन एन्ट्रॉपी होती है, और वास्तव में किसी भी क्रम की समान रेनी एन्ट्रॉपी होती है। हालाँकि, भिन्नता के बारे में भी यही सच नहीं है। किसी भी संभाव्यता घनत्व फलन में रेडियल रूप से घटती सममापनीय पुनर्व्यवस्था होती है जिसका विचरण फलन के किसी भी अन्य पुनर्व्यवस्था की तुलना में निम्न (अनुवाद तक) होता है; और स्वेच्छतः से उच्च विचरण की पुनर्व्यवस्था उपस्थित है, (सभी में समान एन्ट्रापी है।) | |||
==यह भी देखें== | ==यह भी देखें== | ||
Line 112: | Line 108: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/08/2023]] | [[Category:Created On 14/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:22, 13 October 2023
क्वांटम यांत्रिकी, सूचना सिद्धांत और फूरियर विश्लेषण में, एन्ट्रोपिक अनिश्चितता या हिर्शमैन अनिश्चितता को अस्थायी और वर्णक्रमीय डिफरेंशियल एन्ट्रॉपी के योग के रूप में परिभाषित किया गया है। परिणाम यह निकला है कि हाइजेनबर्ग के अनिश्चितता सिद्धांत को इन एन्ट्रॉपियों के योग पर निचली सीमा के रूप में व्यक्त किया जा सकता है। यह मानक विचलन के उत्पाद के संदर्भ में अनिश्चितता सिद्धांत के सामान्य कथन से सशक्त है।
1957 में,[1] इसिडोर इसहाक हिर्शमैन, जूनियर ने फलन f और इसके फूरियर रूपांतरण g पर विचार किया
जहां ''≈'' अभिसरण को इंगित करता है L2, और सामान्यीकृत किया गया ताकि (प्लांचरेल प्रमेय द्वारा प्रमाणित किया गया है),
उन्होंने दिखाया कि ऐसे किसी भी कार्य के लिए शैनन एन्ट्रॉपी का योग गैर-ऋणात्मक है,
एक सख्त बाउंड,
हिर्शमैन द्वारा अनुमान लगाया गया था[1]और ह्यूग एवरेट,[2] 1975 में डब्ल्यू. बेकनर (गणितज्ञ) द्वारा सिद्ध किया गया था। बेकनर[3] और उसी वर्ष बियालिनिकी-बिरूला और मायसील्स्की द्वारा एक सामान्यीकृत क्वांटम यांत्रिक अनिश्चितता सिद्धांत के रूप में व्याख्या की गई थी।[4] गॉसियन वितरण के स्थिति में समानता कायम है।[5] हालाँकि, ध्यान देने की बात है कि उपरोक्त एन्ट्रोपिक अनिश्चितता फलन अवस्था स्थान में दर्शाए गए क्वांटम वॉन न्यूमैन एन्ट्रापी से स्पष्ट रूप से भिन्न है।
प्रमाण का रेखाचित्र
इस सख्त असमानता का प्रमाण फूरियर परिवर्तन के तथाकथित (q, p)-मानदंड पर निर्भर करता है। (इस मानदंड को स्थापित करना प्रमाण का सबसे कठिन हिस्सा है।)
इस मानदंड से, कोई (अंतर) रेनी एन्ट्रॉपी के योग पर निचली सीमा स्थापित करने में सक्षम है, Hα(|f|²)+Hβ(|g|²) , जहाँ 1/α + 1/β = 2, जो शैनन एन्ट्रॉपी को सामान्यीकृत करता है। सरलता के लिए, हम इस असमानता को केवल एक आयाम में मानते हैं; कई आयामों का विस्तार सीधा है और उद्धृत साहित्य में पाया जा सकता है।
बेबेंको-बेकनेर असमानता
फूरियर रूपांतरण के (q, p)-मानदंड को परिभाषित किया गया है[6]
- जहाँ और
1961 में, बबेंको[7] q के सम पूर्णांक मानों के लिए यह मानदंड पाया गया। आख़िरकार, 1975 में,फूरियर ट्रांसफॉर्म, बेकनर के आइजनफंक्शन के रूप में हर्मिट फंक्शन करता है का उपयोग करना[3]साबित हुआ कि सभी q ≥ 2 के लिए इस मानदंड का मान (एक आयाम में) है
इस प्रकार हमारे पास बबेंको-बेकनर असमानता है
रेनी एन्ट्रॉपी बाउंड
इस असमानता से, रेनी एन्ट्रॉपी के संदर्भ में अनिश्चितता सिद्धांत की अभिव्यक्ति प्राप्त की जा सकती है।[6][8]मान लीजिये , 2α=p, और 2β=q, ताकि 1/α + 1/β = 2 और 1/2<α<1<β, हमारे पास है
दोनों पक्षों का वर्ग करने और लघुगणक लेने पर, हमें प्राप्त होता है
दोनों पक्षों को गुणा करने पर
- असमानता की भावना को प्रतिलोम (रिवर्स) कर देता है,
शब्दों को पुनर्व्यवस्थित करने से अंततः रेनी एन्ट्रॉपियों के योग के संदर्भ में एक असमानता उत्पन्न होती है,
ध्यान दें कि यह असमानता इसके संबंध में सममित है α और β: अब किसी को ऐसा मानने की जरूरत नहीं है α<β; केवल इतना कि वे धनात्मक हैं और दोनों एक नहीं हैं, और 1/α + 1/β = 2. इस समरूपता को देखने के लिए, बस फूरियर ट्रांसफॉर्म में i और −i की भूमिकाओं का आदान-प्रदान करें।
