डुलोंग-पेटिट नियम: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Empirical thermodynamic law}} File:GraphHeatCapacityElements SelectedRange.png|thumb|upright=2.2|25 °C पर अधिकांश तत्वों...")
 
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Empirical thermodynamic law}}
{{Short description|Empirical thermodynamic law}}
[[File:GraphHeatCapacityElements SelectedRange.png|thumb|upright=2.2|25 °C पर अधिकांश तत्वों की मोलर ताप क्षमता 2.8 R और 3.4 R के बीच की सीमा में है: 22.5 से 30 J/mol K की y श्रेणी के साथ परमाणु क्रमांक के फलन के रूप में प्लॉट करें।]]डुलोंग-पेटिट कानून, फ्रांसीसी भौतिकविदों [[पियरे लुइस डुलोंग]] और एलेक्सिस थेरेस पेटिट द्वारा प्रस्तावित थर्मोडायनामिक कानून में कहा गया है कि कुछ रासायनिक तत्वों की दाढ़ ताप क्षमता के लिए शास्त्रीय अभिव्यक्ति पूर्ण शून्य से दूर तापमान के लिए स्थिर है।
[[File:GraphHeatCapacityElements SelectedRange.png|thumb|25 °C पर अधिकांश तत्वों की मोलर ताप क्षमता 2.8 R और 3.4 R के मध्य की सीमा में है: 22.5 से 30 J/mol K की y श्रेणी के साथ परमाणु क्रमांक के फलन के रूप में प्लॉट करें।|148x148px]]डुलोंग-'''पेटिट नियम''', फ्रांसीसी भौतिकविदों [[पियरे लुइस डुलोंग]] और एलेक्सिस थेरेस पेटिट द्वारा प्रस्तावित थर्मोडायनामिक नियम में कहा गया है कि कुछ रासायनिक तत्वों की दाढ़ ताप क्षमता के लिए मौलिक अभिव्यक्ति पूर्ण शून्य से दूर तापमान के लिए स्थिर है।


आधुनिक शब्दों में, डुलोंग और पेटिट ने पाया कि कई ठोस तत्वों के एक मोल (इकाई) की ताप क्षमता लगभग 3''आर'' है, जहां ''आर'' सार्वभौमिक [[गैस स्थिरांक]] है। ठोस पदार्थों की ऊष्मा क्षमता के आधुनिक सिद्धांत में कहा गया है कि यह ठोस में [[फोनन]] के कारण होता है।
आधुनिक शब्दों में, डुलोंग और पेटिट ने पाया कि अनेक ठोस तत्वों के एक मोल (इकाई) की ताप क्षमता लगभग 3''आर'' है, जहां ''आर'' सार्वभौमिक [[गैस स्थिरांक]] है। ठोस पदार्थों की ऊष्मा क्षमता के आधुनिक सिद्धांत में कहा गया है कि यह ठोस में [[फोनन]] के कारण होता है।


== इतिहास ==
== इतिहास ==
प्रायोगिक रूप से पियरे लुइस डुलोंग और एलेक्सिस थेरेस पेटिट ने 1819 में पाया था कि 13 मापा तत्वों के लिए प्रति वजन ताप क्षमता (द्रव्यमान-विशिष्ट ताप क्षमता) एक स्थिर मान के करीब थी, इसे प्रकल्पित सापेक्ष परमाणु का प्रतिनिधित्व करने वाली संख्या से गुणा करने के बाद तत्व का वजन। ये परमाणु भार कुछ समय पहले ही [[जॉन डाल्टन]] द्वारा सुझाए गए थे और [[ याकूब बर्जेलियस ]] द्वारा संशोधित किए गए थे।
प्रायोगिक रूप से पियरे लुइस डुलोंग और एलेक्सिस थेरेस पेटिट ने सत्र 1819 में पाया था कि 13 मापा तत्वों के लिए प्रति वजन ताप क्षमता (द्रव्यमान-विशिष्ट ताप क्षमता) एक स्थिर मान के करीब थी, इसे प्रकल्पित सापेक्ष परमाणु का प्रतिनिधित्व करने वाली संख्या से गुणा करने के पश्चात् तत्व का वजन। यह परमाणु भार कुछ समय पहले ही [[जॉन डाल्टन]] द्वारा सुझाए गए थे और [[ याकूब बर्जेलियस |याकूब बर्जेलियस]] द्वारा संशोधित किए गए थे।


डुलोंग और पेटिट आर के साथ संबंध से अनजान थे, क्योंकि इस स्थिरांक को अभी तक गैसों के बाद के [[काइनेटिक आणविक सिद्धांत]] से परिभाषित नहीं किया गया था। 3R का मान लगभग 25 जूल प्रति [[केल्विन]] है, और डुलोंग और पेटिट ने अनिवार्य रूप से पाया कि यह कुछ ठोस तत्वों की प्रति मोल परमाणुओं की ताप क्षमता थी।
डुलोंग और पेटिट आर के साथ संबंध से अनजान थे, क्योंकि इस स्थिरांक को अभी तक गैसों के पश्चात् के [[काइनेटिक आणविक सिद्धांत]] से परिभाषित नहीं किया गया था। 3R का मान लगभग 25 जूल प्रति [[केल्विन]] है, और डुलोंग और पेटिट ने अनिवार्य रूप से पाया कि यह कुछ ठोस तत्वों की प्रति मोल परमाणुओं की ताप क्षमता थी।


