परिमित समुच्चय: Difference between revisions
No edit summary |
|||
(39 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[ समुच्चय सिद्धान्त |समुच्चय सिद्धान्त]] में, एक परिमित समुच्चय एक [[ सेट (गणित) |समुच्चय (गणित)]] होता है जिसमें अवयवो की एक परिमित संख्या होती है। अनौपचारिक रूप से, एक परिमित समुच्चय एक ऐसा समुच्चय होता है जिसे सैद्धांतिक रूप से कोई भी गिन सकता है और गिनना समाप्त कर सकता है। उदाहरण के लिए, | |||
गणित में, विशेष रूप से [[ समुच्चय सिद्धान्त ]] में, एक परिमित समुच्चय एक [[ सेट (गणित) | समुच्चय (गणित)]] होता है | |||
:<math>\{2,4,6,8,10\}</math> | :<math>\{2,4,6,8,10\}</math> | ||
यह पाँच | यह पाँच अवयवों वाला एक परिमित समुच्चय है। एक परिमित समुच्चय के अवयवो की संख्या एक [[ प्राकृतिक संख्या |प्राकृतिक संख्या]] (संभवतः शून्य) है तथा इसे समुच्चय का [[ प्रमुखता |गणनांक]] (या गणन संख्या) कहा जाता है। वह समुच्चय जो परिमित समुच्चय नहीं है, [[अपरिमित समुच्चय]] कहलाता है। उदाहरण के लिए, सभी धनात्मक पूर्णांकों का समुच्चय अनंत है, | ||
:<math>\{1,2,3,\ldots\}.</math> | :<math>\{1,2,3,\ldots\}.</math> | ||
[[ | [[ साहचर्य |साहचर्य]] में, [[गणना]] के गणितीय अध्ययन में परिमित समुच्चय विशेष रूप से महत्वपूर्ण हैं। परिमित समुच्चय से जुड़े कई तर्क कोष्ठ सिद्धांत पर भरोसा करते हैं, जो बताता है कि एक बड़े परिमित समुच्चय से एक छोटे परिमित समुच्चय तक [[ इंजेक्शन समारोह |एकैकी फलन]](गणित) सम्मिलित नहीं हो सकता है। | ||
== परिभाषा और शब्दावली == | == परिभाषा और शब्दावली == | ||
औपचारिक रूप से, | औपचारिक रूप से, समुच्चय {{mvar|''S''}} परिमित कहा जाता है यदि किसी प्राकृत संख्या {{mvar|''n''}} | ||
:<math>f\colon S\to\{1,\ldots,n\}</math> | :<math>f\colon S\to\{1,\ldots,n\}</math> | ||
के लिए एक एकैकी आच्छादन 1 सम्मिलित हो तो। जो संख्या {{mvar|''n''}} समुच्चय का गणनांक है, जिसे {{math|{{!}}''S''{{!}}}} के रूप में दर्शाया गया है। [[ खाली सेट |रिक्त समुच्चय]] { } या ∅ को गणनांक शून्य के साथ परिमित माना जाता है।<ref>{{harvtxt|Apostol|1974|p=38}}</ref><ref>{{harvtxt|Cohn|1981|p=7}}</ref><ref>{{harvtxt|Labarre|1968|p=41}}</ref><ref>{{harvtxt|Rudin|1976|p=25}}</ref> | |||
यदि एक समुच्चय परिमित है, तो इसके | यदि एक समुच्चय परिमित है, तो इसके अवयवों को - कई तरीकों से - एक [[ क्रम |क्रम]] में लिखा जा सकता है, | ||
:<math>x_1,x_2,\ldots,x_n \quad (x_i \in S, \ 1 \le i \le n).</math> | :<math>x_1,x_2,\ldots,x_n \quad (x_i \in S, \ 1 \le i \le n).</math> | ||
