होलोमॉर्फिक सदिश बंडल: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, एक होलोमोर्फिक वेक्टर बंडल एक जटिल मैनिफोल्ड पर एक जटिल...")
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
गणित में, एक होलोमोर्फिक वेक्टर बंडल एक जटिल मैनिफोल्ड पर एक [[जटिल वेक्टर बंडल]] होता है {{mvar|X}} जैसे कि कुल स्थान {{mvar|E}} एक जटिल कई गुना और प्रक्षेपण मानचित्र है {{math|π : ''E'' → ''X''}} [[होलोमॉर्फिक फ़ंक्शन]] है। मौलिक उदाहरण एक जटिल मैनिफोल्ड के [[होलोमोर्फिक स्पर्शरेखा बंडल]] हैं, और इसके दोहरे, [[होलोमोर्फिक कॉटैंजेंट बंडल]] हैं। एक होलोमॉर्फिक लाइन बंडल एक रैंक वन होलोमोर्फिक वेक्टर बंडल है।
गणित में, '''होलोमोर्फिक सदिश बंडल''' एक सम्मिश्र मैनिफोल्ड पर एक सम्मिश्र सदिश बंडल होता है {{mvar|X}} जैसे कि कुल समष्टि {{mvar|E}} एक सम्मिश्र कई गुना और प्रक्षेपण मानचित्र है {{math|π : ''E'' → ''X''}} [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] है। मौलिक उदाहरण एक सम्मिश्र मैनिफोल्ड के होलोमोर्फिक स्पर्शरेखा बंडल हैं, और इसके दोहरे, होलोमोर्फिक कॉटैंजेंट बंडल हैं। एक होलोमॉर्फिक लाइन बंडल एक रैंक वन होलोमोर्फिक सदिश बंडल है।


Serre's [[GAGA]] द्वारा, होलोमॉर्फिक वेक्टर बंडलों की श्रेणी एक चिकनी विविधता जटिल प्रोजेक्टिव किस्म 'X' (एक जटिल मैनिफोल्ड के रूप में देखी गई) पर [[बीजगणितीय वेक्टर बंडल]]ों की श्रेणी के बराबर है (यानी, परिमित रैंक के [[स्थानीय रूप से मुक्त शीफ]]) ' 'एक्स''।
सेरे के जीएजीए द्वारा, एक चिकनी सम्मिश्र प्रक्षेप्य विविधता X (एक सम्मिश्र मैनिफोल्ड के रूप में देखा गया) पर होलोमोर्फिक सदिश बंडलों की श्रेणी X पर बीजीय सदिश बंडलों (यानी, परिमित रैंक के समष्टिय रूप से मुक्त शीव्स) की श्रेणी के बराबर है।


== तुच्छीकरण के माध्यम से परिभाषा ==
== तुच्छीकरण के माध्यम से परिभाषा ==
विशेष रूप से, किसी के लिए आवश्यक है कि तुच्छीकरण मानचित्र
विशेष रूप से, किसी के लिए आवश्यक है कि तुच्छीकरण मानचित्र है।


:<math>\phi_U :  \pi^{-1}(U) \to U \times \mathbf{C}^k</math>
:<math>\phi_U :  \pi^{-1}(U) \to U \times \mathbf{C}^k</math>
बिहोलोमोर्फिक मानचित्र हैं। यह [[संक्रमण मानचित्र]]ों की आवश्यकता के बराबर है
बिहोलोमोर्फिक मानचित्र हैं। यह संक्रमण मानचित्रों की आवश्यकता के बराबर है


:<math>t_{UV} : U\cap V \to \mathrm{GL}_k(\mathbf{C})</math>
:<math>t_{UV} : U\cap V \to \mathrm{GL}_k(\mathbf{C})</math>
होलोमॉर्फिक मानचित्र हैं। एक जटिल मैनिफोल्ड के स्पर्शरेखा बंडल पर होलोमोर्फिक संरचना की गारंटी इस टिप्पणी से होती है कि वेक्टर-मूल्यवान होलोमोर्फिक फ़ंक्शन का व्युत्पन्न (उचित अर्थ में) स्वयं होलोमोर्फिक है।
होलोमॉर्फिक मानचित्र हैं। एक सम्मिश्र मैनिफोल्ड के स्पर्शरेखा बंडल पर होलोमोर्फिक संरचना की गारंटी इस टिप्पणी से होती है कि सदिश-मूल्यवान होलोमोर्फिक फलन का व्युत्पन्न (उचित अर्थ में) स्वयं होलोमोर्फिक है।


== होलोमोर्फिक वर्गों का शीफ ​​==
== होलोमोर्फिक वर्गों का शीफ ​​==
होने देना {{mvar|E}} एक होलोमॉर्फिक वेक्टर बंडल बनें। एक स्थानीय खंड {{math|''s'' : ''U'' → ''E''{{!}}<sub>''U''</sub>}} को होलोमॉर्फिक कहा जाता है, यदि प्रत्येक बिंदु के पड़ोस में {{mvar|U}}, यह कुछ (समतुल्य किसी भी) तुच्छीकरण में होलोमोर्फिक है।
होने देना {{mvar|E}} एक होलोमॉर्फिक सदिश बंडल बनें। एक समष्टिय खंड {{math|''s'' : ''U'' → ''E''{{!}}<sub>''U''</sub>}} को होलोमॉर्फिक कहा जाता है, यदि प्रत्येक बिंदु के पड़ोस में {{mvar|U}}, यह कुछ (समतुल्य किसी भी) तुच्छीकरण में होलोमोर्फिक है।


यह स्थिति स्थानीय है, जिसका अर्थ है कि होलोमोर्फिक खंड एक शीफ (गणित) बनाते हैं {{mvar|X}}. इस शीफ को कभी-कभी निरूपित किया जाता है <math>\mathcal O(E)</math>, या द्वारा संकेतन का दुरुपयोग {{mvar|E}}. ऐसा पूला हमेशा स्थानीय रूप से सदिश बंडल की रैंक के समान रैंक से मुक्त होता है। अगर {{mvar|E}} तुच्छ रेखा बंडल है <math>\underline{\mathbf{C}},</math> तो यह पूला [[संरचना शीफ]] ​​के साथ मेल खाता है <math>\mathcal O_X</math> जटिल कई गुना {{mvar|X}}.
यह स्थिति समष्टिय है, जिसका अर्थ है कि होलोमोर्फिक खंड एक शीफ (गणित) बनाते हैं {{mvar|X}}. इस शीफ को कभी-कभी निरूपित किया जाता है <math>\mathcal O(E)</math>, या के माध्यम से संकेतन का दुरुपयोग {{mvar|E}}. ऐसा पूला हमेशा समष्टिय रूप से सदिश बंडल की रैंक के समान रैंक से मुक्त होता है। अगर {{mvar|E}} तुच्छ रेखा बंडल है <math>\underline{\mathbf{C}},</math> तो यह पूला संरचना शीफ ​​के साथ मेल खाता है <math>\mathcal O_X</math> सम्मिश्र कई गुना {{mvar|X}}.