1865 में [[हरमन फ्रांज मोरिट्ज़ कोप्प]] द्वारा विकसित कोप्प के कानून ने डुलोंग-पेटिट कानून को और प्रयोगात्मक डेटा से रासायनिक यौगिकों तक बढ़ाया।
सत्र 1865 में [[हरमन फ्रांज मोरिट्ज़ कोप्प]] द्वारा विकसित कोप्प के नियम ने डुलोंग-पेटिट नियम को और प्रयोगात्मक डेटा से रासायनिक यौगिकों तक बढ़ाया।


[[Amedeo Avogadro]] ने 1833 में टिप्पणी की कि कानून कार्बन नमूनों के प्रायोगिक डेटा के अनुरूप नहीं था।<ref name=":0">{{Cite book|last=Cercignani|first=Carlo|url=https://books.google.com/books?id=vMVvJKqZJ_oC&dq=dulong+petit+law+boltzmann+equipartition+theorem&pg=PT439|title=Ludwig Boltzmann: The Man Who Trusted Atoms|date=2006-01-12|publisher=OUP Oxford|isbn=978-0-19-160698-4|language=en}}</ref> 1876 ​​में, [[हेनरिक फ्रेडरिक वेबर]] ने देखा कि हीरे की विशिष्ट ऊष्मा तापमान के प्रति समझदार थी।<ref name=":0" />
[[Amedeo Avogadro|अमेदेओ अवोगाद्रो]] ने 1833 में टिप्पणी की कि नियम कार्बन नमूनों के प्रायोगिक डेटा के अनुरूप नहीं था।<ref name=":0">{{Cite book|last=Cercignani|first=Carlo|url=https://books.google.com/books?id=vMVvJKqZJ_oC&dq=dulong+petit+law+boltzmann+equipartition+theorem&pg=PT439|title=Ludwig Boltzmann: The Man Who Trusted Atoms|date=2006-01-12|publisher=OUP Oxford|isbn=978-0-19-160698-4|language=en}}</ref> सत्र 1876 ​​में, [[हेनरिक फ्रेडरिक वेबर]] ने देखा कि हीरे की विशिष्ट ऊष्मा तापमान के प्रति समझदार थी।<ref name=":0" />


1877 में, [[लुडविग बोल्ट्जमैन]] ने दिखाया कि डुलोंग-पेटिट कानून का निरंतर मूल्य स्वतंत्र शास्त्रीय [[लयबद्ध दोलक]] के संदर्भ में समझाया जा सकता है।<ref name=":0" /><ref>{{Cite book|last=Simon|first=Steven H.|url=https://books.google.com/books?id=QI8jLeTOBAsC|title=ऑक्सफोर्ड सॉलिड स्टेट बेसिक्स|date=2013-06-20|publisher=OUP Oxford|isbn=978-0-19-968076-4|language=en}}</ref> [[क्वांटम यांत्रिकी]] के आगमन के साथ, इस धारणा को 1907 में वेबर के छात्र, [[अल्बर्ट आइंस्टीन]] द्वारा परिष्कृत किया गया था, [[क्वांटम हार्मोनिक ऑसिलेटर]] को हीरे में कम तापमान पर ताप क्षमता में प्रयोगात्मक रूप से देखी गई कमी की व्याख्या करने के लिए नियोजित किया गया था।
सत्र 1877 में, [[लुडविग बोल्ट्जमैन]] ने दिखाया कि डुलोंग-पेटिट नियम का निरंतर मूल्य स्वतंत्र मौलिक [[लयबद्ध दोलक]] के संदर्भ में समझाया जा सकता है।<ref name=":0" /><ref>{{Cite book|last=Simon|first=Steven H.|url=https://books.google.com/books?id=QI8jLeTOBAsC|title=ऑक्सफोर्ड सॉलिड स्टेट बेसिक्स|date=2013-06-20|publisher=OUP Oxford|isbn=978-0-19-968076-4|language=en}}</ref> [[क्वांटम यांत्रिकी]] के आगमन के साथ, इस धारणा को 1907 में वेबर के छात्र, [[अल्बर्ट आइंस्टीन]] द्वारा परिष्कृत किया गया था, [[क्वांटम हार्मोनिक ऑसिलेटर]] को हीरे में कम तापमान पर ताप क्षमता में प्रयोगात्मक रूप से देखी गई कमी की व्याख्या करने के लिए नियोजित किया गया था।


[[पीटर डेबी]] ने 1912 में [[मैक्स प्लैंक]] के [[फोटॉन गैस]] पर आधारित एक नए मॉडल के साथ पीछा किया, जहां कंपन अलग-अलग ऑसिलेटर्स के लिए नहीं बल्कि आयनिक जाली के कंपन मोड के रूप में हैं। डेबी मॉडल | डेबी के मॉडल ने 0 केल्विन के करीब तापमान पर आयनिक ताप क्षमता के व्यवहार की भविष्यवाणी करने की अनुमति दी, और [[आइंस्टीन ठोस]] के रूप में, दोनों उच्च तापमान पर डुलोंग-पेटिट कानून को पुनर्प्राप्त करते हैं।
[[पीटर डेबी]] ने सत्र 1912 में [[मैक्स प्लैंक]] के [[फोटॉन गैस]] पर आधारित एक नए मॉडल के साथ पीछा किया, जहां कंपन भिन्न-भिन्न ऑसिलेटर्स के लिए नहीं किंतु आयनिक जाली के कंपन मोड के रूप में हैं। डेबी मॉडल | डेबी के मॉडल ने 0 केल्विन के करीब तापमान पर आयनिक ताप क्षमता के व्यवहार की भविष्यवाणी करने की अनुमति दी, और [[आइंस्टीन ठोस]] के रूप में, दोनों उच्च तापमान पर डुलोंग-पेटिट नियम को पुनर्प्राप्त करते हैं।