साहचर्य में, | [[साहचर्य]] में, {{mvar|n}} अवयवों के साथ एक परिमित समुच्चय को कभी-कभी {{mvar|n}}-समुच्चय कहा जाता है और k अवयवों वाले [[ सबसेट |सबसमुच्चय]] को k-सबसमुच्चय कहा जाता है। उदाहरण के लिए, समुच्चय {5,6,7} एक तीन अवयवो वाला समुच्चय है - जो तीन अवयवो वाला परिमित समुच्चय - और {6,7} इसका 2-उपसमुच्चय है। | ||
( | (प्राकृतिक संख्या की परिभाषा से परिचित जो खुद को [[समुच्चय सिद्धान्त]] में परम्परागत मानते हैं, तथाकथि [[वॉन न्यूमैन संरचना]], एकैकी आच्छादन <math>f \colon S \to n</math> के अस्तित्व का उपयोग करना पसंद कर सकते हैं, जो समतुल्य है।) | ||
== मूल गुण == | == मूल गुण == | ||
परिमित समुच्चय S का कोई भी [[उचित उपसमुच्चय]] परिमित होता है और इसमें स्वयं S | परिमित समुच्चय S का कोई भी [[उचित उपसमुच्चय]] परिमित होता है और इसमें स्वयं S से कम अवयव होते हैं। परिणामस्वरूप, एक परिमित समुच्चय S और S के उचित उपसमुच्चय के बीच कोई एकैकी आच्छादन नहीं हो सकता है। इस गुण के साथ कोई भी समुच्चय [[डेडेकाइंड-परिमित]] कहलाता है। समुच्चय सिद्धांत के लिए मानक [[ज़र्मेलो-फ्रैंकेल]] [[(जेडएफसी)]] स्वयंसिद्धों का उपयोग करते हुए, प्रत्येक डेडेकिंड-परिमित समुच्चय भी परिमित कहलाता है, लेकिन इस निहितार्थ को केवल जेडएफ ( ज़र्मेलो-फ्रैंकेल [[स्वयंसिद्ध वरण]] के स्वयंसिद्ध के बिना ) में सिद्ध नहीं किया जा सकता है। [[गणनीय वरण का स्वयंसिद्ध]], वरण के स्वयंसिद्ध का एक कमजोर संस्करण है, जो इस तुल्यता को साबित करने के लिए पर्याप्त है। | ||
एक ही गणनांक के दो परिमित समुच्चयों के बीच कोई भी अंतःक्षेपी फलन भी एक [[ विशेषण कार्य |विशेषण फलन]] (एक आच्छादान) है। इसी तरह, एक ही गणनांक के दो परिमित समुच्चयों के बीच कोई भी आच्छादान एक अंतःक्षेपण है। | |||
साथ में, दो परिमित समुच्चयों का [[मिलन]] परिमित होता है, | |||
दो परिमित समुच्चयों का [[मिलन]] परिमित होता है, | |||
:<math>|S \cup T| \le |S| + |T|.</math> | :<math>|S \cup T| \le |S| + |T|.</math> | ||
वास्तव में, समावेश-बहिष्करण सिद्धांत द्वारा, | वास्तव में, समावेश-बहिष्करण सिद्धांत द्वारा, | ||
:<math>|S \cup T| = |S| + |T| - |S\cap T|.</math> | :<math>|S \cup T| = |S| + |T| - |S\cap T|.</math> | ||
सामान्यतः अधिक, परिमित समुच्चयों की किसी भी परिमित संख्या का मिलन परिमित होता है। इसके साथ,परिमित समुच्चयों का [[कार्तीय गुणन]] भी परिमित है, | |||
:<math>|S \times T| = |S|\times|T|.</math> | :<math>|S \times T| = |S|\times|T|.</math> | ||
