मौलिक डोमेन: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 44: Line 44:
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{MathWorld | urlname=FundamentalDomain | title=Fundamental domain }}
* {{MathWorld | urlname=FundamentalDomain | title=Fundamental domain }}
[[Category:सामयिक समूह]]
[[Category: एर्गोडिक सिद्धांत]]
[[Category:रिमैन सतहें]]
[[Category: समूह क्रियाएं (गणित)]]


 
[[Category:All articles needing additional references]]
[[Category: Machine Translated Page]]
[[Category:Articles needing additional references from August 2018]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 14/11/2022]]
[[Category:Created On 14/11/2022]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:एर्गोडिक सिद्धांत]]
[[Category:रिमैन सतहें]]
[[Category:समूह क्रियाएं (गणित)]]
[[Category:सामयिक समूह]]

Latest revision as of 15:08, 30 November 2022

एक टोपोलॉजिकल स्पेस और उस पर कार्य करने वाले समूह को देखते हुए, समूह क्रिया के तहत एकल बिंदुओं की छवियां क्रिया की कक्षा बनाती हैं। एक मौलिक डोमेन या मौलिक क्षेत्र अंतरिक्ष का एक उपसमुच्चय है जिसमें इनमें से प्रत्येक कक्षा से ठीक एक बिंदु होता है। यह वर्गों के प्रतिनिधियों के अमूर्त सेटों के लिए एक ज्यामितीय अहसास के रूप में कार्य करता है।

एक मूलभूत डोमेन चुनने के कई तरीके हैं। विशिष्ट रूप से, एक मौलिक डोमेन को इसकी सीमा पर कुछ प्रतिबंधों के साथ जुड़ा हुआ उपसमुच्चय होना आवश्यक है, उदाहरण के लिए, चिकनी या बहुफलकीय। समूह कार्रवाई के तहत चुने गए मौलिक डोमेन की छवियां तब स्थान को टाइल करती हैं। मूलभूत डोमेन के एक सामान्य निर्माण में वोरोनोई सेल का उपयोग होता है।

सामान्य परिभाषा के संकेत

भागफल एक टोरस के साथ जटिल तल और उसके मौलिक डोमेन में एक जाली।

होमोमोर्फिज्म द्वारा एक टोपोलॉजिकल स्पेस एक्स पर ग्रुप जी की कार्रवाई को देखते हुए, इस क्रिया के लिए एक मौलिक डोमेन कक्षाओं के लिए प्रतिनिधियों का एक सेट डी है। कई सटीक परिभाषित तरीकों में से एक में, आमतौर पर स्थैतिक रूप से यथोचित रूप से अच्छा सेट होना आवश्यक है। एक विशिष्ट स्थिति यह है कि डी लगभग एक विवृत समुच्चय है, इस अर्थ में कि डी एक्स में एक निश्चित (अर्ध) अपरिवर्तनीय माप के लिए माप शून्य के सेट के साथ एक्स में एक खुले सेट का सममित अंतर है। एक मौलिक डोमेन में हमेशा शामिल होता है एक नि: शुल्क नियमित सेट यू, एक खुला सेट जी द्वारा अलग-अलग प्रतियों में स्थानांतरित किया गया, और कक्षाओं का प्रतिनिधित्व करने में लगभग डी जितना अच्छा। बार-बार डी को कुछ पुनरावृत्तियों के साथ कोसेट प्रतिनिधियों का एक पूरा सेट होना आवश्यक है, लेकिन दोहराए गए हिस्से में माप शून्य है। एर्गोडिक सिद्धांत में यह एक विशिष्ट स्थिति है। यदि मौलिक डोमेन का उपयोग एक्स/जी पर अभिन्न की गणना करने के लिए किया जाता है, तो माप शून्य के सेट मायने नहीं रखते।

उदाहरण के लिए, जब एक्सयूक्लिडियन स्पेस Rn आयाम n का, और G जाली (समूह सिद्धांत) Zn है अनुवाद द्वारा इस पर कार्य करते हुए, भागफल एक्स/जी एन-आयामी टोरस्र्स है। यहाँ एक मूलभूत डोमेन डी को [0,1)n के रूप में लिया जा सकता है, जो विवृत समुच्चय (0,1)n से भिन्न है माप शून्य के एक समुच्चय द्वारा, या बंद समुच्चय यूनिट क्यूब [0,1]n, जिसकीसीमा (टोपोलॉजी) में वे बिंदु होते हैं जिनकी कक्षा में डी में एक से अधिक प्रतिनिधि होते हैं।

