फ्राउड संख्या: Difference between revisions
No edit summary |
m (14 revisions imported from alpha:फ्राउड_संख्या) |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 82: | Line 82: | ||
===हलचल टैंक=== | ===हलचल टैंक=== | ||
उत्तेजित टैंकों के अध्ययन में, फ्राउड संख्या सतह के भंवरों के निर्माण को नियंत्रित करती है। चूंकि प्ररित करनेवाला टिप वेग {{math|''ωr''}} (गोलाकार गति) है, जहां {{math|''ω''}} प्ररित करनेवाला आवृत्ति है (सामान्यतः आरपीएम में) और {{math|''r''}} प्ररित करनेवाला त्रिज्या है (इंजीनियरिंग में व्यास का उपयोग बहुत अधिक बार किया जाता है), फ्राउड संख्या तब निम्नलिखित रूप लेती है: | उत्तेजित टैंकों के अध्ययन में, फ्राउड संख्या सतह के भंवरों के निर्माण को नियंत्रित करती है। चूंकि प्ररित करनेवाला टिप वेग {{math|''ωr''}} (गोलाकार गति) है, जहां {{math|''ω''}} प्ररित करनेवाला आवृत्ति है (सामान्यतः आरपीएम में) और {{math|''r''}} प्ररित करनेवाला त्रिज्या है (इंजीनियरिंग में व्यास का उपयोग बहुत अधिक बार किया जाता है), फ्राउड संख्या तब निम्नलिखित रूप लेती है: | ||
<math display="block">\mathrm{Fr}=\omega \sqrt \frac{r}{g}.</math> | <math display="block">\mathrm{Fr}=\omega \sqrt \frac{r}{g}.</math>फ्राउड नंबर का उपयोग पाउडर मिक्सर में भी इसी तरह किया जाता है। इसका उपयोग वास्तव में यह निर्धारित करने के लिए किया जाएगा कि ब्लेंडर किस मिश्रण व्यवस्था में काम कर रहा है। यदि Fr<1, कणों को बस हिलाया जाता है, लेकिन यदि Fr>1, पाउडर पर लगाए गए केन्द्रापसारक बल गुरुत्वाकर्षण पर काबू पा लेते हैं और कणों का तल द्रवीकृत हो जाता है, कम से कम ब्लेंडर के कुछ हिस्से में, मिश्रण को बढ़ावा देता है<ref name="powderprocess.net" /> | ||
फ्राउड नंबर का उपयोग पाउडर मिक्सर में भी इसी तरह किया जाता है। इसका उपयोग वास्तव में यह निर्धारित करने के लिए किया जाएगा कि ब्लेंडर किस मिश्रण व्यवस्था में काम कर रहा है। यदि Fr<1, कणों को बस हिलाया जाता है, लेकिन यदि Fr>1, पाउडर पर लगाए गए केन्द्रापसारक बल गुरुत्वाकर्षण पर काबू पा लेते हैं और कणों का तल द्रवीकृत हो जाता है, कम से कम ब्लेंडर के कुछ हिस्से में, मिश्रण को बढ़ावा देता है<ref name="powderprocess.net" /> | ===घनत्वमिति फ्राउड संख्या=== | ||
=== | |||
जब [[बाउसिनस्क सन्निकटन (उछाल)|बाउसिनस्क सन्निकटन]] के संदर्भ में उपयोग किया जाता है तो घनत्वमिति फ्राउड संख्या को इस प्रकार परिभाषित किया जाता है | |||
<math display="block">\mathrm{Fr}=\frac{u}{\sqrt{g' h}}</math>जहां {{math|''g''′}} कम गुरुत्वाकर्षण है:<math display="block">g' = g\frac{\rho_1-\rho_2}{\rho_1}</math>घनत्वमिति फ्राउड संख्या सामान्यतः प्रतिरूप तैयार करने वाला द्वारा पसंद की जाती है जो [[रिचर्डसन संख्या]] के लिए गति वरीयता को अतिरिक्त-आयामी बनाना चाहते हैं जो स्तरीकृत कतरनी परतों पर विचार करते समय अधिक सामान्यतः सामने आती है। उदाहरण के लिए, गुरुत्व धारा का अग्रणी किनारा लगभग बृहत्तर की अग्र फ्रौड संख्या के साथ चलता है। | |||