इसी प्रकार, बहुत से परिमित समुच्चयों का कार्तीय गुणनफल परिमित होता है। n अवयवों वाले परिमित समुच्चय में 2{{sup|''n''}} विशिष्ट उपसमुच्चय होते हैं। अर्थात्, एक परिमित समुच्चय S का | इसी प्रकार, बहुत से परिमित समुच्चयों का कार्तीय गुणनफल परिमित होता है। n अवयवों वाले परिमित समुच्चय में 2{{sup|''n''}} विशिष्ट उपसमुच्चय होते हैं। अर्थात्, एक परिमित समुच्चय S का [[घात समुच्चय]] P(S) परिमित है, जिसकी प्रधानता 2 {{sup|{{!}}S{{!}}}} है। | ||
परिमित समुच्चय का कोई उपसमुच्चय परिमित होता है। | परिमित समुच्चय का कोई भी उपसमुच्चय परिमित होता है। परिमित समुच्चय के अवयवों पर लागू होने पर किसी फलन के मानों का समुच्चय परिमित होता है। | ||
सभी परिमित समुच्चय [[ गणनीय ]] हैं, लेकिन सभी गणनीय समुच्चय परिमित नहीं हैं। (हालांकि, कुछ लेखक, "गणनीय" का अर्थ "गणनीय रूप से अनंत" करने के लिए उपयोग करते हैं | सभी परिमित समुच्चय [[ गणनीय |गणनीय]] हैं, लेकिन सभी गणनीय समुच्चय परिमित नहीं हैं। (हालांकि, कुछ लेखक, "गणनीय" का अर्थ "गणनीय रूप से अनंत" करने के लिए उपयोग करते हैं, इसलिए परिमित समुच्चयों को गणनीय नहीं मानते हैं।) | ||
एक परिमित समुच्चय पर [[मुक्त अर्धजाल]] इसके गैर-रिक्त उपसमुच्चयों का समुच्चय है, | एक परिमित समुच्चय पर [[मुक्त अर्धजाल|मुक्त अर्धजलिका]] इसके गैर-रिक्त उपसमुच्चयों का समुच्चय है, '''जिसमें समुच्चय संयोजन द्वारा दिए''' गए [[संयोजित संचालन]] सम्मिलित हैं। | ||
== परिमितता के लिए आवश्यक और पर्याप्त शर्तें == | == परिमितता के लिए आवश्यक और पर्याप्त शर्तें == | ||
[[ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत]] में | [[ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत]] में वरण के स्वयंसिद्ध (जेडएफ) के बिना, निम्नलिखित सभी स्थितियाँ समतुल्य हैं,<ref>{{Cite web |title=समस्या समाधान की कला|url=https://artofproblemsolving.com/wiki/index.php/Zermelo-Fraenkel_Axioms |access-date=2022-09-07 |website=artofproblemsolving.com}}</ref> | ||
#S परिमित समुच्चय है। अर्थात्, S को | #S एक परिमित समुच्चय है। अर्थात्, S को एकैकी पत्राचार में उन प्राकृतिक संख्याओं के समुच्चयो के साथ रखा जा सकता है जो कुछ विशिष्ट प्राकृतिक संख्या से कम हैं। | ||
# ([[ काज़िमिर्ज़ कुराटोव्स्की | काज़िमिर्ज़ कुराटोस्की]] ) | # ([[ काज़िमिर्ज़ कुराटोव्स्की | काज़िमिर्ज़ कुराटोस्की]] ) S में वे सभी गुण हैं जो गणितीय प्रेरण द्वारा सिद्ध किये जा सकते है जो रिक्त समुच्चय से शुरू होते है और एक समय में एक नये अवयव को जोड़ते है। (कुराटोस्की परिमितता के समुच्चय-सैद्धांतिक सूत्रीकरण के लिए [[नीचे]] देखें।) | ||
# ([[पॉल स्टैकेल]]) | # ([[पॉल स्टैकेल]]) S को [[कुल आदेश|सुक्रमित]] किया या जा सकता है जो आगे और पीछे दोनों ओर से [[सुव्यवस्थित]] है। अर्थात्, S के प्रत्येक गैर-रिक्त उपसमुच्चय में न्यूनतम उपसमुच्चय और सबसे बड़े उपसमुच्चय दोनों अवयव होते हैं। | ||
# P(P(S)) से स्वयं [[में]] प्रत्येक | # P(P(S)) से स्वयं [[में]] प्रत्येक एकैकी फलन आच्छादक है। अर्थात्, S के [[घातांक]] का घात डेडेकाइंड-परिमित है (नीचे देखें)।