== बुनियादी उदाहरण ==
== मौलिक उदाहरण ==
लाइन बंडल हैं <math>\mathcal{O}(k)</math> ऊपर <math>\mathbb{CP}^n</math> जिनके वैश्विक खंड डिग्री के सजातीय बहुपदों के अनुरूप हैं <math>k</math> (के लिए <math>k</math> सकारात्मक पूर्णांक)। विशेष रूप से, <math>k = 0</math> तुच्छ रेखा बंडल से मेल खाती है। अगर हम कवर लेते हैं <math>U_i = \{ [x_0:\cdots:x_n] : x_i \neq 0 \}</math> तो हम चार्ट ढूंढ सकते हैं <math>\phi_i: U_i \to \mathbb{C}^n</math> <ब्लॉककोट> द्वारा परिभाषित<math>\phi_i([x_0:\cdots:x_i: \cdots : x_n]) = \left( \frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i} \right) = \mathbb{C}^n_i</math></blockquote>हम ट्रांजिशन फंक्शन बना सकते हैं <math>\phi_{ij}|_{U_i\cap U_j}:\mathbb{C}_i^n \cap \phi_i(U_i\cap U_j) \to \mathbb{C}_j^n \cap \phi_j(U_i\cap U_j)</math> <ब्लॉककोट> द्वारा परिभाषित<math>\phi_{ij} = \phi_i \circ \phi_j^{-1}(z_1, \ldots, z_n) = \left( \frac{z_1}{z_i},\ldots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \ldots, \frac{z_j}{z_i},\frac{1}{z_j},\frac{z_{j+1}}{z_i},\ldots, \frac{z_n}{z_i} \right)</math></blockquote>अब, यदि हम तुच्छ बंडल पर विचार करें <math>L_i = \phi_i(U_i)\times \mathbb{C}</math> हम प्रेरित संक्रमण कार्य बना सकते हैं <math>\psi_{i,j}</math>. अगर हम समन्वय का उपयोग करते हैं <math>z</math> फाइबर पर, तो हम ट्रांज़िशन फ़ंक्शंस बना सकते हैं<blockquote><math>\psi_{i,j}((z_1,\ldots,z_n), z) = \left(\phi_{i,j}(z_1,\ldots,z_n), \frac{z_i^k}{z_j^k}\cdot z \right)</math></blockquote>किसी भी पूर्णांक के लिए <math>k</math>. इनमें से प्रत्येक एक लाइन बंडल से जुड़ा हुआ है <math>\mathcal{O}(k)</math>. चूंकि वेक्टर बंडल आवश्यक रूप से पीछे खींचते हैं, कोई भी होलोमोर्फिक सबमेनिफोल्ड <math>f:X \to \mathbb{CP}^n</math> एक संबंधित लाइन बंडल है <math>f^*(\mathcal{O}(k))</math>, कभी-कभी निरूपित <math>\mathcal{O}(k)|_X</math>.
लाइन बंडल हैं <math>\mathcal{O}(k)</math> ऊपर <math>\mathbb{CP}^n</math> जिनके वैश्विक खंड डिग्री के सजातीय बहुपदों के अनुरूप हैं <math>k</math> (के लिए <math>k</math> धनात्मक पूर्णांक)। विशेष रूप से, <math>k = 0</math> तुच्छ रेखा बंडल से मेल खाती है। अगर हम कवर लेते हैं <math>U_i = \{ [x_0:\cdots:x_n] : x_i \neq 0 \}</math> तो हम चार्ट ढूंढ सकते हैं <math>\phi_i: U_i \to \mathbb{C}^n</math> <ब्लॉककोट> के माध्यम से परिभाषित<math>\phi_i([x_0:\cdots:x_i: \cdots : x_n]) = \left( \frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i} \right) = \mathbb{C}^n_i</math>हम ट्रांजिशन फलन बना सकते हैं <math>\phi_{ij}|_{U_i\cap U_j}:\mathbb{C}_i^n \cap \phi_i(U_i\cap U_j) \to \mathbb{C}_j^n \cap \phi_j(U_i\cap U_j)</math> <ब्लॉककोट> के माध्यम से परिभाषित<math>\phi_{ij} = \phi_i \circ \phi_j^{-1}(z_1, \ldots, z_n) = \left( \frac{z_1}{z_i},\ldots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \ldots, \frac{z_j}{z_i},\frac{1}{z_j},\frac{z_{j+1}}{z_i},\ldots, \frac{z_n}{z_i} \right)</math>अब, यदि हम तुच्छ बंडल पर विचार करें <math>L_i = \phi_i(U_i)\times \mathbb{C}</math> हम प्रेरित संक्रमण कार्य बना सकते हैं <math>\psi_{i,j}</math>. अगर हम समन्वय का उपयोग करते हैं <math>z</math> फाइबर पर, तो हम ट्रांज़िशन फलन बना सकते हैं<blockquote><math>\psi_{i,j}((z_1,\ldots,z_n), z) = \left(\phi_{i,j}(z_1,\ldots,z_n), \frac{z_i^k}{z_j^k}\cdot z \right)</math></blockquote>किसी भी पूर्णांक के लिए <math>k</math>. इनमें से प्रत्येक एक लाइन बंडल से जुड़ा हुआ है <math>\mathcal{O}(k)</math>. चूंकि सदिश बंडल आवश्यक रूप से पीछे खींचते हैं, कोई भी होलोमोर्फिक सबमेनिफोल्ड <math>f:X \to \mathbb{CP}^n</math> एक संबंधित लाइन बंडल है <math>f^*(\mathcal{O}(k))</math>, कभी-कभी निरूपित <math>\mathcal{O}(k)|_X</math>.