===कार्यरत फ्राउड नंबर=== | |||
फ्राउड संख्या का उपयोग जानवरों की चाल स्वरूप में प्रवृत्तियों का अध्ययन करने के लिए किया जा सकता है। पैरों की गति की गतिशीलता के विश्लेषण में, चलने वाले अंग को प्रायः एक उल्टे [[ लंगर |लटकन]] के रूप में तैयार किया जाता है, जहां द्रव्यमान का केंद्र पैर पर केंद्रित एक गोलाकार चाप से होकर गुजरता है।{{sfn|Vaughan|O'Malley|2005|pp=350–362}} फ्राउड संख्या गति के केंद्र, पैर और चलने वाले जानवर के वजन के आसपास अभिकेन्द्रीय बल का अनुपात है:<math display="block">\mathrm{Fr}=\frac{\text{केंद्र की ओर जानेवालाबल}}{\text{गुरुत्वाकर्षण बल}}=\frac{\;\frac{mv^2}{l}\;}{mg} = \frac{v^2}{gl}</math>जहां {{math|''m''}} द्रव्यमान है, {{math|''l''}} विशेषता लंबाई है, {{math|''g''}} पृथ्वी का गुरुत्वाकर्षण है और {{math|''v''}} [[वेग]] है. विशेषता लंबाई {{math|''l''}} को वर्तमान अध्ययन के अनुरूप चुना जा सकता है। उदाहरण के लिए, कुछ अध्ययनों में ज़मीन से कूल्हे के जोड़ की ऊर्ध्वाधर दूरी का उपयोग किया गया है,{{sfn|Alexander|1984|p=}} जबकि अन्य ने पैर की कुल लंबाई का उपयोग किया है।{{sfn|Vaughan|O'Malley|2005|pp=350–362}}{{sfn|Sellers|Manning|2007|p=}} | |||
<math display="block">\mathrm{Fr}=\frac{ | |||
जहां {{math|''g'' | |||
फ्राउड संख्या की गणना कदमों की आवृत्ति {{math|''f''}} से भी की जा सकती है निम्नलिखितनुसार:{{sfn|Alexander|1984|p=}}<math display="block">\mathrm{Fr}=\frac{v^2}{gl}=\frac{(lf)^2}{gl}=\frac{lf^2}{g}.</math>यदि कुल पैर की लंबाई को विशेषता लंबाई के रूप में उपयोग किया जाता है, तो चलने की सैद्धांतिक अधिकतम गति में 1.0 की फ्राउड संख्या होती है क्योंकि किसी भी उच्च मूल्य के परिणामस्वरूप टेकऑफ़ होगा और पैर जमीन से गायब हो जाएगा। दो पैरों पर चलने से लेकर दौड़ने तक की सामान्य संक्रमण गति किसके साथ होती है? {{math|Fr ≈ 0.5}}.{{sfn|Alexander| 1989|p=}} आर. एम. अलेक्जेंडर ने पाया कि विभिन्न आकार और द्रव्यमान के जानवर अलग-अलग गति से यात्रा करते हैं, लेकिन एक ही फ्राउड संख्या के साथ, लगातार समान चाल प्रदर्शित करते हैं। इस अध्ययन में पाया गया कि जानवर सामान्यतः 1.0 की फ्राउड संख्या के आसपास एक एंबेल से एक सममित चलने वाली चाल (उदाहरण के लिए, एक ट्रॉट या गति) में स्विच करते हैं। 2.0 और 3.0 के बीच फ्राउड संख्या में असममित चाल (उदाहरण के लिए, एक कैंटर, अनुप्रस्थ गैलप, रोटरी गैलप, बाउंड, या प्रोंक) के लिए प्राथमिकता देखी गई थी।{{sfn|Alexander|1984|p=}} | |||
<math display="block">\mathrm{Fr}=\frac{v^2}{gl}=\frac{(lf)^2}{gl}=\frac{lf^2}{g}.</math> | |||