शैनन एन्ट्रापी बाउंड
इस अंतिम असमानता की सीमा को α, β → 1 के रूप में लेने से निम्न सामान्य शैनन एन्ट्रापी असमानता प्राप्त होती है,
लघुगणक के किसी भी आधार के लिए मान्य है, जब तक हम सूचना की उपयुक्त इकाई, बिट , नेट (इकाई), आदि चुनते हैं।
हालांकि, फूरियर ट्रांसफॉर्म के एक अलग सामान्यीकरण के लिए स्थिरांक अलग होगा, (जैसे कि सामान्यतः भौतिकी में उपयोग किया जाता है, सामान्यीकरण के साथ चुना जाता है ताकि ħ=1 ), यानी,
इस स्थिति में, फूरियर का फैलाव 2 के कारक द्वारा पूर्ण वर्ग में बदल जाता हैπ बस लॉग(2) जोड़ता हैπ) इसकी एन्ट्रापी के लिए।
एन्ट्रॉपी बनाम विचरण सीमा
गॉसियन या सामान्य संभाव्यता वितरण विचरण और विभेदक एन्ट्रॉपी के बीच संबंध में एक महत्वपूर्ण भूमिका निभाता है: यह भिन्नताओं की गणना की एक समस्या है जो यह दर्शाती है कि यह वितरण किसी दिए गए विचरण के लिए एन्ट्रापी को अधिकतम करता है, और साथ ही विचरण के लिए एन्ट्रापी को न्यूनतम करता है।वास्तव में, किसी भी संभाव्यता घनत्व फलन के लिए वास्तविक रेखा पर, शैनन की एन्ट्रापी असमानता निर्दिष्ट करती है:
जहां H शैनन एन्ट्रापी है और V विचरण है, एक असमानता जो केवल सामान्य वितरण के स्थिति में संतृप्त होती है।
इसके अलावा, गॉसियन संभाव्यता आयाम फलन का फूरियर रूपांतरण भी गॉसियन है - और इन दोनों के पूर्ण वर्ग भी गॉसियन हैं। इसके बाद इसका उपयोग उपरोक्त एंट्रोपिक असमानता से सामान्य रॉबर्टसन विचरण अनिश्चितता असमानता को प्राप्त करने के लिए किया जा सकता है, जो बाद वाले को पूर्व की तुलना में अधिक सख्त बनाने में सक्षम बनाता है। वह है (ħ=1 के लिए), हिर्शमैन असमानता को प्रतिपादित करना और ऊपर शैनन की अभिव्यक्ति का उपयोग करना,
हिर्शमन[1] ने यह समझाया है कि एन्ट्रॉपी - एन्ट्रॉपी का उनका संस्करण शैनन के संस्करण का ऋणात्मक था - छोटे माप के एक सेट में [एक संभाव्यता वितरण] की एकाग्रता का एक माप है। ''इस प्रकार निम्न या बृहत् ऋणात्मक शैनन एन्ट्रॉपी का तात्पर्य है कि संभाव्यता वितरण का एक बड़ा द्रव्यमान छोटे माप के एक सेट तक ही सीमित है।
ध्यान देने की बात है कि छोटे माप के इस सेट को सन्निहित होने की आवश्यकता नहीं है; संभाव्यता वितरण में छोटे माप के अंतरालों में द्रव्यमान की कई सांद्रताएं हो सकती हैं, और एन्ट्रापी अभी भी निम्न हो सकती है, भले ही वे अंतराल कितने व्यापक रूप से बिखरे हुए हों। विचरण के स्थिति में ऐसा नहीं है: विचरण वितरण के माध्य के बारे में द्रव्यमान की सांद्रता को मापता है, और निम्न विचरण का तात्पर्य है कि संभाव्यता वितरण का एक बड़ा द्रव्यमान छोटे माप के सन्निहित अंतराल में केंद्रित है।
इस भेद को औपचारिक रूप देने के लिए, हम कहते हैं कि दो संभाव्यता घनत्व कार्य करते हैं और यदि समान मापनीय हैं
जहाँ μ लेब्सेग माप है। किन्हीं दो समान मापनीय संभाव्यता घनत्व कार्यों में समान शैनन एन्ट्रॉपी होती है, और वास्तव में किसी भी क्रम की समान रेनी एन्ट्रॉपी होती है। हालाँकि, भिन्नता के बारे में भी यही सच नहीं है। किसी भी संभाव्यता घनत्व फलन में रेडियल रूप से घटती सममापनीय पुनर्व्यवस्था होती है जिसका विचरण फलन के किसी भी अन्य पुनर्व्यवस्था की तुलना में निम्न (अनुवाद तक) होता है; और स्वेच्छतः से उच्च विचरण की पुनर्व्यवस्था उपस्थित है, (सभी में समान एन्ट्रापी है।)
यह भी देखें
- सूचना सिद्धांत में असमानताएँ
- लॉगरिदमिक श्रोडिंगर समीकरण
- अनिश्चित सिद्धांत
- रिज़्ज़-थोरिन प्रमेय
- फूरियर रूपांतरण
संदर्भ
- ↑ 1.0 1.1 1.2 Hirschman, I. I., Jr. (1957), "A note on entropy", American Journal of Mathematics, 79 (1): 152–156, doi:10.2307/2372390, JSTOR 2372390.