== डोलबेल्ट ऑपरेटर्स ==
== डोलबेल्ट ऑपरेटर्स ==


ग्रहण {{mvar|E}} एक होलोमॉर्फिक वेक्टर बंडल है। फिर एक प्रतिष्ठित संचालिका है <math>\bar{\partial}_E</math> निम्नानुसार परिभाषित किया गया है। एक स्थानीय तुच्छता में <math>U_{\alpha}</math> का {{mvar|E}}, स्थानीय फ्रेम के साथ <math>e_1,\dots,e_n</math>, कोई भी खंड लिखा जा सकता है <math>s=\sum_i s^i e_i</math> कुछ सहज कार्यों के लिए <math>s^i : U_{\alpha} \to \mathbb{C}</math>.
ग्रहण {{mvar|E}} एक होलोमॉर्फिक सदिश बंडल है। फिर एक प्रतिष्ठित संचालिका है <math>\bar{\partial}_E</math> निम्नानुसार परिभाषित किया गया है। एक समष्टिय तुच्छता में <math>U_{\alpha}</math> का {{mvar|E}}, समष्टिय फ्रेम के साथ <math>e_1,\dots,e_n</math>, कोई भी खंड लिखा जा सकता है <math>s=\sum_i s^i e_i</math> कुछ सहज कार्यों के लिए <math>s^i : U_{\alpha} \to \mathbb{C}</math>.
स्थानीय रूप से एक ऑपरेटर को परिभाषित करें
 
समष्टिय रूप से एक ऑपरेटर को परिभाषित करें


:<math>\bar{\partial}_E (s) := \sum_i \bar{\partial}(s^i) \otimes e_i</math>
:<math>\bar{\partial}_E (s) := \sum_i \bar{\partial}(s^i) \otimes e_i</math>
कहाँ <math>\bar{\partial}</math> रेगुलर कॉम्प्लेक्स डिफरेंशियल फॉर्म है#द डॉल्बेल्ट ऑपरेटर्स|बेस मैनिफोल्ड का कॉची-रीमैन ऑपरेटर। यह ऑपरेटर सभी पर अच्छी तरह से परिभाषित है {{mvar|E}} क्योंकि दो तुच्छताओं के ओवरलैप पर <math>U_{\alpha}, U_{\beta}</math> होलोमोर्फिक संक्रमण समारोह के साथ <math>g_{\alpha\beta}</math>, अगर <math>s=s^i e_i = \tilde{s}^j f_j</math> कहाँ <math>f_j</math> के लिए एक स्थानीय फ्रेम है {{mvar|E}} पर <math>U_{\beta}</math>, तब <math>s^i = \sum_j (g_{\alpha\beta})_j^i \tilde{s}^j</math>, इसलिए
जहाँ <math>\bar{\partial}</math> रेगुलर कॉम्प्लेक्स डिफरेंशियल फॉर्म है द डॉल्बेल्ट ऑपरेटर्स बेस मैनिफोल्ड का कॉची-रीमैन ऑपरेटर। यह ऑपरेटर सभी पर अच्छी तरह से परिभाषित है {{mvar|E}} क्योंकि दो तुच्छताओं के ओवरलैप पर <math>U_{\alpha}, U_{\beta}</math> होलोमोर्फिक संक्रमण फलन  के साथ <math>g_{\alpha\beta}</math>, अगर <math>s=s^i e_i = \tilde{s}^j f_j</math> जहाँ <math>f_j</math> के लिए एक समष्टिय फ्रेम है {{mvar|E}} पर <math>U_{\beta}</math>, तब <math>s^i = \sum_j (g_{\alpha\beta})_j^i \tilde{s}^j</math>, इसलिए


:<math>\bar{\partial} (s^i) = \sum_j (g_{\alpha\beta})_j^i \bar{\partial} (\tilde{s}^j)</math>
:<math>\bar{\partial} (s^i) = \sum_j (g_{\alpha\beta})_j^i \bar{\partial} (\tilde{s}^j)</math>
क्योंकि संक्रमण कार्य होलोमोर्फिक हैं। यह निम्नलिखित परिभाषा की ओर ले जाता है: एक चिकने जटिल सदिश बंडल पर एक डॉलबेल्ट ऑपरेटर <math>E\to M</math> एक <math>\mathbb{C}</math>-रैखिक ऑपरेटर
क्योंकि संक्रमण कार्य होलोमोर्फिक हैं। यह निम्नलिखित परिभाषा की ओर ले जाता है: एक चिकने सम्मिश्र सदिश बंडल पर एक डॉलबेल्ट ऑपरेटर <math>E\to M</math> एक <math>\mathbb{C}</math>-रैखिक ऑपरेटर


:<math>\bar{\partial}_E : \Gamma(E) \to \Omega^{0,1}(M)\otimes \Gamma(E)</math>
:<math>\bar{\partial}_E : \Gamma(E) \to \Omega^{0,1}(M)\otimes \Gamma(E)</math>
Line 35: Line 36:


*(कॉची-रीमैन स्थिति) <math>\bar{\partial}_E^2 = 0</math>,
*(कॉची-रीमैन स्थिति) <math>\bar{\partial}_E^2 = 0</math>,
*(लीबनिज नियम) किसी भी वर्ग के लिए <math>s\in \Gamma(E)</math> और समारोह <math>f</math> पर <math>M</math>, किसी के पास
*(लीबनिज नियम) किसी भी वर्ग के लिए <math>s\in \Gamma(E)</math> और फलन <math>f</math> पर <math>M</math>, किसी के पास


:<math>\bar{\partial}_E (fs) = \bar{\partial}(f) \otimes s + f \bar{\partial}_E (s)</math>.
:<math>\bar{\partial}_E (fs) = \bar{\partial}(f) \otimes s + f \bar{\partial}_E (s)</math>.


न्यूलैंडर-निरेनबर्ग प्रमेय के एक आवेदन से, एक होलोमोर्फिक बंडल के डोलबेल्ट ऑपरेटर के निर्माण के लिए एक बातचीत प्राप्त करता है:<ref>Kobayashi, S. (2014). Differential geometry of complex vector bundles (Vol. 793). Princeton University Press.</ref>
न्यूलैंडर-निरेनबर्ग प्रमेय के एक आवेदन से, एक होलोमोर्फिक बंडल के डोलबेल्ट ऑपरेटर के निर्माण के लिए एक बातचीत प्राप्त करता है:<ref>Kobayashi, S. (2014). Differential geometry of complex vector bundles (Vol. 793). Princeton University Press.</ref>
<blockquote>Theorem: एक Dolbeault ऑपरेटर दिया गया है <math>\bar{\partial}_E</math> एक चिकने जटिल वेक्टर बंडल पर <math>E</math>, पर एक अद्वितीय होलोमोर्फिक संरचना है <math>E</math> ऐसा है कि <math>\bar{\partial}_E</math> जैसा कि ऊपर निर्मित किया गया है, संबद्ध डॉलबियॉल्ट ऑपरेटर है।</blockquote>
<blockquote>प्रमेय: एक डोलबौल्ट ऑपरेटर दिया गया है <math>\bar{\partial}_E</math> एक चिकने सम्मिश्र सदिश बंडल पर <math>E</math>, पर एक अद्वितीय होलोमोर्फिक संरचना है <math>E</math> ऐसा है कि <math>\bar{\partial}_E</math> जैसा कि ऊपर निर्मित किया गया है, संबद्ध डॉलबियॉल्ट ऑपरेटर है।</blockquote>
एक डॉल्बेल्ट ऑपरेटर द्वारा प्रेरित होलोमोर्फिक संरचना के संबंध में <math>\bar{\partial}_E</math>, एक चिकना खंड <math>s\in \Gamma(E)</math> होलोमोर्फिक है अगर और केवल अगर <math>\bar{\partial}_E(s) = 0</math>. यह एक रिंग वाली जगह के रूप में एक चिकनी या जटिल मैनिफोल्ड की परिभाषा के समान नैतिक रूप से है। अर्थात्, यह निर्दिष्ट करने के लिए पर्याप्त है कि एक [[टोपोलॉजिकल मैनिफोल्ड]] पर कौन से कार्य सुचारू या जटिल हैं, ताकि इसे एक चिकनी या जटिल संरचना के साथ जोड़ा जा सके।
एक डॉल्बेल्ट ऑपरेटर के माध्यम से प्रेरित होलोमोर्फिक संरचना के संबंध में <math>\bar{\partial}_E</math>, एक चिकना खंड <math>s\in \Gamma(E)</math> होलोमोर्फिक है अगर और केवल अगर <math>\bar{\partial}_E(s) = 0</math>. यह एक रिंग वाली जगह के रूप में एक चिकनी या सम्मिश्र मैनिफोल्ड की परिभाषा के समान नैतिक रूप से है। अर्थात्, यह निर्दिष्ट करने के लिए पर्याप्त है कि एक [[टोपोलॉजिकल मैनिफोल्ड]] पर कौन से कार्य सुचारू या सम्मिश्र हैं, ताकि इसे एक चिकनी या सम्मिश्र संरचना के साथ जोड़ा जा सके।
 