1900 [[ड्रूड मॉडल]] | ड्रूड-लोरेंट्ज़ मॉडल द्वारा इलेक्ट्रॉनिक ताप क्षमता को दुलोंग-पेटिट द्वारा अनुमानित मूल्य का आधा होने का अनुमान लगाया गया था। 1927 में [[अर्नोल्ड सोमरफेल्ड]] द्वारा क्वांटम मैकेनिकल [[मुक्त इलेक्ट्रॉन मॉडल]] के विकास के साथ इलेक्ट्रॉनिक योगदान को परिमाण के छोटे क्रम के रूप में पाया गया। इस मॉडल ने बताया कि बड़े तापमान पर कंडक्टर और इंसुलेटर की ताप क्षमता लगभग समान क्यों होती है क्योंकि यह ज्यादातर जाली पर निर्भर करता है न कि इलेक्ट्रॉनिक गुणों पर।
1900 [[ड्रूड मॉडल]] ड्रूड-लोरेंट्ज़ मॉडल द्वारा इलेक्ट्रॉनिक ताप क्षमता को दुलोंग-पेटिट द्वारा अनुमानित मूल्य का आधा होने का अनुमान लगाया गया था। सत्र 1927 में [[अर्नोल्ड सोमरफेल्ड]] द्वारा क्वांटम मैकेनिकल [[मुक्त इलेक्ट्रॉन मॉडल]] के विकास के साथ इलेक्ट्रॉनिक योगदान को परिमाण के छोटे क्रम के रूप में पाया गया। इस मॉडल ने बताया कि बड़े तापमान पर कंडक्टर और इंसुलेटर की ताप क्षमता लगभग समान क्यों होती है क्योंकि यह अधिकतर जाली पर निर्भर करता है न कि इलेक्ट्रॉनिक गुणों पर।


== कानून के कथन के समतुल्य रूप ==
== नियम के कथन के समतुल्य रूप ==


आधुनिक शब्दों में डुलोंग-पेटिट नियम का एक समतुल्य कथन यह है कि, पदार्थ की प्रकृति की परवाह किए बिना, एक ठोस तत्व की विशिष्ट ताप क्षमता c (जूल प्रति केल्विन प्रति किलोग्राम में मापी गई) 3R/M के बराबर है, जहां R गैस स्थिरांक है (जूल प्रति केल्विन प्रति मोल में मापा जाता है) और एम दाढ़ द्रव्यमान है (किलोग्राम प्रति तिल में मापा जाता है)। इस प्रकार, कई तत्वों की प्रति तिल ताप क्षमता 3R है।
आधुनिक शब्दों में डुलोंग-पेटिट नियम का एक समतुल्य कथन यह है कि, पदार्थ की प्रकृति की परवाह किए बिना, एक ठोस तत्व की विशिष्ट ताप क्षमता c (जूल प्रति केल्विन प्रति किलोग्राम में मापी गई) 3R/M के सामान्तर है, जहां R गैस स्थिरांक है (जूल प्रति केल्विन प्रति मोल में मापा जाता है) और एम दाढ़ द्रव्यमान है (किलोग्राम प्रति तिल में मापा जाता है)। इस प्रकार, अनेक तत्वों की प्रति तिल ताप क्षमता 3R है।


डुलोंग-पेटिट कानून का प्रारंभिक रूप था:
डुलोंग-पेटिट नियम का प्रारंभिक रूप था:


:<math>cM = K</math>
:<math>cM = K</math>
Line 40: Line 40:
इसलिए, अधिकांश ठोस क्रिस्टलीय पदार्थों की ऊष्मा क्षमता पदार्थ के प्रति मोल 3R है।
इसलिए, अधिकांश ठोस क्रिस्टलीय पदार्थों की ऊष्मा क्षमता पदार्थ के प्रति मोल 3R है।


डुलोंग और पेटिट ने गैस स्थिरांक R (जो उस समय ज्ञात नहीं था) के संदर्भ में अपना नियम नहीं बताया। इसके बजाय, उन्होंने पदार्थों की ताप क्षमता (प्रति वजन) के मूल्यों को मापा और डाल्टन और अन्य प्रारंभिक परमाणुवादियों द्वारा अनुमानित अधिक परमाणु भार के पदार्थों के लिए उन्हें छोटा पाया। दुलोंग और पेटिट ने तब पाया कि जब इन परमाणु भारों से गुणा किया जाता है, तो प्रति मोल ताप क्षमता का मान लगभग स्थिर था, और उस मान के बराबर था जिसे बाद में 3R के रूप में मान्यता दी गई थी।
डुलोंग और पेटिट ने गैस स्थिरांक R (जो उस समय ज्ञात नहीं था) के संदर्भ में अपना नियम नहीं बताया। इसके अतिरिक्त, उन्होंने पदार्थों की ताप क्षमता (प्रति वजन) के मूल्यों को मापा और डाल्टन और अन्य प्रारंभिक परमाणुवादियों द्वारा अनुमानित अधिक परमाणु भार के पदार्थों के लिए उन्हें छोटा पाया। दुलोंग और पेटिट ने तब पाया कि जब इन परमाणु भारों से गुणा किया जाता है, तब प्रति मोल ताप क्षमता का मान लगभग स्थिर था, और उस मान के सामान्तर था जिसे पश्चात् में 3R के रूप में मान्यता दी गई थी।