{{citation}}
: CS1 maint: multiple names: authors list (link) - ↑ Hugh Everett, III. The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. Everett's Dissertation
- ↑ 3.0 3.1 Beckner, W. (1975), "Inequalities in Fourier analysis", Annals of Mathematics, 102 (6): 159–182, doi:10.2307/1970980, JSTOR 1970980, PMC 432369, PMID 16592223.
- ↑ Bialynicki-Birula, I.; Mycielski, J. (1975), "Uncertainty Relations for Information Entropy in Wave Mechanics", Communications in Mathematical Physics, 44 (2): 129, Bibcode:1975CMaPh..44..129B, doi:10.1007/BF01608825, S2CID 122277352
- ↑ Ozaydin, Murad; Przebinda, Tomasz (2004). "स्थानीय रूप से कॉम्पैक्ट एबेलियन समूह के लिए एन्ट्रॉपी-आधारित अनिश्चितता सिद्धांत" (PDF). Journal of Functional Analysis. Elsevier Inc. 215 (1): 241–252. doi:10.1016/j.jfa.2003.11.008. Retrieved 2011-06-23.
- ↑ 6.0 6.1 Bialynicki-Birula, I. (2006). "Formulation of the uncertainty relations in terms of the Rényi entropies". Physical Review A. 74 (5): 052101. arXiv:quant-ph/0608116. Bibcode:2006PhRvA..74e2101B. doi:10.1103/PhysRevA.74.052101. S2CID 19123961.
- ↑ K.I. Babenko. An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) 44, pp. 115-128
- ↑ H.P. Heinig and M. Smith, Extensions of the Heisenberg–Weil inequality. Internat. J. Math. & Math. Sci., Vol. 9, No. 1 (1986) pp. 185–192. [1]
अग्रिम पठन
- Jizba, P.; Ma,Y.; Hayes, A.; Dunningham, J.A. (2016). "One-parameter class of uncertainty relations based on entropy power". Phys. Rev. E 93 (6): 060104(R). doi:10.1103/PhysRevE.93.060104.
- Zozor, S.; Vignat, C. (2007). "On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles". Physica A: Statistical Mechanics and Its Applications. 375 (2): 499. arXiv:math/0605510. Bibcode:2007PhyA..375..499Z. doi:10.1016/j.physa.2006.09.019. S2CID 119718352. arXiv:math/0605510v1
- Maassen, H.; Uffink, J. (1988). "Generalized entropic uncertainty relations" (PDF). Physical Review Letters. 60 (12): 1103–1106. Bibcode:1988PhRvL..60.1103M. doi:10.1103/PhysRevLett.60.1103. PMID 10037942.
- Ballester, M.; Wehner, S. (2007). "Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases". Physical Review A. 75 (2): 022319. arXiv:quant-ph/0606244. Bibcode:2007PhRvA..75b2319B. doi:10.1103/PhysRevA.75.022319. S2CID 119470256.
- Ghirardi, G.; Marinatto, L.; Romano, R. (2003). "An optimal entropic uncertainty relation in a two-dimensional Hilbert space". Physics Letters A. 317 (1–2): 32–36. arXiv:quant-ph/0310120. Bibcode:2003PhLA..317...32G. doi:10.1016/j.physleta.2003.08.029. S2CID 9267554.
- Salcedo, L. L. (1998). "Minimum uncertainty for antisymmetric wave functions". Letters in Mathematical Physics. 43 (3): 233–248. arXiv:quant-ph/9706015. Bibcode:1997quant.ph..6015S. doi:10.1023/A:1007464229188. S2CID 18118758.