डोलबौल्ट ऑपरेटर के पास बंद और सटीक अंतर रूपों के संदर्भ में समष्टिय व्युत्क्रम होता है।<ref>{{Cite journal|last=Kycia|first=Radosław Antoni|title=पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर|journal=Results in Mathematics|year=2020 |language=en|volume=75|issue=3|pages=122|doi=10.1007/s00025-020-01247-8|issn=1422-6383|doi-access=free}}</ref>
 


Dolbeault ऑपरेटर के पास [[बंद और सटीक अंतर रूप]]ों के संदर्भ में स्थानीय व्युत्क्रम होता है।<ref>{{Cite journal|last=Kycia|first=Radosław Antoni|title=पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर|journal=Results in Mathematics|year=2020 |language=en|volume=75|issue=3|pages=122|doi=10.1007/s00025-020-01247-8|issn=1422-6383|doi-access=free}}</ref>


== एक होलोमोर्फिक सदिश बंडल == में मूल्यों के साथ रूपों का ढेर होता है।


== एक होलोमोर्फिक वेक्टर बंडल == में मूल्यों के साथ रूपों का ढेर
अगर <math>\mathcal E_X^{p, q}</math> के पुलिंदे को दर्शाता है {{math|''C''<sup>∞</sup>}} प्रकार के विभेदक रूप {{math|(''p'', ''q'')}}, फिर प्रकार का शीफ {{math|(''p'', ''q'')}} मूल्यों के साथ रूपों {{mvar|E}} को [[टेंसर उत्पाद]] के रूप में परिभाषित किया जा सकता है
अगर <math>\mathcal E_X^{p, q}</math> के पुलिंदे को दर्शाता है {{math|''C''<sup>∞</sup>}} प्रकार के विभेदक रूप {{math|(''p'', ''q'')}}, फिर प्रकार का शीफ {{math|(''p'', ''q'')}} मूल्यों के साथ रूपों {{mvar|E}} को [[टेंसर उत्पाद]] के रूप में परिभाषित किया जा सकता है


:<math>\mathcal{E}^{p, q}(E) \triangleq \mathcal E_X^{p, q}\otimes E.</math>
:<math>\mathcal{E}^{p, q}(E) \triangleq \mathcal E_X^{p, q}\otimes E.</math>
ये पूले ठीक पूले हैं, जिसका अर्थ है कि वे एकता के विभाजन को स्वीकार करते हैं।
ये पूले ठीक पूले हैं, जिसका अर्थ है कि वे एकता के विभाजन को स्वीकार करते हैं।
चिकने और होलोमोर्फिक वेक्टर बंडलों के बीच एक मूलभूत अंतर यह है कि बाद वाले में, एक कैनोनिकल डिफरेंशियल ऑपरेटर होता है, जो ऊपर परिभाषित #Dolbeault ऑपरेटरों द्वारा दिया गया है:
 
चिकने और होलोमोर्फिक सदिश बंडलों के बीच एक मूलभूत अंतर यह है कि बाद वाले में, एक कैनोनिकल डिफरेंशियल ऑपरेटर होता है, जो ऊपर परिभाषित डोलबौल्ट ऑपरेटरों के माध्यम से दिया गया है:


:<math>\overline{\partial}_E : \mathcal{E}^{p, q}(E) \to \mathcal{E}^{p, q+1}(E).</math>
:<math>\overline{\partial}_E : \mathcal{E}^{p, q}(E) \to \mathcal{E}^{p, q+1}(E).</math>




== होलोमोर्फिक वेक्टर बंडलों की कोहोलॉजी ==
== होलोमोर्फिक सदिश बंडलों की कोहोलॉजी ==
{{See also|Dolbeault cohomology}}
{{See also|डोलबौल्ट कोहोलॉजी}}
अगर {{mvar|E}} एक होलोमॉर्फिक वेक्टर बंडल है, जिसका कोहोलॉजी है {{mvar|E}} को [[शेफ कोहोलॉजी]] के रूप में परिभाषित किया गया है <math>\mathcal O(E)</math>. विशेष रूप से, हमारे पास है
अगर {{mvar|E}} एक होलोमॉर्फिक सदिश बंडल है, जिसका कोहोलॉजी है {{mvar|E}} को [[शेफ कोहोलॉजी]] के रूप में परिभाषित किया गया है <math>\mathcal O(E)</math>. विशेष रूप से, हमारे पास है
:<math>H^0(X, \mathcal O(E)) = \Gamma (X, \mathcal O(E)),</math> के वैश्विक होलोमोर्फिक वर्गों का स्थान {{mvar|E}}. हमारे पास वह भी है <math>H^1(X, \mathcal O(E))</math> के ट्रिवियल लाइन बंडल के एक्सटेंशन के समूह को पैरामीट्रिज करता है {{mvar|X}} द्वारा {{mvar|E}}, यानी होलोमॉर्फिक वेक्टर बंडलों का सटीक क्रम {{math|0 → ''E'' → ''F'' → ''X'' × '''C''' → 0}}. समूह संरचना के लिए, बेयर सम और साथ ही [[शीफ एक्सटेंशन]] भी देखें।
:<math>H^0(X, \mathcal O(E)) = \Gamma (X, \mathcal O(E)),</math> के वैश्विक होलोमोर्फिक वर्गों का समष्टि {{mvar|E}}. हमारे पास वह भी है <math>H^1(X, \mathcal O(E))</math> के ट्रिवियल लाइन बंडल के Xटेंशन के समूह को पैरामीट्रिज करता है {{mvar|X}} के माध्यम से {{mvar|E}}, यानी होलोमॉर्फिक सदिश बंडलों का सटीक क्रम {{math|0 → ''E'' → ''F'' → ''X'' × '''C''' → 0}}. समूह संरचना के लिए, बेयर सम और साथ ही [[शीफ एक्सटेंशन|शीफ Xटेंशन]] भी देखें।