यदि कुल पैर की लंबाई को विशेषता लंबाई के रूप में उपयोग किया जाता है, तो चलने की सैद्धांतिक अधिकतम गति में 1.0 की फ्राउड संख्या होती है क्योंकि किसी भी उच्च मूल्य के परिणामस्वरूप टेकऑफ़ होगा और पैर जमीन से गायब हो जाएगा। दो पैरों पर चलने से लेकर दौड़ने तक की सामान्य संक्रमण गति किसके साथ होती है? {{math|Fr ≈ 0.5}}.{{sfn|Alexander| 1989|p=}} आर. एम. अलेक्जेंडर ने पाया कि विभिन्न आकार और द्रव्यमान के जानवर अलग-अलग गति से यात्रा करते हैं, लेकिन एक ही फ्राउड संख्या के साथ, लगातार समान चाल प्रदर्शित करते हैं। इस अध्ययन में पाया गया कि जानवर सामान्यतः 1.0 की फ्राउड संख्या के आसपास एक एंबेल से एक सममित चलने वाली चाल (उदाहरण के लिए, एक ट्रॉट या गति) में स्विच करते हैं। 2.0 और 3.0 के बीच फ्राउड संख्या में असममित चाल (उदाहरण के लिए, एक कैंटर, अनुप्रस्थ गैलप, रोटरी गैलप, बाउंड, या प्रोंक) के लिए प्राथमिकता देखी गई थी।{{sfn|Alexander|1984|p=}} | |||
==उपयोग== | ==उपयोग== | ||
Line 124: | Line 107: | ||
इसके अलावा अनुकूलतम ऑपरेटिंग विंडो स्थापित करने के लिए कण तल व्यवहार को फ्राउड संख्या (एफआर) द्वारा निर्धारित किया जा सकता है।{{sfn | Jikar | Dhokey | Shinde|2021 | p=}} | इसके अलावा अनुकूलतम ऑपरेटिंग विंडो स्थापित करने के लिए कण तल व्यवहार को फ्राउड संख्या (एफआर) द्वारा निर्धारित किया जा सकता है।{{sfn | Jikar | Dhokey | Shinde|2021 | p=}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:Created On 11/08/2023]] | |||
[[Category:Harv and Sfn no-target errors]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:द्रव गतिविज्ञान]] | |||
[[Category:द्रव यांत्रिकी की आयामहीन संख्या]] | |||
[[Category:नौसेना वास्तुकला]] | |||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 140: | Line 124: | ||
<ref name="powderprocess.net">{{Cite web |title=Powder Mixing - Powder Mixers Design - Ribbon blender, Paddle mixer, Drum blender, Froude Number |work=powderprocess.net |date=n.d. |access-date=31 May 2019 |url= https://www.powderprocess.net/Mixing.html }}</ref> | <ref name="powderprocess.net">{{Cite web |title=Powder Mixing - Powder Mixers Design - Ribbon blender, Paddle mixer, Drum blender, Froude Number |work=powderprocess.net |date=n.d. |access-date=31 May 2019 |url= https://www.powderprocess.net/Mixing.html }}</ref> | ||
}} | }} | ||
== संदर्भ == | == संदर्भ == | ||
Line 161: | Line 144: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
[[Category: द्रव यांत्रिकी की आयामहीन संख्या]] [[Category: द्रव गतिविज्ञान]] [[Category: नौसेना वास्तुकला]] | [[Category: द्रव यांत्रिकी की आयामहीन संख्या]] [[Category: द्रव गतिविज्ञान]] [[Category: नौसेना वास्तुकला]] | ||
Line 170: | Line 150: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 11/08/2023]] | [[Category:Created On 11/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 22:23, 18 December 2023