<ref>The equivalence of the standard numerical definition of finite sets to the Dedekind-finiteness of the power set of the power set was shown in 1912 by {{harvnb|Whitehead|Russell|2009|p=288}}. This Whitehead/Russell theorem is described in more modern language by {{harvnb|Tarski|1924|pp=73–74}}.</ref> | ||
# P(P(S)) से स्वयं पर प्रत्येक विशेषण फलन | # P(P(S)) से स्वयं पर प्रत्येक विशेषण फलन एकैकी है। | ||
# ([[ अल्फ्रेड टार्स्किक ]]) S के उपसमुच्चय के प्रत्येक गैर-रिक्त परिवार में समावेश के संबंध में एक [[ न्यूनतम तत्व | न्यूनतम अवयव]] | # ([[ अल्फ्रेड टार्स्किक |अल्फ्रेड टार्स्किक]]) S के उपसमुच्चय के प्रत्येक गैर-रिक्त परिवार में समावेश के संबंध में एक [[ न्यूनतम तत्व |न्यूनतम अवयव]] है।<ref>{{harvnb|Tarski|1924|pp=48–58}}, demonstrated that his definition (which is also known as I-finite) is equivalent to Kuratowski's set-theoretical definition, which he then noted is equivalent to the standard numerical definition via the proof by {{harvnb|Kuratowski|1920|pp=130–131}}.</ref> (समान रूप से, S के उपसमुच्चय के प्रत्येक गैर-रिक्त परिवार में समावेश के संबंध में एक [[ अधिकतम तत्व |अधिकतम अवयव]] होता है।) | ||
# S को अच्छी तरह से व्यवस्थित किया जा सकता है और इस पर कोई भी दो सुव्यवस्थित [[ आदेश आइसोमोर्फिक | आदेश समरूपी]] | # S को अच्छी तरह से व्यवस्थित किया जा सकता है और इस पर कोई भी दो सुव्यवस्थित[[ आदेश आइसोमोर्फिक | आदेश समरूपी]] हैं। दूसरे शब्दों में, S पर सुव्यवस्थित में बिल्कुल एक [[प्रकार का आदेश|समरूपी]] [[प्रकार का आदेश|आदेश]] होता है। | ||
यदि [[विकल्प का स्वयंसिद्ध]] भी माना जाता है ([[गणनीय विकल्प का स्वयंसिद्ध]] पर्याप्त है<ref>{{Cite book|url=https://books.google.com/books?id=kkQAXtqb534C&q=If+the+axiom+of+choice+is+also+assumed+%28the+axiom+of+countable+choice+is+sufficient%5B&pg=PA156|title=हैंडबुक ऑफ डिफरेंशियल इक्वेशन: ऑर्डिनरी डिफरेंशियल इक्वेशन|last1=Canada|first1=A.|last2=Drabek|first2=P.|last3=Fonda|first3=A.|date=2005-09-02|publisher=Elsevier|isbn=9780080461083|language=en}}</ref> | यदि [[विकल्प का स्वयंसिद्ध|वरण का स्वयंसिद्ध]] भी माना जाता है ([[गणनीय विकल्प का स्वयंसिद्ध|गणनीय]] [[विकल्प का स्वयंसिद्ध|वरण]] का स्वयंसिद्ध पर्याप्त है<ref>{{Cite book|url=https://books.google.com/books?id=kkQAXtqb534C&q=If+the+axiom+of+choice+is+also+assumed+%28the+axiom+of+countable+choice+is+sufficient%5B&pg=PA156|title=हैंडबुक ऑफ डिफरेंशियल इक्वेशन: ऑर्डिनरी डिफरेंशियल इक्वेशन|last1=Canada|first1=A.