डोलबेल्ट के प्रमेय द्वारा, इस शीफ कॉहोलॉजी को वैकल्पिक रूप से होलोमोर्फिक बंडल में मूल्यों के साथ रूपों के शीशों द्वारा परिभाषित श्रृंखला परिसर के कोहोलॉजी के रूप में वर्णित किया जा सकता है। <math>E</math>. अर्थात् हमारे पास है
डोलबेल्ट के प्रमेय के माध्यम से , इस शीफ कॉहोलॉजी को वैकल्पिक रूप से होलोमोर्फिक बंडल में मूल्यों के साथ रूपों के शीशों के माध्यम से परिभाषित श्रृंखला परिसर के कोहोलॉजी के रूप में वर्णित किया जा सकता है। <math>E</math>. अर्थात् हमारे पास है


:<math>H^i(X, \mathcal O(E)) = H^i((\mathcal{E}^{0,\bullet}(E), \bar{\partial}_E)).</math>
:<math>H^i(X, \mathcal O(E)) = H^i((\mathcal{E}^{0,\bullet}(E), \bar{\partial}_E)).</math>
Line 67: Line 71:


== पिकार्ड समूह ==
== पिकार्ड समूह ==
कॉम्प्लेक्स डिफरेंशियल ज्योमेट्री के संदर्भ में, पिकार्ड ग्रुप {{math|Pic(''X'')}} जटिल कई गुना {{mvar|X}} टेंसर उत्पाद द्वारा दिए गए समूह कानून के साथ होलोमोर्फिक लाइन बंडलों के आइसोमोर्फिज्म वर्गों का समूह है और दोहरीकरण द्वारा दिया गया व्युत्क्रम है। इसे समकक्ष रूप से पहले कोहोलॉजी समूह के रूप में परिभाषित किया जा सकता है <math>H^1(X, \mathcal O_X^*)</math> गैर-लुप्त हो रहे होलोमॉर्फिक कार्यों के पूले का।
कॉम्प्लेक्स डिफरेंशियल ज्योमेट्री के संदर्भ में, पिकार्ड ग्रुप {{math|Pic(''X'')}} सम्मिश्र कई गुना {{mvar|X}} टेंसर उत्पाद के माध्यम से दिए गए समूह कानून के साथ होलोमोर्फिक लाइन बंडलों के आइसोमोर्फिज्म वर्गों का समूह है और दोहरीकरण के माध्यम से दिया गया व्युत्क्रम है। इसे समकक्ष रूप से पहले कोहोलॉजी समूह के रूप में परिभाषित किया जा सकता है <math>H^1(X, \mathcal O_X^*)</math> गैर-लुप्त हो रहे होलोमॉर्फिक कार्यों के पूले का।


== होलोमॉर्फिक वेक्टर बंडल पर हर्मिटियन मेट्रिक्स ==
== होलोमॉर्फिक सदिश बंडल पर हर्मिटियन मेट्रिक्स ==
{{see also|Hermitian connection}}
{{see also|हर्मिटियन कनेक्शन}}
ई को एक जटिल मैनिफोल्ड एम पर एक होलोमोर्फिक वेक्टर बंडल होने दें और मान लें कि ई पर एक [[हर्मिटियन मीट्रिक]] है; यानी फाइबर ई<sub>x</sub> आंतरिक उत्पादों <·,·> से लैस हैं जो सुचारू रूप से भिन्न होते हैं। फिर ई पर एक अनूठा [[कनेक्शन (वेक्टर बंडल)]] मौजूद है जो जटिल संरचना और मीट्रिक संरचना दोनों के साथ संगत है, जिसे 'चेर्न कनेक्शन' कहा जाता है; अर्थात्, ∇ एक ऐसा संबंध है कि
ई को एक सम्मिश्र मैनिफोल्ड एम पर एक होलोमोर्फिक सदिश बंडल होने दें और मान लें कि ई पर एक [[हर्मिटियन मीट्रिक]] है; यानी फाइबर ई<sub>x</sub> आंतरिक उत्पादों <·,·> से लैस हैं जो सुचारू रूप से भिन्न होते हैं। फिर ई पर एक अनूठा [[कनेक्शन (वेक्टर बंडल)|कनेक्शन (सदिश बंडल)]] मौजूद है जो सम्मिश्र संरचना और मीट्रिक संरचना दोनों के साथ संगत है, जिसे 'चेर्न कनेक्शन' कहा जाता है; अर्थात्, ∇ एक ऐसा संबंध है कि
: (1) ई के किसी भी चिकने खंड के लिए, <math>\pi_{0,1} \nabla s = \bar \partial_E s</math> जहां प<sub>0,1</sub>(0, 1)-सदिश मूल्यवान रूप का घटक लेता है|ई-मूल्यवान 1-रूप।
: (1) ई के किसी भी चिकने खंड के लिए, <math>\pi_{0,1} \nabla s = \bar \partial_E s</math> जहां प<sub>0,1</sub>(0, 1)-सदिश मूल्यवान रूप का घटक लेता है|ई-मूल्यवान 1-रूप होता है।
: (2) किसी भी चिकने खंड s, t के E और M पर एक सदिश क्षेत्र X के लिए,
: (2) किसी भी चिकने खंड s, t के E और M पर एक सदिश क्षेत्र X के लिए होता है।
:::<math>X \cdot \langle s, t \rangle = \langle \nabla_X s, t \rangle + \langle s, \nabla_X t \rangle</math>
:::<math>X \cdot \langle s, t \rangle = \langle \nabla_X s, t \rangle + \langle s, \nabla_X t \rangle</math>
::जहाँ हमने लिखा था <math>\nabla_X s</math> के आंतरिक उत्पाद के लिए <math>\nabla s</math> X द्वारा। (यह कहने के बराबर है कि ∇ द्वारा [[समानांतर परिवहन]] मीट्रिक <·,·> को संरक्षित करता है।)
::जहाँ हमने लिखा था <math>\nabla_X s</math> के आंतरिक उत्पाद के लिए <math>\nabla s</math> X के माध्यम से । (यह कहने के समान है कि ∇ के माध्यम से [[समानांतर परिवहन]] मीट्रिक <·,·> को संरक्षित करता है।)