अन्य आधुनिक शब्दावली में, ताप क्षमता#आयाम रहित ताप क्षमता C/(nR) 3 के बराबर है।
अन्य आधुनिक शब्दावली में, ताप क्षमता#आयाम रहित ताप क्षमता C/(nR) 3 के सामान्तर है।


कानून को नमूने में परमाणुओं की कुल संख्या एन के एक समारोह के रूप में भी लिखा जा सकता है:
नियम को नमूने में परमाणुओं की कुल संख्या एन के एक फलन के रूप में भी लिखा जा सकता है:


:<math>C/N = 3k_{\rm B}</math>,
:<math>C/N = 3k_{\rm B}</math>,
Line 51: Line 51:


== आवेदन सीमा ==
== आवेदन सीमा ==
[[File:GraphHeatCapacityOfTheElementsI2s.png|thumb|upright=2.2|25 डिग्री सेल्सियस पर अधिकांश तत्वों की दाढ़ ताप क्षमता को परमाणु संख्या के कार्य के रूप में प्लॉट किया गया। ब्रोमीन का मान गैसीय अवस्था के लिए होता है। आयोडीन के लिए, गैस के लिए एक मान और ठोस के लिए एक मान दिखाया गया है।]]इसकी सादगी के बावजूद, डुलोंग-पेटिट कानून उच्च [[तापमान]] पर अपेक्षाकृत सरल क्रिस्टल संरचना वाले कई प्राथमिक ठोस पदार्थों की ताप क्षमता के लिए काफी अच्छी भविष्यवाणी प्रदान करता है। यह समझौता इसलिए है क्योंकि लुडविग बोल्ट्ज़मैन के शास्त्रीय सांख्यिकीय सिद्धांत में, ठोस पदार्थों की ताप क्षमता परमाणुओं के अधिकतम 3R प्रति मोल (यूनिट) तक पहुंचती है क्योंकि स्वतंत्रता की पूर्ण कंपन-मोड डिग्री प्रति परमाणु की 3 डिग्री स्वतंत्रता की मात्रा होती है, प्रत्येक के अनुरूप एक द्विघात गतिज ऊर्जा शब्द और एक द्विघात संभावित ऊर्जा शब्द। [[समविभाजन प्रमेय]] द्वारा, प्रत्येक द्विघात पद का औसत है {{frac|1|2}}<sub>B</sub>टी, या {{frac|1|2}}आरटी प्रति तिल (नीचे व्युत्पत्ति देखें)। स्वतंत्रता की 3 डिग्री और स्वतंत्रता की प्रति डिग्री दो शब्दों से गुणा करने पर, यह 3R प्रति तिल ताप क्षमता के बराबर होता है।
[[File:GraphHeatCapacityOfTheElementsI2s.png|thumb|upright=2.2|25 डिग्री सेल्सियस पर अधिकांश तत्वों की दाढ़ ताप क्षमता को परमाणु संख्या के कार्य के रूप में प्लॉट किया गया। ब्रोमीन का मान गैसीय अवस्था के लिए होता है। आयोडीन के लिए, गैस के लिए एक मान और ठोस के लिए एक मान दिखाया गया है।]]इसकी सादगी के अतिरिक्त, डुलोंग-पेटिट नियम उच्च [[तापमान]] पर अपेक्षाकृत सरल क्रिस्टल संरचना वाले अनेक प्राथमिक ठोस पदार्थों की ताप क्षमता के लिए अधिक अच्छी भविष्यवाणी प्रदान करता है। यह समझौता इसलिए है क्योंकि लुडविग बोल्ट्ज़मैन के मौलिक सांख्यिकीय सिद्धांत में, ठोस पदार्थों की ताप क्षमता परमाणुओं के अधिकतम 3R प्रति मोल (यूनिट) तक पहुंचती है क्योंकि स्वतंत्रता की पूर्ण कंपन-मोड डिग्री प्रति परमाणु की 3 डिग्री स्वतंत्रता की मात्रा होती है, प्रत्येक के अनुरूप एक द्विघात गतिज ऊर्जा शब्द और एक द्विघात संभावित ऊर्जा शब्द। [[समविभाजन प्रमेय]] द्वारा, प्रत्येक द्विघात पद का औसत है {{frac|1|2}}''k''<sub>B</sub>''T'', या {{frac|1|2}}''RT''  प्रति तिल (नीचे व्युत्पत्ति देखें)। स्वतंत्रता की 3 डिग्री और स्वतंत्रता की प्रति डिग्री दो शब्दों से गुणा करने पर, यह 3R प्रति तिल ताप क्षमता के सामान्तर होता है।