सातत्यक यांत्रिकी में, फ्राउड संख्या (Fr, विलियम फ्राउड के बाद,[1]) एक आयामहीन संख्या है जिसे बाहरी क्षेत्र की प्रवाह अंतर के अनुपात के रूप में परिभाषित किया गया है (कई अनुप्रयोगों में उत्तरार्द्ध केवल गुरुत्वाकर्षण के कारण होता है)। फ्राउड संख्या गति-लंबाई अनुपात पर आधारित है जिसे उन्होंने इस प्रकार परिभाषित किया है:[2][3]
उत्पत्ति
विवृत-प्रणाली प्रवाह में, बेलांगर 1828 सबसे पहले प्रवाह वेग और गुरुत्वाकर्षण त्वरण के वर्गमूल और प्रवाह की गहराई के अनुपात का परिचय दिया। जब अनुपात बृहत्तर से कम था, तो प्रवाह एक नदी गति (यानी, उप महत्वपूर्ण प्रवाह) की तरह व्यवहार करता था, और जब अनुपात बृहत्तर से अधिक होता था, तो एक मूसलाधार प्रवाह गति की तरह व्यवहार करता था।[4]
तैरती हुई वस्तुओं के प्रतिरोध को मापने का श्रेय सामान्यतः विलियम फ्राउड को दिया जाता है, जिन्होंने एक निश्चित गति से खींचे जाने पर प्रत्येक प्रतिरूप द्वारा प्रस्तुत किए गए प्रतिरोध को मापने के लिए मापन प्रतिरूप की एक श्रृंखला का उपयोग किया था। नौसैनिक निर्माता फ्रेडरिक रीच ने बहुत पहले 1852 में जलयान और चालक चक्र के परीक्षण के लिए इस अवधारणा को सामने रखा था लेकिन फ्राउड इससे अनभिज्ञ थे।[5] गति-लंबाई अनुपात को मूल रूप से फ्राउड ने 1868 में अपने तुलनात्मक नियम में आयामी शब्दों में परिभाषित किया था:
- u = प्रवाह गति
- LWL = जलरेखा की लंबाई
इस शब्द को अतिरिक्त-आयामी शब्दों में परिवर्तित कर दिया गया और उनके द्वारा किए गए कार्य के सम्मान में उन्हें फ्राउड का नाम दिया गया। फ़्रांस में, इसे कभी-कभी फ़्रेडेरिक रीच के नाम पर रीच-फ़्राउड नंबर भी कहा जाता है।[6]
परिभाषा और मुख्य अनुप्रयोग
यह दिखाने के लिए कि फ्राउड संख्या सामान्य सातत्य यांत्रिकी से कैसे जुड़ी है, न कि केवल हाइड्रोडायनामिक्स से, हम इसके आयामहीन (नॉनडायमेंशनल) रूप में कॉची गति समीकरण से प्रारम्भ करते हैं।
कॉची संवेग समीकरण
समीकरणों को आयामहीन बनाने के लिए, एक विशेषता लंबाई r0, और एक विशिष्ट वेग U0, परिभाषित करने की आवश्यकता है। इन्हें इस प्रकार चुना जाना चाहिए कि आयामहीन चर सभी क्रम एक के हों। इस प्रकार निम्नलिखित आयामहीन चर प्राप्त होते हैं:
उच्च फ्राउड सीमा Fr → ∞ (नगण्य बाह्य क्षेत्र के अनुरूप) में कॉची-प्रकार के समीकरण को मुक्त समीकरण नाम दिया गया है। दूसरी ओर, निम्न यूलर सीमा में Eu → 0 (नगण्य तनाव के अनुरूप) सामान्य कॉची गति समीकरण एक अमानवीय बर्गेर समीकरण बन जाता है (यहां हम सामग्री व्युत्पन्न को स्पष्ट करते हैं):
यह एक अमानवीय शुद्ध संवहन समीकरण है, जितना स्टोक्स प्रवाह एक शुद्ध प्रसार समीकरण है।
यह एक अमानवीय शुद्ध संवहन समीकरण है, जितना स्टोक्स समीकरण एक शुद्ध प्रसार समीकरण है।
यूलर संवेग समीकरण
यूलर संवेग समीकरण एक कॉची संवेग समीकरण है जिसमें पास्कल नियम तनाव संवैधानिक संबंध है:
असंपीड़ित नेवियर-स्टोक्स गति समीकरण
जहां Re रेनॉल्ड्स संख्या है। मुक्त नेवियर-स्टोक्स समीकरण विघटनकारी (अतिरिक्त रूढ़िवादी) हैं।
असंपीड्य नेवियर-स्टोक्स संवेग समीकरण एक कॉची संवेग समीकरण है जिसमें पास्कल नियम और स्टोक्स का नियम तनाव संवैधानिक संबंध हैं:
अन्य अनुप्रयोग
जहाज हाइड्रोडायनामिक्स