दरअसल, अगर यू = (ई<sub>1</sub>, …, यह है<sub>''n''</sub>) एक होलोमोर्फिक फ्रेम है, तो मान लीजिए <math>h_{ij} = \langle e_i, e_j \rangle</math> और ω को परिभाषित करें<sub>''u''</sub> समीकरण द्वारा <math>\sum h_{ik} \, {(\omega_u)}^k_{j} = \partial h_{ij}</math>, जिसे हम और सरल रूप में लिखते हैं:
दरअसल, अगर यू = (ई<sub>1</sub>, …, यह है<sub>''n''</sub>) एक होलोमोर्फिक फ्रेम है, तो मान लीजिए <math>h_{ij} = \langle e_i, e_j \rangle</math> और ω को परिभाषित करें<sub>''u''</sub> समीकरण के माध्यम से <math>\sum h_{ik} \, {(\omega_u)}^k_{j} = \partial h_{ij}</math>, जिसे हम और सरल रूप में लिखते हैं:
:<math>\omega_u = h^{-1} \partial h.</math>
:<math>\omega_u = h^{-1} \partial h.</math>
यदि u' = ug आधार g के होलोमोर्फिक परिवर्तन के साथ एक और फ्रेम है, तो
यदि u' = ug आधार g के होलोमोर्फिक परिवर्तन के साथ एक और फ्रेम है, तो
:<math>\omega_{u'} = g^{-1} dg + g \omega_u g^{-1},</math>
:<math>\omega_{u'} = g^{-1} dg + g \omega_u g^{-1},</math>
और इसलिए ω वास्तव में एक [[ कनेक्शन प्रपत्र ]] है, जो ∇ by ∇s = ds + ω · s को जन्म देता है। अब, चूंकि <math>{\overline{\omega}}^T = \overline{\partial} h \cdot h^{-1}</math>,
और इसलिए ω वास्तव में एक [[ कनेक्शन प्रपत्र |कनेक्शन प्रपत्र]] है, जो ∇ by ∇s = ds + ω · s को जन्म देता है। अब, चूंकि <math>{\overline{\omega}}^T = \overline{\partial} h \cdot h^{-1}</math>,
:<math>d \langle e_i, e_j \rangle = \partial h_{ij} + \overline{\partial} h_{ij} = \langle {\omega}^k_i e_k, e_j \rangle + \langle e_i, {\omega}^k_j e_k \rangle = \langle \nabla e_i, e_j \rangle + \langle e_i, \nabla e_j \rangle.</math>
:<math>d \langle e_i, e_j \rangle = \partial h_{ij} + \overline{\partial} h_{ij} = \langle {\omega}^k_i e_k, e_j \rangle + \langle e_i, {\omega}^k_j e_k \rangle = \langle \nabla e_i, e_j \rangle + \langle e_i, \nabla e_j \rangle.</math>
अर्थात, ∇ मीट्रिक संरचना के अनुकूल है। अंत में, चूंकि ω एक (1, 0)-रूप है, (0, 1)-घटक <math>\nabla s</math> है <math>\bar \partial_E s</math>.
अर्थात, ∇ मीट्रिक संरचना के अनुकूल है। अंत में, चूंकि ω एक (1, 0)-रूप है, (0, 1)-घटक <math>\nabla s</math> है <math>\bar \partial_E s</math>.


होने देना <math>\Omega = d \omega + \omega \wedge \omega</math> ∇ का [[वक्रता रूप]] हो। तब से <math>\pi_{0,1} \nabla = \bar \partial_E</math> Dolbeault ऑपरेटर की परिभाषा के अनुसार वर्गों को शून्य तक, Ω में कोई (0, 2)-घटक नहीं है और चूंकि Ω को आसानी से तिरछा-हर्मिटियन दिखाया जाता है,<ref>For example, the existence of a Hermitian metric on ''E'' means the structure group of the frame bundle can be reduced to the [[unitary group]] and Ω has values in the Lie algebra of this unitary group, which consists of skew-hermitian metrices.</ref> इसका कोई (2, 0)-घटक भी नहीं है। नतीजतन, Ω एक (1, 1)-रूप है जो द्वारा दिया गया है
होने देना <math>\Omega = d \omega + \omega \wedge \omega</math> ∇ का [[वक्रता रूप]] हो। तब से <math>\pi_{0,1} \nabla = \bar \partial_E</math> डोलबियॉल्ट ऑपरेटर की परिभाषा के अनुसार वर्गों को शून्य तक, Ω में कोई (0, 2)-घटक नहीं है और चूंकि Ω को आसानी से तिरछा-हर्मिटियन दिखाया जाता है,<ref>For example, the existence of a Hermitian metric on ''E'' means the structure group of the frame bundle can be reduced to the [[unitary group]] and Ω has values in the Lie algebra of this unitary group, which consists of skew-hermitian metrices.</ref> इसका कोई (2, 0)-घटक भी नहीं है। परिणाम स्वरुप, Ω एक (1, 1)-रूप है जो के माध्यम से दिया गया है
:<math>\Omega = \bar \partial_E \omega.</math><!-- \bar \partial \partial log |h|. -->
:<math>\Omega = \bar \partial_E \omega.</math><!-- \bar \partial \partial log |h|. -->
होलोमॉर्फिक वेक्टर बंडलों के उच्च कोहोलॉजी के लिए [[सुसंगत शीफ कोहोलॉजी]] में वक्रता Ω प्रमुखता से दिखाई देती है; उदाहरण के लिए, कोडैरा की लुप्तप्राय प्रमेय और नाकानो की गायब प्रमेय।
होलोमॉर्फिक सदिश बंडलों के उच्च कोहोलॉजी के लिए [[सुसंगत शीफ कोहोलॉजी]] में वक्रता Ω प्रमुखता से दिखाई देती है; उदाहरण के लिए, कोडैरा की लुप्तप्राय प्रमेय और नाकानो की लुप्त प्रमेय दिखाई देती है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 94: Line 98:


==संदर्भ==
==संदर्भ==
* {{Citation | last1=Griffiths | first1=Phillip | author1-link=Phillip Griffiths | last2=Harris | first2=Joseph | author2-link=Joe Harris (mathematician) | title=Principles of algebraic geometry | publisher=[[John Wiley & Sons]] | location=New York | series=Wiley Classics Library | isbn=978-0-471-05059-9 | mr=1288523 | year=1994}}
* {{Citation | last1=ग्रीफिथ | first1=फिलिप | author1-link=फिलिप ग्रिफिथ्स | last2=हैरिस | first2=जोसेफ़ | author2-link=जो हैरिस (गणितज्ञ) | title=बीजगणितीय ज्यामिति के सिद्धांत | publisher=[[जॉन विली एंड संस]] | location=न्यूयॉर्क | series=विली क्लासिक्स लाइब्रेरी | isbn=978-0-471-05059-9 | mr=1288523 | year=1994}}
*{{Springer|id=v/v096400|title=Vector bundle, analytic}}
*{{Springer|id=v/v096400|title=Vector bundle, analytic}}