डुलोंग-पेटिट कानून कमरे के तापमान पर विफल रहता है क्योंकि हल्के परमाणु एक दूसरे से दृढ़ता से बंधे होते हैं, जैसे कि धातु बेरिलियम और कार्बन में हीरे के रूप में। यहां, यह वास्तव में पाई जाने वाली तुलना में उच्च ताप क्षमता की भविष्यवाणी करता है, इन पदार्थों में उच्च-ऊर्जा कंपन मोड के कमरे के तापमान पर नहीं होने के कारण अंतर के साथ।
डुलोंग-पेटिट नियम कमरे के तापमान पर विफल रहता है क्योंकि हल्के परमाणु एक दूसरे से दृढ़ता से बंधे होते हैं, जैसे कि धातु बेरिलियम और कार्बन में हीरे के रूप में। यहां, यह वास्तव में पाई जाने वाली तुलना में उच्च ताप क्षमता की भविष्यवाणी करता है, इन पदार्थों में उच्च-ऊर्जा कंपन मोड के कमरे के तापमान पर नहीं होने के कारण अंतर के साथ।


बहुत कम (क्रायोजेनिक) तापमान क्षेत्र में, जहां सभी ठोस पदार्थों में ऊर्जा भंडारण की क्वांटम यांत्रिक प्रकृति बड़े और बड़े प्रभाव से प्रकट होती है, कानून सभी पदार्थों के लिए विफल रहता है। ऐसी परिस्थितियों में क्रिस्टल के लिए, [[डेबी मॉडल]], आइंस्टीन सिद्धांत का एक विस्तार जो परमाणु कंपन में सांख्यिकीय वितरण के लिए खाता है जब वितरित करने के लिए कम मात्रा में ऊर्जा होती है, अच्छी तरह से काम करती है।
बहुत कम (क्रायोजेनिक) तापमान क्षेत्र में, जहां सभी ठोस पदार्थों में ऊर्जा भंडारण की क्वांटम यांत्रिक प्रकृति बड़े और बड़े प्रभाव से प्रकट होती है, नियम सभी पदार्थों के लिए विफल रहता है। ऐसी परिस्थितियों में क्रिस्टल के लिए, [[डेबी मॉडल]], आइंस्टीन सिद्धांत का एक विस्तार जो परमाणु कंपन में सांख्यिकीय वितरण के लिए खाता है जब वितरित करने के लिए कम मात्रा में ऊर्जा होती है, अच्छी तरह से काम करती है।


== एक आइंस्टीन ठोस == के लिए व्युत्पत्ति
== आइंस्टीन ठोस की व्युत्पत्ति ==
{{Main|Einstein solid}}
{{Main|आइंस्टीन ठोस}}
एक क्रिस्टलीय ठोस जाली में कंपन की एक प्रणाली को आइंस्टीन ठोस के रूप में तैयार किया जा सकता है, अर्थात स्वतंत्रता की प्रत्येक डिग्री के साथ एन क्वांटम हार्मोनिक ऑसिलेटर क्षमता पर विचार करके। फिर, सिस्टम की [[थर्मोडायनामिक मुक्त ऊर्जा]] को इस रूप में लिखा जा सकता है<ref name="landau">{{cite book |last1=Landau |first1=L. D. |last2=Lifshitz |first2=E. M.|title=सांख्यिकीय भौतिकी पं. 1|edition= 3rd|series= Course in Theoretical Physics|volume= 5|year=1980|publisher=Pergamon Press|location= Oxford|isbn=978-0-7506-3372-7|page= 193,196}}</ref>
 
एक क्रिस्टलीय ठोस जाली में कंपन की एक प्रणाली को आइंस्टीन ठोस के रूप में तैयार किया जा सकता है, अर्थात स्वतंत्रता की प्रत्येक डिग्री के साथ एन क्वांटम हार्मोनिक ऑसिलेटर क्षमता पर विचार करके। फिर, प्रणाली की [[थर्मोडायनामिक मुक्त ऊर्जा]] को इस रूप में लिखा जा सकता है<ref name="landau">{{cite book |last1=Landau |first1=L. D. |last2=Lifshitz |first2=E. M.|title=सांख्यिकीय भौतिकी पं. 1|edition= 3rd|series= Course in Theoretical Physics|volume= 5|year=1980|publisher=Pergamon Press|location= Oxford|isbn=978-0-7506-3372-7|page= 193,196}}</ref>
:<math>F=N\varepsilon_0+Nk_{\rm B}T\sum_\alpha \log\left(1-e^{-\hbar\omega_{\alpha}/k_{\rm B}T}\right)</math>
:<math>F=N\varepsilon_0+Nk_{\rm B}T\sum_\alpha \log\left(1-e^{-\hbar\omega_{\alpha}/k_{\rm B}T}\right)</math>
जहाँ सूचकांक α स्वतंत्रता की सभी कोटि का योग करता है। 1907 में आइंस्टीन ठोस (बाद के डेबी मॉडल के विपरीत) में हम केवल उच्च-ऊर्जा सीमा पर विचार करते हैं:
जहाँ सूचकांक α स्वतंत्रता की सभी कोटि का योग करता है। 1907 में आइंस्टीन ठोस (पश्चात् के डेबी मॉडल के विपरीत) में हम केवल उच्च-ऊर्जा सीमा पर विचार करते हैं:


:<math>k_{\rm B}T\gg\hbar\omega_\alpha. \, </math>
:<math>k_{\rm B}T\gg\hbar\omega_\alpha. \, </math>
Line 73: Line 74:


:<math>\log\bar{\omega}=\frac{1}{g}\sum_\alpha \log\omega_\alpha,</math>
:<math>\log\bar{\omega}=\frac{1}{g}\sum_\alpha \log\omega_\alpha,</math>
जहां जी सिस्टम की स्वतंत्रता की स्थानिक डिग्री की कुल संख्या को मापता है।
जहां जी प्रणाली की स्वतंत्रता की स्थानिक डिग्री की कुल संख्या को मापता है।


इस प्रकार हमारे पास है
इस प्रकार हमारे पास है
Line 89: Line 90:
जो तापमान से स्वतंत्र है।
जो तापमान से स्वतंत्र है।


अन्य अधिक सटीक व्युत्पत्ति के लिए, डेबी मॉडल देखें।
अन्य अधिक त्रुटिहीन व्युत्पत्ति के लिए, डेबी मॉडल देखें।


== यह भी देखें ==
== यह भी देखें ==
*स्टीफन-बोल्ट्जमैन नियम
*स्टीफन-बोल्ट्जमैन नियम
* कोप्प-न्यूमैन कानून
* कोप्प-न्यूमैन नियम


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
==बाहरी संबंध==
==बाहरी संबंध==
* {{cite journal|last1=Petit|first1= A.-T.|last2= Dulong|first2= P.-L.|title=Recherches sur quelques points importants de la Théorie de la Chaleur|journal= Annales de Chimie et de Physique|volume=10|pages= 395–413|language=French |year=1819}} ([[Annales de Chimie et de Physique]] article is [http://web.lemoyne.edu/~giunta/PETIT.html translated])
* {{cite journal|last1=पेटिट|first1= .-टी.|last2= डुलोंग|first2= पी.-एल.|title=थियोरी डे ला चालेउर के महत्वपूर्ण बिंदुओं पर शोध करें|journal= एनालेस डी चिमी एट डी फिजिक|volume=10|pages= 395–413|language=फ़्रेंच |year=1819}} ([[एनाल्स डी चिमी एट डी फिजिक लेख]] का [[अनुवाद]] किया गया है)


{{DEFAULTSORT:Dulong-Petit law}}[[Category: संघनित पदार्थ भौतिकी]] [[Category: ऊष्मप्रवैगिकी के नियम]] [[Category: सांख्यिकीय यांत्रिकी]] [[Category: विश्लेषणात्मक रसायनशास्त्र]]  
{{DEFAULTSORT:Dulong-Petit law}}[[Category: संघनित पदार्थ भौतिकी]] [[Category: ऊष्मप्रवैगिकी के नियम]] [[Category: सांख्यिकीय यांत्रिकी]] [[Category: विश्लेषणात्मक रसायनशास्त्र]]  
Line 108: Line 107:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 08:55, 13 December 2023

25 °C पर अधिकांश तत्वों की मोलर ताप क्षमता 2.8 R और 3.4 R के मध्य की सीमा में है: 22.5 से 30 J/mol K की y श्रेणी के साथ परमाणु क्रमांक के फलन के रूप में प्लॉट करें।

डुलोंग-पेटिट नियम, फ्रांसीसी भौतिकविदों पियरे लुइस डुलोंग और एलेक्सिस थेरेस पेटिट द्वारा प्रस्तावित थर्मोडायनामिक नियम में कहा गया है कि कुछ रासायनिक तत्वों की दाढ़ ताप क्षमता के लिए मौलिक अभिव्यक्ति पूर्ण शून्य से दूर तापमान के लिए स्थिर है।

आधुनिक शब्दों में, डुलोंग और पेटिट ने पाया कि अनेक ठोस तत्वों के एक मोल (इकाई) की ताप क्षमता लगभग 3आर है, जहां आर सार्वभौमिक गैस स्थिरांक है। ठोस पदार्थों की ऊष्मा क्षमता के आधुनिक सिद्धांत में कहा गया है कि यह ठोस में फोनन के कारण होता है।

इतिहास

प्रायोगिक रूप से पियरे लुइस डुलोंग और एलेक्सिस थेरेस पेटिट ने सत्र 1819 में पाया था कि 13 मापा तत्वों के लिए प्रति वजन ताप क्षमता (द्रव्यमान-विशिष्ट ताप क्षमता) एक स्थिर मान के करीब थी, इसे प्रकल्पित सापेक्ष परमाणु का प्रतिनिधित्व करने वाली संख्या से गुणा करने के पश्चात् तत्व का वजन। यह परमाणु भार कुछ समय पहले ही जॉन डाल्टन द्वारा सुझाए गए थे और याकूब बर्जेलियस द्वारा संशोधित किए गए थे।

डुलोंग और पेटिट आर के साथ संबंध से अनजान थे, क्योंकि इस स्थिरांक को अभी तक गैसों के पश्चात् के काइनेटिक आणविक सिद्धांत से परिभाषित नहीं किया गया था। 3R का मान लगभग 25 जूल प्रति केल्विन है, और डुलोंग और पेटिट ने अनिवार्य रूप से पाया कि यह कुछ ठोस तत्वों की प्रति मोल परमाणुओं की ताप क्षमता थी।