|last2=Drabek|first2=P.|last3=Fonda|first3=A.|date=2005-09-02|publisher=Elsevier|isbn=9780080461083|language=en}}</ref>), तो निम्नलिखित सभी स्थितियाँ समतुल्य हैं, | ||
#S एक परिमित समुच्चय है। | #S एक परिमित समुच्चय है। | ||
# ([[ रिचर्ड डेडेकिंड ]]) S से स्वयं में प्रत्येक | # ([[ रिचर्ड डेडेकिंड ]]) S से स्वयं में प्रत्येक एकैकी फलन आच्छादक है। | ||
# S से स्वयं पर प्रत्येक विशेषण फलन | # S से स्वयं पर प्रत्येक विशेषण फलन एकैकी है। | ||
# S रिक्त है या S के प्रत्येक आंशिक क्रम में एक अधिकतम अवयव है। | # S रिक्त है या S के प्रत्येक [[आंशिक क्रम]] में एक [[अधिकतम अवयव]] है। | ||
== मूलभूत मुद्दे == | == मूलभूत मुद्दे == | ||
अनंत समुच्चयों का गणितीय उपचार प्रदान करने के लिए [[ जॉर्ज कैंटर ]] ने समुच्चय के अपने सिद्धांत की शुरुआत की। इस प्रकार परिमित और अनंत के बीच का अंतर समुच्चय सिद्धांत के केंद्र में है। कुछ मूलभूतवादी, [[ फिनिटिज्म |सख्त परिमितवादी]] , अनंत समुच्चयों के अस्तित्व को अस्वीकार करते हैं और इस प्रकार केवल परिमित समुच्चयों पर आधारित गणित की अनुशंसा करते हैं। मुख्यधारा के गणितज्ञ सख्त परिमितता को बहुत सीमित मानते हैं, लेकिन इसकी सापेक्ष स्थिरता को स्वीकार करते हैं, [[ वंशानुगत रूप से परिमित सेट | वंशानुगत रूप से परिमित समुच्चयों]] | अनंत समुच्चयों का गणितीय उपचार प्रदान करने के लिए [[ जॉर्ज कैंटर |जॉर्ज कैंटर]] ने समुच्चय के अपने सिद्धांत की शुरुआत की। इस प्रकार परिमित और अनंत के बीच का अंतर समुच्चय सिद्धांत के केंद्र में है। कुछ मूलभूतवादी, [[ फिनिटिज्म |सख्त परिमितवादी]], अनंत समुच्चयों के अस्तित्व को अस्वीकार करते हैं और इस प्रकार केवल परिमित समुच्चयों पर आधारित गणित की अनुशंसा करते हैं। मुख्यधारा के गणितज्ञ सख्त परिमितता को बहुत सीमित मानते हैं, लेकिन इसकी सापेक्ष स्थिरता को स्वीकार करते हैं, [[ वंशानुगत रूप से परिमित सेट |वंशानुगत रूप से परिमित समुच्चयों]] का ब्रह्मांड [[ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत]] का एक प्रतिरूप बनाता है जिसमें [[अनंतता के स्वयंसिद्ध]] को इसके [[ तार्किक निषेध |तार्किक निषेध]] द्वारा प्रतिस्थापित किया जाता है। | ||