Line 111: Line 115:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/04/2023]]
[[Category:Created On 24/04/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 07:19, 20 October 2023

गणित में, होलोमोर्फिक सदिश बंडल एक सम्मिश्र मैनिफोल्ड पर एक सम्मिश्र सदिश बंडल होता है X जैसे कि कुल समष्टि E एक सम्मिश्र कई गुना और प्रक्षेपण मानचित्र है π : EX होलोमॉर्फिक फलन है। मौलिक उदाहरण एक सम्मिश्र मैनिफोल्ड के होलोमोर्फिक स्पर्शरेखा बंडल हैं, और इसके दोहरे, होलोमोर्फिक कॉटैंजेंट बंडल हैं। एक होलोमॉर्फिक लाइन बंडल एक रैंक वन होलोमोर्फिक सदिश बंडल है।

सेरे के जीएजीए द्वारा, एक चिकनी सम्मिश्र प्रक्षेप्य विविधता X (एक सम्मिश्र मैनिफोल्ड के रूप में देखा गया) पर होलोमोर्फिक सदिश बंडलों की श्रेणी X पर बीजीय सदिश बंडलों (यानी, परिमित रैंक के समष्टिय रूप से मुक्त शीव्स) की श्रेणी के बराबर है।

तुच्छीकरण के माध्यम से परिभाषा

विशेष रूप से, किसी के लिए आवश्यक है कि तुच्छीकरण मानचित्र है।

बिहोलोमोर्फिक मानचित्र हैं। यह संक्रमण मानचित्रों की आवश्यकता के बराबर है

होलोमॉर्फिक मानचित्र हैं। एक सम्मिश्र मैनिफोल्ड के स्पर्शरेखा बंडल पर होलोमोर्फिक संरचना की गारंटी इस टिप्पणी से होती है कि सदिश-मूल्यवान होलोमोर्फिक फलन का व्युत्पन्न (उचित अर्थ में) स्वयं होलोमोर्फिक है।

होलोमोर्फिक वर्गों का शीफ ​​

होने देना E एक होलोमॉर्फिक सदिश बंडल बनें। एक समष्टिय खंड s : UE|U को होलोमॉर्फिक कहा जाता है, यदि प्रत्येक बिंदु के पड़ोस में U, यह कुछ (समतुल्य किसी भी) तुच्छीकरण में होलोमोर्फिक है।

यह स्थिति समष्टिय है, जिसका अर्थ है कि होलोमोर्फिक खंड एक शीफ (गणित) बनाते हैं X. इस शीफ को कभी-कभी निरूपित किया जाता है , या के माध्यम से संकेतन का दुरुपयोग E. ऐसा पूला हमेशा समष्टिय रूप से सदिश बंडल की रैंक के समान रैंक से मुक्त होता है। अगर E तुच्छ रेखा बंडल है तो यह पूला संरचना शीफ ​​के साथ मेल खाता है सम्मिश्र कई गुना X.

मौलिक उदाहरण

लाइन बंडल हैं ऊपर जिनके वैश्विक खंड डिग्री के सजातीय बहुपदों के अनुरूप हैं (के लिए धनात्मक पूर्णांक)। विशेष रूप से, तुच्छ रेखा बंडल से मेल खाती है। अगर हम कवर लेते हैं तो हम चार्ट ढूंढ सकते हैं <ब्लॉककोट> के माध्यम से परिभाषितहम ट्रांजिशन फलन बना सकते हैं <ब्लॉककोट> के माध्यम से परिभाषितअब, यदि हम तुच्छ बंडल पर विचार करें हम प्रेरित संक्रमण कार्य बना सकते हैं . अगर हम समन्वय का उपयोग करते हैं फाइबर पर, तो हम ट्रांज़िशन फलन बना सकते हैं

किसी भी पूर्णांक के लिए . इनमें से प्रत्येक एक लाइन बंडल से जुड़ा हुआ है . चूंकि सदिश बंडल आवश्यक रूप से पीछे खींचते हैं, कोई भी होलोमोर्फिक सबमेनिफोल्ड एक संबंधित लाइन बंडल है , कभी-कभी निरूपित .

डोलबेल्ट ऑपरेटर्स

ग्रहण E एक होलोमॉर्फिक सदिश बंडल है। फिर एक प्रतिष्ठित संचालिका है निम्नानुसार परिभाषित किया गया है। एक समष्टिय तुच्छता में का E, समष्टिय फ्रेम के साथ , कोई भी खंड लिखा जा सकता है कुछ सहज कार्यों के लिए .

समष्टिय रूप से एक ऑपरेटर को परिभाषित करें

जहाँ रेगुलर कॉम्प्लेक्स डिफरेंशियल फॉर्म है द डॉल्बेल्ट ऑपरेटर्स बेस मैनिफोल्ड का कॉची-रीमैन ऑपरेटर। यह ऑपरेटर सभी पर अच्छी तरह से परिभाषित है E क्योंकि दो तुच्छताओं के ओवरलैप पर होलोमोर्फिक संक्रमण फलन के साथ , अगर जहाँ के लिए एक समष्टिय फ्रेम है E पर , तब , इसलिए

क्योंकि संक्रमण कार्य होलोमोर्फिक हैं। यह निम्नलिखित परिभाषा की ओर ले जाता है: एक चिकने सम्मिश्र सदिश बंडल पर एक डॉलबेल्ट ऑपरेटर एक -रैखिक ऑपरेटर

ऐसा है कि

  • (कॉची-रीमैन स्थिति) ,
  • (लीबनिज नियम) किसी भी वर्ग के लिए और फलन पर , किसी के पास
.