सत्र 1865 में हरमन फ्रांज मोरिट्ज़ कोप्प द्वारा विकसित कोप्प के नियम ने डुलोंग-पेटिट नियम को और प्रयोगात्मक डेटा से रासायनिक यौगिकों तक बढ़ाया।

अमेदेओ अवोगाद्रो ने 1833 में टिप्पणी की कि नियम कार्बन नमूनों के प्रायोगिक डेटा के अनुरूप नहीं था।[1] सत्र 1876 ​​में, हेनरिक फ्रेडरिक वेबर ने देखा कि हीरे की विशिष्ट ऊष्मा तापमान के प्रति समझदार थी।[1]

सत्र 1877 में, लुडविग बोल्ट्जमैन ने दिखाया कि डुलोंग-पेटिट नियम का निरंतर मूल्य स्वतंत्र मौलिक लयबद्ध दोलक के संदर्भ में समझाया जा सकता है।[1][2] क्वांटम यांत्रिकी के आगमन के साथ, इस धारणा को 1907 में वेबर के छात्र, अल्बर्ट आइंस्टीन द्वारा परिष्कृत किया गया था, क्वांटम हार्मोनिक ऑसिलेटर को हीरे में कम तापमान पर ताप क्षमता में प्रयोगात्मक रूप से देखी गई कमी की व्याख्या करने के लिए नियोजित किया गया था।

पीटर डेबी ने सत्र 1912 में मैक्स प्लैंक के फोटॉन गैस पर आधारित एक नए मॉडल के साथ पीछा किया, जहां कंपन भिन्न-भिन्न ऑसिलेटर्स के लिए नहीं किंतु आयनिक जाली के कंपन मोड के रूप में हैं। डेबी मॉडल | डेबी के मॉडल ने 0 केल्विन के करीब तापमान पर आयनिक ताप क्षमता के व्यवहार की भविष्यवाणी करने की अनुमति दी, और आइंस्टीन ठोस के रूप में, दोनों उच्च तापमान पर डुलोंग-पेटिट नियम को पुनर्प्राप्त करते हैं।

1900 ड्रूड मॉडल ड्रूड-लोरेंट्ज़ मॉडल द्वारा इलेक्ट्रॉनिक ताप क्षमता को दुलोंग-पेटिट द्वारा अनुमानित मूल्य का आधा होने का अनुमान लगाया गया था। सत्र 1927 में अर्नोल्ड सोमरफेल्ड द्वारा क्वांटम मैकेनिकल मुक्त इलेक्ट्रॉन मॉडल के विकास के साथ इलेक्ट्रॉनिक योगदान को परिमाण के छोटे क्रम के रूप में पाया गया। इस मॉडल ने बताया कि बड़े तापमान पर कंडक्टर और इंसुलेटर की ताप क्षमता लगभग समान क्यों होती है क्योंकि यह अधिकतर जाली पर निर्भर करता है न कि इलेक्ट्रॉनिक गुणों पर।

नियम के कथन के समतुल्य रूप

आधुनिक शब्दों में डुलोंग-पेटिट नियम का एक समतुल्य कथन यह है कि, पदार्थ की प्रकृति की परवाह किए बिना, एक ठोस तत्व की विशिष्ट ताप क्षमता c (जूल प्रति केल्विन प्रति किलोग्राम में मापी गई) 3R/M के सामान्तर है, जहां R गैस स्थिरांक है (जूल प्रति केल्विन प्रति मोल में मापा जाता है) और एम दाढ़ द्रव्यमान है (किलोग्राम प्रति तिल में मापा जाता है)। इस प्रकार, अनेक तत्वों की प्रति तिल ताप क्षमता 3R है।

डुलोंग-पेटिट नियम का प्रारंभिक रूप था:

जहाँ K एक स्थिरांक है जिसे आज हम लगभग 3R के रूप में जानते हैं।

आधुनिक शब्दों में नमूने के द्रव्यमान m को मोलर द्रव्यमान M से विभाजित करने पर मोल n की संख्या प्राप्त होती है।

इसलिए, पूर्ण ताप क्षमता (जूल प्रति केल्विन में) के लिए अपरकेस C का उपयोग करके, हमारे पास:

या

.

इसलिए, अधिकांश ठोस क्रिस्टलीय पदार्थों की ऊष्मा क्षमता पदार्थ के प्रति मोल 3R है।

डुलोंग और पेटिट ने गैस स्थिरांक R (जो उस समय ज्ञात नहीं था) के संदर्भ में अपना नियम नहीं बताया। इसके अतिरिक्त, उन्होंने पदार्थों की ताप क्षमता (प्रति वजन) के मूल्यों को मापा और डाल्टन और अन्य प्रारंभिक परमाणुवादियों द्वारा अनुमानित अधिक परमाणु भार के पदार्थों के लिए उन्हें छोटा पाया। दुलोंग और पेटिट ने तब पाया कि जब इन परमाणु भारों से गुणा किया जाता है, तब प्रति मोल ताप क्षमता का मान लगभग स्थिर था, और उस मान के सामान्तर था जिसे पश्चात् में 3R के रूप में मान्यता दी गई थी।

अन्य आधुनिक शब्दावली में, ताप क्षमता#आयाम रहित ताप क्षमता C/(nR) 3 के सामान्तर है।

नियम को नमूने में परमाणुओं की कुल संख्या एन के एक फलन के रूप में भी लिखा जा सकता है:

,

जहां केB बोल्ट्जमैन स्थिरांक है।

आवेदन सीमा

25 डिग्री सेल्सियस पर अधिकांश तत्वों की दाढ़ ताप क्षमता को परमाणु संख्या के कार्य के रूप में प्लॉट किया गया। ब्रोमीन का मान गैसीय अवस्था के लिए होता है। आयोडीन के लिए, गैस के लिए एक मान और ठोस के लिए एक मान दिखाया गया है।

इसकी सादगी के अतिरिक्त, डुलोंग-पेटिट नियम उच्च तापमान पर अपेक्षाकृत सरल क्रिस्टल संरचना वाले अनेक प्राथमिक ठोस पदार्थों की ताप क्षमता के लिए अधिक अच्छी भविष्यवाणी प्रदान करता है। यह समझौता इसलिए है क्योंकि लुडविग बोल्ट्ज़मैन के मौलिक सांख्यिकीय सिद्धांत में, ठोस पदार्थों की ताप क्षमता परमाणुओं के अधिकतम 3R प्रति मोल (यूनिट) तक पहुंचती है क्योंकि स्वतंत्रता की पूर्ण कंपन-मोड डिग्री प्रति परमाणु की 3 डिग्री स्वतंत्रता की मात्रा होती है, प्रत्येक के अनुरूप एक द्विघात गतिज ऊर्जा शब्द और एक द्विघात संभावित ऊर्जा शब्द। समविभाजन प्रमेय द्वारा, प्रत्येक द्विघात पद का औसत है 12kBT, या 12RT प्रति तिल (नीचे व्युत्पत्ति देखें)। स्वतंत्रता की 3 डिग्री और स्वतंत्रता की प्रति डिग्री दो शब्दों से गुणा करने पर, यह 3R प्रति तिल ताप क्षमता के सामान्तर होता है।

डुलोंग-पेटिट नियम कमरे के तापमान पर विफल रहता है क्योंकि हल्के परमाणु एक दूसरे से दृढ़ता से बंधे होते हैं, जैसे कि धातु बेरिलियम और कार्बन में हीरे के रूप में। यहां, यह वास्तव में पाई जाने वाली तुलना में उच्च ताप क्षमता की भविष्यवाणी करता है, इन पदार्थों में उच्च-ऊर्जा कंपन मोड के कमरे के तापमान पर नहीं होने के कारण अंतर के साथ।

बहुत कम (क्रायोजेनिक) तापमान क्षेत्र में, जहां सभी ठोस पदार्थों में ऊर्जा भंडारण की क्वांटम यांत्रिक प्रकृति बड़े और बड़े प्रभाव से प्रकट होती है, नियम सभी पदार्थों के लिए विफल रहता है। ऐसी परिस्थितियों में क्रिस्टल के लिए, डेबी मॉडल, आइंस्टीन सिद्धांत का एक विस्तार जो परमाणु कंपन में सांख्यिकीय वितरण के लिए खाता है जब वितरित करने के लिए कम मात्रा में ऊर्जा होती है, अच्छी तरह से काम करती है।

आइंस्टीन ठोस की व्युत्पत्ति

एक क्रिस्टलीय ठोस जाली में कंपन की एक प्रणाली को आइंस्टीन ठोस के रूप में तैयार किया जा सकता है, अर्थात स्वतंत्रता की प्रत्येक डिग्री के साथ एन क्वांटम हार्मोनिक ऑसिलेटर क्षमता पर विचार करके। फिर, प्रणाली की थर्मोडायनामिक मुक्त ऊर्जा को इस रूप में लिखा जा सकता है[3]

जहाँ सूचकांक α स्वतंत्रता की सभी कोटि का योग करता है। 1907 में आइंस्टीन ठोस (पश्चात् के डेबी मॉडल के विपरीत) में हम केवल उच्च-ऊर्जा सीमा पर विचार करते हैं:

तब

और हमारे पास है

ज्यामितीय माध्य आवृत्ति को परिभाषित कीजिए

जहां जी प्रणाली की स्वतंत्रता की स्थानिक डिग्री की कुल संख्या को मापता है।

इस प्रकार हमारे पास है

ऊर्जा का उपयोग करना

अपने पास

यह स्थिर आयतन पर ऊष्मा क्षमता देता है

जो तापमान से स्वतंत्र है।

अन्य अधिक त्रुटिहीन व्युत्पत्ति के लिए, डेबी मॉडल देखें।

यह भी देखें

  • स्टीफन-बोल्ट्जमैन नियम
  • कोप्प-न्यूमैन नियम

संदर्भ

  1. 1.0 1.1 1.2 Cercignani, Carlo (2006-01-12). Ludwig Boltzmann: The Man Who Trusted Atoms (in English). OUP Oxford. ISBN 978-0-19-160698-4.
  2. Simon, Steven H. (2013-06-20). ऑक्सफोर्ड सॉलिड स्टेट बेसिक्स (in English). OUP Oxford. ISBN 978-0-19-968076-4.
  3. Landau, L. D.; Lifshitz, E. M. (1980). सांख्यिकीय भौतिकी पं. 1. Course in Theoretical Physics. Vol. 5 (3rd ed.). Oxford: Pergamon Press. p. 193,196. ISBN 978-0-7506-3372-7.

बाहरी संबंध