यहां तक कि अधिकांश गणितज्ञों के लिए जो अनंत समुच्चयों को | यहां तक कि अधिकांश गणितज्ञों के लिए जो अनंत समुच्चयों को संमिलित करता हैं, वह कुछ महत्वपूर्ण संदर्भों में, परिमित और अनंत के बीच औपचारिक अंतर का एक बारीक कारण बना सकता है। कठिनाई [[गोडेल की अपूर्णता प्रमेय]] से उत्पन्न होती है। [[पीनो अंकगणित]] (और निश्चित रूप से इसके विपरीत भी) के भीतर आनुवंशिक रूप से परिमित समुच्चय के सिद्धांत की व्याख्या कर सकते हैं, इसलिए पीनो अंकगणित के सिद्धांत की अपूर्णता का तात्पर्य आनुवंशिक रूप से परिमित समुच्चय के सिद्धांत से है। विशेष रूप से, दोनों सिद्धांतों के तथाकथित [[गैर-मानक प्रतिरूपों]] की अधिकता सम्मिलित है। एक प्रतीयमान विरोधाभास यह है कि वंशानुगत रूप से परिमित समुच्चय के सिद्धांत के गैर-मानक प्रतिरूप हैं जिनमें अनंत समुच्चय होते हैं, लेकिन ये अनंत समुच्चय प्रतिरूप के भीतर से परिमित दिखते हैं। (यह तब हो सकता है जब प्रतिरूप में इन समुच्चयों की अनंतता को देखने के लिए आवश्यक समुच्चय या फलन का अभाव हो।) अपूर्णता प्रमेयों के कारण, न तो कोई [[प्रथम-क्रम]] विधेय , और न ही प्रथम-क्रम विधेय की कोई पुनरावर्ती योजना , ऐसे सभी प्रतिरूपों के मानक भाग की विशेषता बता सकती है। तो, कम से कम पहले क्रम के तर्क के दृष्टिकोण से, कोई केवल परिमितता का लगभग वर्णन करने की उम्मीद कर सकता है। | ||
अधिक | सामान्यतः अधिक, अनौपचारिक धारणाएं जैसे समुच्चय, और विशेष रूप से परिमित समुच्चय, [[औपचारिक प्रणालियों]] की एक श्रृंखला में व्याख्या प्राप्त कर सकती हैं जो उनके स्वयंसिद्ध और तार्किक तंत्र में भिन्न होती हैं। सबसे प्रसिद्ध स्वयंसिद्ध समुच्चय सिद्धांतों में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ), ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत वरण के स्वयंसिद्ध के साथ (जेडएफसी), [[वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत]] (एनबीजी), [[ गैर-स्थापित सेट सिद्धांत |गैर-स्थापित समुच्चय सिद्धांत]] ,तथा[[ बर्ट्रेंड रसेल | बर्ट्रेंड रसेल]] का [[ प्रकार सिद्धांत |प्रकार सिद्धांत]] और उनके विभिन्न प्रतिरूपों के सभी सिद्धांत सम्मिलित हैं। चिरप्रतिष्ठित[[ पहले क्रम का तर्क | प्रथम-क्रम तर्क]] , विभिन्न [[उच्च-क्रम तर्क]] और [[ अंतर्ज्ञानवादी तर्क |अंतर्ज्ञानवादी तर्क]] में से कोई भी चुन सकता है। | ||
एक [[ औपचारिकता (गणित) ]] | एक [[ औपचारिकता (गणित) |औपचारिकतावादी (गणित)]] प्रणाली से प्रणाली में अलग-अलग समुच्चय के अर्थ को देखा जा सकता है। कुछ प्रकार के गणितीय प्लेटोवादियों विशेष औपचारिक प्रणालियों को एक अंतर्निहित वास्तविकता के अनुमान के रूप में देख सकते हैं। | ||
== परिमितता की समुच्चय-सैद्धांतिक परिभाषाएं == | == परिमितता की समुच्चय-सैद्धांतिक परिभाषाएं == | ||