न्यूलैंडर-निरेनबर्ग प्रमेय के एक आवेदन से, एक होलोमोर्फिक बंडल के डोलबेल्ट ऑपरेटर के निर्माण के लिए एक बातचीत प्राप्त करता है:[1]

प्रमेय: एक डोलबौल्ट ऑपरेटर दिया गया है एक चिकने सम्मिश्र सदिश बंडल पर , पर एक अद्वितीय होलोमोर्फिक संरचना है ऐसा है कि जैसा कि ऊपर निर्मित किया गया है, संबद्ध डॉलबियॉल्ट ऑपरेटर है।

एक डॉल्बेल्ट ऑपरेटर के माध्यम से प्रेरित होलोमोर्फिक संरचना के संबंध में , एक चिकना खंड होलोमोर्फिक है अगर और केवल अगर . यह एक रिंग वाली जगह के रूप में एक चिकनी या सम्मिश्र मैनिफोल्ड की परिभाषा के समान नैतिक रूप से है। अर्थात्, यह निर्दिष्ट करने के लिए पर्याप्त है कि एक टोपोलॉजिकल मैनिफोल्ड पर कौन से कार्य सुचारू या सम्मिश्र हैं, ताकि इसे एक चिकनी या सम्मिश्र संरचना के साथ जोड़ा जा सके।

डोलबौल्ट ऑपरेटर के पास बंद और सटीक अंतर रूपों के संदर्भ में समष्टिय व्युत्क्रम होता है।[2]


== एक होलोमोर्फिक सदिश बंडल == में मूल्यों के साथ रूपों का ढेर होता है।

अगर के पुलिंदे को दर्शाता है C प्रकार के विभेदक रूप (p, q), फिर प्रकार का शीफ (p, q) मूल्यों के साथ रूपों E को टेंसर उत्पाद के रूप में परिभाषित किया जा सकता है

ये पूले ठीक पूले हैं, जिसका अर्थ है कि वे एकता के विभाजन को स्वीकार करते हैं।

चिकने और होलोमोर्फिक सदिश बंडलों के बीच एक मूलभूत अंतर यह है कि बाद वाले में, एक कैनोनिकल डिफरेंशियल ऑपरेटर होता है, जो ऊपर परिभाषित डोलबौल्ट ऑपरेटरों के माध्यम से दिया गया है:


होलोमोर्फिक सदिश बंडलों की कोहोलॉजी

अगर E एक होलोमॉर्फिक सदिश बंडल है, जिसका कोहोलॉजी है E को शेफ कोहोलॉजी के रूप में परिभाषित किया गया है . विशेष रूप से, हमारे पास है

के वैश्विक होलोमोर्फिक वर्गों का समष्टि E. हमारे पास वह भी है के ट्रिवियल लाइन बंडल के Xटेंशन के समूह को पैरामीट्रिज करता है X के माध्यम से E, यानी होलोमॉर्फिक सदिश बंडलों का सटीक क्रम 0 → EFX × C → 0. समूह संरचना के लिए, बेयर सम और साथ ही शीफ Xटेंशन भी देखें।

डोलबेल्ट के प्रमेय के माध्यम से , इस शीफ कॉहोलॉजी को वैकल्पिक रूप से होलोमोर्फिक बंडल में मूल्यों के साथ रूपों के शीशों के माध्यम से परिभाषित श्रृंखला परिसर के कोहोलॉजी के रूप में वर्णित किया जा सकता है। . अर्थात् हमारे पास है


पिकार्ड समूह

कॉम्प्लेक्स डिफरेंशियल ज्योमेट्री के संदर्भ में, पिकार्ड ग्रुप Pic(X) सम्मिश्र कई गुना X टेंसर उत्पाद के माध्यम से दिए गए समूह कानून के साथ होलोमोर्फिक लाइन बंडलों के आइसोमोर्फिज्म वर्गों का समूह है और दोहरीकरण के माध्यम से दिया गया व्युत्क्रम है। इसे समकक्ष रूप से पहले कोहोलॉजी समूह के रूप में परिभाषित किया जा सकता है गैर-लुप्त हो रहे होलोमॉर्फिक कार्यों के पूले का।

होलोमॉर्फिक सदिश बंडल पर हर्मिटियन मेट्रिक्स

ई को एक सम्मिश्र मैनिफोल्ड एम पर एक होलोमोर्फिक सदिश बंडल होने दें और मान लें कि ई पर एक हर्मिटियन मीट्रिक है; यानी फाइबर ईx आंतरिक उत्पादों <·,·> से लैस हैं जो सुचारू रूप से भिन्न होते हैं। फिर ई पर एक अनूठा कनेक्शन (सदिश बंडल) मौजूद है जो सम्मिश्र संरचना और मीट्रिक संरचना दोनों के साथ संगत है, जिसे 'चेर्न कनेक्शन' कहा जाता है; अर्थात्, ∇ एक ऐसा संबंध है कि

(1) ई के किसी भी चिकने खंड के लिए, जहां प0,1(0, 1)-सदिश मूल्यवान रूप का घटक लेता है|ई-मूल्यवान 1-रूप होता है।
(2) किसी भी चिकने खंड s, t के E और M पर एक सदिश क्षेत्र X के लिए होता है।
जहाँ हमने लिखा था के आंतरिक उत्पाद के लिए X के माध्यम से । (यह कहने के समान है कि ∇ के माध्यम से समानांतर परिवहन मीट्रिक <·,·> को संरक्षित करता है।)

दरअसल, अगर यू = (ई1, …, यह हैn) एक होलोमोर्फिक फ्रेम है, तो मान लीजिए और ω को परिभाषित करेंu समीकरण के माध्यम से , जिसे हम और सरल रूप में लिखते हैं:

यदि u' = ug आधार g के होलोमोर्फिक परिवर्तन के साथ एक और फ्रेम है, तो

और इसलिए ω वास्तव में एक कनेक्शन प्रपत्र है, जो ∇ by ∇s = ds + ω · s को जन्म देता है। अब, चूंकि ,

अर्थात, ∇ मीट्रिक संरचना के अनुकूल है। अंत में, चूंकि ω एक (1, 0)-रूप है, (0, 1)-घटक है .

होने देना ∇ का वक्रता रूप हो। तब से डोलबियॉल्ट ऑपरेटर की परिभाषा के अनुसार वर्गों को शून्य तक, Ω में कोई (0, 2)-घटक नहीं है और चूंकि Ω को आसानी से तिरछा-हर्मिटियन दिखाया जाता है,[3] इसका कोई (2, 0)-घटक भी नहीं है। परिणाम स्वरुप, Ω एक (1, 1)-रूप है जो के माध्यम से दिया गया है

होलोमॉर्फिक सदिश बंडलों के उच्च कोहोलॉजी के लिए सुसंगत शीफ कोहोलॉजी में वक्रता Ω प्रमुखता से दिखाई देती है; उदाहरण के लिए, कोडैरा की लुप्तप्राय प्रमेय और नाकानो की लुप्त प्रमेय दिखाई देती है।

टिप्पणियाँ

  1. Kobayashi, S. (2014). Differential geometry of complex vector bundles (Vol. 793). Princeton University Press.
  2. Kycia, Radosław Antoni (2020). "पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर". Results in Mathematics (in English). 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383.
  3. For example, the existence of a Hermitian metric on E means the structure group of the frame bundle can be reduced to the unitary group and Ω has values in the Lie algebra of this unitary group, which consists of skew-hermitian metrices.


संदर्भ


यह भी देखें

बाहरी संबंध