समुद्री हाइड्रोडायनामिक अनुप्रयोगों में, फ्राउड संख्या को सामान्यतः अंकन Fn के साथ संदर्भित किया जाता है और इसे इस प्रकार परिभाषित किया गया है:[8]
योजना शिल्प के सन्दर्भ में, जहां जलरेखा की लंबाई सार्थक होने के लिए बहुत अधिक गति पर निर्भर है, फ्राउड संख्या को विस्थापन फ्राउड संख्या के रूप में सबसे अच्छी तरह से परिभाषित किया गया है और संदर्भ लंबाई को पतवार के विशाल-काय विस्थापन के घनमूल के रूप में लिया जाता है:
उथले पानी की लहरें
सुनामी और हाइड्रोलिक छलांग जैसी उथली पानी की लहरों के लिए, विशेषता वेग U औसत प्रवाह वेग है, जो प्रवाह दिशा के लंबवत अनुप्रस्थ काट पर औसत होता है। तरंग वेग को गति c कहा जाता है , गुरुत्वाकर्षण त्वरण g के वर्गमूल के बराबर है , क्रॉस-अनुभागीय क्षेत्र का समय A का गुना, मुक्त-सतह चौड़ाई B से विभाजित :
पवन इंजीनियरिंग
लटके हुए पुल जैसी गतिशील रूप से संवेदनशील संरचनाओं पर हवा के प्रभाव पर विचार करते समय कभी-कभी हवा के उतार-चढ़ाव वाले बल के साथ संरचना के कंपन द्रव्यमान के संयुक्त प्रभाव का अनुकरण करना आवश्यक होता है। ऐसे सन्दर्भ में, फ्राउड नंबर का सम्मान किया जाना चाहिए। इसी तरह, प्राकृतिक हवा के साथ गर्म धुएं के गुबार का अनुकरण करते समय, उछाल बलों और हवा की गति के बीच सही संतुलन बनाए रखने के लिए फ्राउड संख्या मापन आवश्यक है।
एलोमेट्री
स्थलीय जानवरों की गति का अध्ययन करने के लिए एलोमेट्री में फ्राउड संख्या को एलोमेट्री में भी लागू किया गया है,[9] मृग सहित[10] और डायनासोर सम्मिलित हैं।.[11]
विस्तारित फ्राउड संख्या
भूभौतिकीय द्रव्यमान प्रवाह जैसे हिमस्खलन और मलबे का प्रवाह झुकी हुई ढलानों पर होता है जो फिर कोमल और सपाट स्र्क जाना क्षेत्रों में विलीन हो जाते हैं।[12]
तो, ये प्रवाह स्थलाकृतिक ढलानों की ऊंचाई से जुड़े होते हैं जो प्रवाह के दौरान दबाव संभावित ऊर्जा के साथ-साथ गुरुत्वाकर्षण संभावित ऊर्जा को प्रेरित करते हैं। इसलिए, शास्त्रीय फ्राउड संख्या में यह अतिरिक्त प्रभाव सम्मिलित होना चाहिए। ऐसी स्थिति के लिए फ्राउड नंबर को दोबारा परिभाषित करने की जरूरत है. विस्तारित फ्राउड संख्या को गतिज और संभावित ऊर्जा के बीच के अनुपात के रूप में परिभाषित किया गया है:
pot = βh और Eg
pot = sg(xd − x) क्रमशः दबाव क्षमता और गुरुत्वाकर्षण संभावित ऊर्जाएं हैं। उथले पानी या दानेदार प्रवाह फ्राउड संख्या की शास्त्रीय परिभाषा में, सतह की ऊंचाई से जुड़ी संभावित ऊर्जा, उदाहरण के लिए Eg
pot, नहीं माना जाता है. विस्तारित फ्राउड संख्या उच्च सतह उन्नयन के लिए शास्त्रीय फ्राउड संख्या से काफी भिन्न है।, शब्द βh ढलान के साथ गतिमान द्रव्यमान की ज्यामिति के परिवर्तन से उत्पन्न होता है। आयामी विश्लेषण से पता चलता है कि उथले प्रवाह के लिए βh ≪ 1, जबकि u और sg(xd − x) दोनों क्रम बृहत्तर के हैं। यदि द्रव्यमान वस्तुतः तल-समानांतर मुक्त-सतह के साथ उथला है, तो βh की उपेक्षा की जा सकती है। इस स्थिति में, यदि गुरुत्वाकर्षण क्षमता को ध्यान में नहीं रखा जाता है, तो गतिज ऊर्जा सीमित होने के बावजूद Fr असीमित है। इसलिए, औपचारिक रूप से गुरुत्वाकर्षण स्थितिज ऊर्जा के कारण अतिरिक्त योगदान पर विचार करते हुए, Fr में विलक्षणता को हटा दिया जाता है।