उदाहरण

त्रि-आयामी यूक्लिडियन स्थान R3 में उदाहरण।

  • एन-फोल्ड रोटेशन के लिए: एक कक्षा या तो अक्ष के चारों ओर एन बिंदुओं का एक सेट है, या धुरी पर एक बिंदु है; मौलिक डोमेन एक क्षेत्र है।
  • एक तल में परावर्तन के लिए: एक कक्षा या तो 2 बिन्दुओं का एक समुच्चय है, तल के दोनों ओर एक, या तल में एक बिन्दु; मौलिक डोमेन उस विमान से घिरा आधा स्थान है।
  • एक रेखा के चारों ओर 180° घूर्णन के लिए: एक कक्षा या तो अक्ष के संबंध में एक दूसरे के विपरीत 2 बिंदुओं का समूह है, या अक्ष पर एक बिंदु है; मौलिक डोमेन रेखा के माध्यम से किसी भी विमान से घिरा एक आधा स्थान है।
  • एक रेखा के परितः 180° घूर्णन के लिए: कक्षा या तो अक्ष के सापेक्ष एक दूसरे के विपरीत 2 बिंदुओं का एक समूह है, या अक्ष पर एक बिंदु है; मौलिक डोमेन एक आधा स्थान है जो किसी भी विमान द्वारा रेखा के माध्यम से घिरा हुआ है।
  • एक दिशा में असतत ट्रांसलेशनल समरूपता के लिए: अनुवाद वेक्टर की दिशा में कक्षाएँ 1डी जाली का अनुवाद करती हैं; मूलभूत डोमेन एक अनंत स्लैब है।
  • दो दिशाओं में असतत अनुवादकीय समरूपता के लिए: कक्षाएँ अनुवाद वैक्टर के माध्यम से विमान में 2डी जाली का अनुवाद करती हैं; मौलिक डोमेन समानांतर चतुर्भुज क्रॉस सेक्शन के साथ एक अनंत बार है।
  • तीन दिशाओं में असतत ट्रांसलेशनल समरूपता के लिए: कक्षाएँ जाली के अनुवाद हैं; मौलिक डोमेन एक प्रारंभिक सेल है जो उदा। एक समानांतर चतुर्भुज, या एक विग्नर-सीट्ज़ सेल, जिसे वोरोनोई आरेख / आरेख भी कहा जाता है। अन्य समरूपताओं के साथ संयुक्त अनुवादक समरूपता के मामले में, मौलिक डोमेन आदिम सेल का हिस्सा है। उदाहरण के लिए,वॉलपेपर समूह के लिए मौलिक डोमेन एक कारक 1, 2, 3, 4, 6, 8, या 12 है जो आदिम सेल से छोटा है।

मॉड्यूलर समूह के लिए मौलिक डोमेन

प्रत्येक त्रिभुजाकार क्षेत्र H/Γ का एक निःशुल्क नियमित समुच्चय है; ग्रे वन (अनंत पर त्रिभुज के तीसरे बिंदु के साथ) विहित मौलिक डोमेन है।

दाईं ओर का आरेख मॉड्यूलर समूह की कार्रवाई के लिए मौलिक डोमेन के निर्माण का हिस्सा दिखाता है, जो ऊपरी आधे सतह एच पर है।

यह प्रसिद्ध आरेख मॉड्यूलर कार्यों पर सभी शास्त्रीय पुस्तकों में दिखाई देता है। (यह शायद सी. एफ. गॉस को अच्छी तरह से ज्ञात था, जिन्होंने द्विघात रूप के न्यूनीकरण सिद्धांत की आड़ में मौलिक डोमेन से निपटा था।) यहां, प्रत्येक त्रिकोणीय क्षेत्र (नीली रेखाओं से घिरा हुआ) कार्रवाई का एक नि: शुल्क नियमित सेट है। एच सीमाएं (नीली रेखाएं) मुक्त नियमित सेट का हिस्सा नहीं हैं। एच / Γ के एक मौलिक डोमेन का निर्माण करने के लिए, किसी को भी इस बात पर विचार करना चाहिए कि सीमा पर बिंदुओं को कैसे निर्दिष्ट किया जाए, सावधान रहें कि ऐसे बिंदुओं को दोबारा न गिना जाए। इस प्रकार, इस उदाहरण में मुक्त नियमित समुच्चय है।

मौलिक डोमेन बाईं ओर की सीमा को जोड़कर बनाया गया है, बीच में बिंदु सहित तल पर आधा चाप:

मौलिक डोमेन के एक भाग के रूप में लिप्त करने के लिए सीमा के किन बिंदुओं का चयन मनमाना है, और लेखक से लेखक में भिन्न होता है।

मूलभूत डोमेन को परिभाषित करने की मुख्य कठिनाई सेट प्रति से की परिभाषा के साथ इतनी अधिक नहीं है, बल्कि डोमेन की सीमा पर ध्रुवों और शून्यों के साथ कार्यों को एकीकृत करते समय मौलिक डोमेन पर इंटीग्रल का इलाज कैसे किया जाए।

यह भी देखें

बाहरी संबंध

  • Weisstein, Eric W. "Fundamental domain". MathWorld.