हलचल टैंक
उत्तेजित टैंकों के अध्ययन में, फ्राउड संख्या सतह के भंवरों के निर्माण को नियंत्रित करती है। चूंकि प्ररित करनेवाला टिप वेग ωr (गोलाकार गति) है, जहां ω प्ररित करनेवाला आवृत्ति है (सामान्यतः आरपीएम में) और r प्ररित करनेवाला त्रिज्या है (इंजीनियरिंग में व्यास का उपयोग बहुत अधिक बार किया जाता है), फ्राउड संख्या तब निम्नलिखित रूप लेती है:
घनत्वमिति फ्राउड संख्या
जब बाउसिनस्क सन्निकटन के संदर्भ में उपयोग किया जाता है तो घनत्वमिति फ्राउड संख्या को इस प्रकार परिभाषित किया जाता है
कार्यरत फ्राउड नंबर
फ्राउड संख्या का उपयोग जानवरों की चाल स्वरूप में प्रवृत्तियों का अध्ययन करने के लिए किया जा सकता है। पैरों की गति की गतिशीलता के विश्लेषण में, चलने वाले अंग को प्रायः एक उल्टे लटकन के रूप में तैयार किया जाता है, जहां द्रव्यमान का केंद्र पैर पर केंद्रित एक गोलाकार चाप से होकर गुजरता है।[14] फ्राउड संख्या गति के केंद्र, पैर और चलने वाले जानवर के वजन के आसपास अभिकेन्द्रीय बल का अनुपात है:
फ्राउड संख्या की गणना कदमों की आवृत्ति f से भी की जा सकती है निम्नलिखितनुसार:[15]
उपयोग
फ्राउड संख्या का उपयोग विभिन्न आकारों और आकृतियों के पिंडों के बीच तरंग बनाने वाले प्रतिरोध की तुलना करने के लिए किया जाता है।
मुक्त-सतह प्रवाह में, प्रवाह की प्रकृति (अत्यंत सूक्ष्म प्रवाह या उप महत्वपूर्ण) इस पर निर्भर करती है कि फ्राउड संख्या बृहत्तर से अधिक है या कम है।
कोई भी रसोई या स्नानघर के सिंक में सूक्ष्म फ्लो की रेखा आसानी से देख सकता है। इसे अनप्लग छोड़ दें और नल को चलने दें। उस स्थान के पास जहां पानी की धारा सिंक से टकराती है, प्रवाह अति सूक्ष्म है। यह सतह को 'आलिंगन' करता है और तेज़ी से आगे बढ़ता है। प्रवाह स्वरूप के बाहरी किनारे पर प्रवाह उप महत्वपूर्ण है। यह प्रवाह अधिक गाढ़ा होता है और अधिक धीमी गति से चलता है। दो क्षेत्रों के बीच की सीमा को हाइड्रोलिक जंप कहा जाता है। छलांग वहां से प्रारम्भ होती है जहां प्रवाह महत्वपूर्ण है और फ्राउड संख्या 1.0 के बराबर है।
जानवरों की चाल के प्रवृत्तियों का अध्ययन करने के लिए फ्राउड नंबर का उपयोग किया गया है ताकि यह अपेक्षाकृत अधिक ढंग से समझा जा सके कि जानवर अलग-अलग चाल स्वरूप का उपयोग क्यों करते हैं[15] साथ ही विलुप्त प्रजातियों की चाल के बारे में परिकल्पनाएँ बनाना।[16]
इसके अलावा अनुकूलतम ऑपरेटिंग विंडो स्थापित करने के लिए कण तल व्यवहार को फ्राउड संख्या (एफआर) द्वारा निर्धारित किया जा सकता है।[18]
टिप्पणियाँ
- ↑ Merriam Webster Online (for brother James Anthony Froude) [1]
- ↑ Shih 2009, p. 7.
- ↑ White 1999, p. 294.
- ↑ Chanson 2009, pp. 159–163.
- ↑ Normand 1888, pp. 257–261.
- ↑ Chanson 2004, p. xxvii.
- ↑ Shih 2009.
- ↑ Newman 1977, p. 28.
- ↑ Alexander, R. McNeill (2013-10-01). "Chapter 2. Body Support, Scaling, and Allometry". कार्यात्मक कशेरुकी आकृति विज्ञान (in English). Harvard University Press. pp. 26–37. doi:10.4159/harvard.9780674184404.c2. ISBN 978-0-674-18440-4.
- ↑ Alexander, R. McN. (1977). "मृगों के अंगों की एलोमेट्री (बोविडे)". Journal of Zoology (in English). 183 (1): 125–146. doi:10.1111/j.1469-7998.1977.tb04177.x. ISSN 0952-8369.
- ↑ Alexander, R. McNeill (1991). "डायनासोर कैसे दौड़े". Scientific American. 264 (4): 130–137. Bibcode:1991SciAm.264d.130A. doi:10.1038/scientificamerican0491-130. ISSN 0036-8733. JSTOR 24936872.
- ↑ Takahashi 2007, p. 6.
- ↑ "Powder Mixing - Powder Mixers Design - Ribbon blender, Paddle mixer, Drum blender, Froude Number". powderprocess.net. n.d. Retrieved 31 May 2019.
- ↑ 14.0 14.1 Vaughan & O'Malley 2005, pp. 350–362.
- ↑ 15.0 15.1 15.2 15.3 Alexander 1984.
- ↑ 16.0 16.1 Sellers & Manning 2007.
- ↑ Alexander 1989.
- ↑ Jikar, Dhokey & Shinde 2021.
संदर्भ
- Alexander, R. McN. (1984). "The Gaits of Bipedal and Quadrupedal Animals". The International Journal of Robotics Research. 3 (2): 49–59. doi:10.1177/027836498400300205.
- Alexander, RM (1989). "Optimization and gaits in the locomotion of vertebrates". Physiological Reviews. 69 (4): 1199–227. doi:10.1152/physrev.1989.69.4.1199. PMID 2678167.
- Belanger, Jean Baptiste (1828). Essai sur la solution numerique de quelques problemes relatifs au mouvement permanent des eaux courantes [An essay on the numerical solution to some problems relative to the steady movement of running water] (in français). Paris: Carilian-Goeury.
- Chanson, Hubert (2004). Hydraulics of Open Channel Flow: An Introduction (2nd ed.). Butterworth–Heinemann. p. 650. ISBN 978-0-7506-5978-9.
- Chanson, Hubert (2009). "Development of the Bélanger Equation and Backwater Equation by Jean-Baptiste Bélanger (1828)" (PDF). Journal of Hydraulic Engineering. 135 (3): 159–63. doi:10.1061/(ASCE)0733-9429(2009)135:3(159).
- Jikar, P. C.; Dhokey, N. B.; Shinde, S. S. (2021). "Numerical Modeling Simulation and Experimental Study of Dynamic Particle Bed Counter Current Reactor and Its Effect on Solid–Gas Reduction Reaction". Mining, Metallurgy & Exploration. Springer. 39: 139–152. doi:10.1007/s42461-021-00516-6. ISSN 2524-3462. S2CID 244507908.
- Newman, John Nicholas (1977). Marine hydrodynamics. Cambridge, Massachusetts: MIT Press. ISBN 978-0-262-14026-3.
- Normand, J.A. (1888). "On the Fineness of vessels in relation to size and speed". Transactions of the Institution of Naval Architects. 29: 257–261.
- Sellers, William Irvin; Manning, Phillip Lars (2007). "Estimating dinosaur maximum running speeds using evolutionary robotics". Proceedings of the Royal Society B: Biological Sciences. 274 (1626): 2711–6. doi:10.1098/rspb.2007.0846. JSTOR 25249388. PMC 2279215. PMID 17711833.
- Shih, Y.C. (Spring 2009), "Chapter 6 Incompressible Inviscid Flow" (PDF), Fluid Mechanics
- Takahashi, Tamotsu (2007). Debris Flow: Mechanics, Prediction and Countermeasures. CRC Press. ISBN 978-0-203-94628-2.
- Vaughan, Christopher L.; O'Malley, Mark J. (2005). "Froude and the contribution of naval architecture to our understanding of bipedal locomotion". Gait & Posture. 21 (3): 350–62. doi:10.1016/j.gaitpost.2004.01.011. PMID 15760752.
- White, Frank M. (1999). Fluid mechanics (4th ed.). WCB/McGraw-Hill. ISBN 978-0-07-116848-9.