ऐसे संदर्भों में जहां [[प्राकृतिक संख्या]] की धारणा समुच्चय की किसी भी धारणा से पहले तार्किक रूप से बैठती है, तो एक समुच्चय S को परिमित के रूप में परिभाषित किया जा सकता है क्योकि S विधि <math>\{x \,|\, x<n\}</math> के प्राकृतिक संख्याओं के कुछ समुच्चय पर [[आपत्ति स्वीकार|आक्षेप स्वीकार]] करता है। गणितज्ञ सामान्यतः अधिक [[समुच्चय सिद्धांत|समुच्चय सिद्धांतो]] में संख्या की आधार धारणाओं को चुनते हैं, उदाहरण के लिए वे परिमित [[ सुव्यवस्थित |सुव्यवस्थित]] समुच्चयों के क्रम प्रकारों द्वारा प्राकृतिक संख्याओं को प्रतिरूप कर सकते हैं। इस तरह के दृष्टिकोण के लिए परिमितता की संरचनात्मक परिभाषा की आवश्यकता होती है जो प्राकृतिक संख्याओं पर निर्भर नहीं करती है। | |||
ऐसे संदर्भों में जहां प्राकृतिक संख्या की धारणा समुच्चय की किसी भी धारणा से पहले तार्किक रूप से बैठती है, | |||
विभिन्न गुण जो जेडएफसी सिद्धांत में सभी समुच्चयों के बीच परिमित समुच्चयों को एकल करते हैं, कमजोर प्रणालियों जैसे जेडएफ या अंतर्ज्ञानवादी समुच्चय सिद्धांतों में तार्किक रूप से असमान हो जाते हैं। साहित्य में दो परिभाषाएँ, एक [[रिचर्ड डेडेकिंड]] के कारण, दूसरी [[काज़िमिर्ज़ कुराटोस्की]] के कारण प्रमुखता से दिखाई देती हैं। ( ऊपर प्रयोग की गई परिभाषा कुरातोव्स्की की है।) | |||
एक समुच्चय | एक समुच्चय S को [[डेडेकिंड अनंत]] कहा जाता है यदि कोई अंतःक्षेपक, गैर-आक्षेपिक फलन <math>f:S \rightarrow S</math> सम्मिलित हो। ऐसा फलन S और S के उचित उपसमुच्चय के बीच एक आक्षेप प्रदर्शित करता है, अर्थात् f का प्रतिबिम्ब। एक डेडेकाइंड अनंत समुच्चय S, एक फलन f , और एक अवयव x दिया गया है जो f के प्रतिबिम्ब में नहीं है, हम S के अलग-अलग अवयवों का एक अनंत अनुक्रम बना सकते हैं, अर्थात् <math>x,f(x),f(f(x)),...</math> । इसके विपरीत, अलग-अलग अवयवो <math>x_1, x_2, x_3, ...</math> से युक्त S में एक अनुक्रम दिया गया हैं, तथा हम एक फलन f को परिभाषित कर सकते हैं जैसे कि अनुक्रम <math>f(x_i) = x_{i+1}</math> में अवयवों पर f तत्समक फलन की तरह व्यवहार करता है। इस प्रकार डेडेकाइंड अनंत समुच्चय में सबसमुच्चय होते हैं जो प्राकृतिक संख्याओं के साथ विशेष रूप से मेल खाते हैं। डेडेकाइंड परिमित का स्वाभाविक रूप से यह मतलब है कि प्रत्येक अंतःक्षेपक स्व-प्रतिचित्र भी विशेषण है। | ||
कुराटोव्स्की परिमितता को निम्नानुसार परिभाषित किया गया है। किसी भी समुच्चय S को देखते हुए, संघ की द्वि-आधारी संक्रिया एक [[अर्ध-जालिका]] की संरचना के साथ [[शक्ति समुच्चय]] P(S) प्रदान करती है। रिक्त समुच्चय और [[ सिंगलटन (गणित) |एकल (गणित)]] द्वारा उत्पन्न [[ अर्द्ध लेटेक्स |उप-अर्द्ध]] [[अर्ध-जालिका|जालिका]] के लिए K(S) लिखा जाता है, यदि S स्वयं K(S) से संबंधित है, तो समुच्चय S कुराटोव्स्की को परिमित कहते हैं।<ref>The original paper by {{harvnb|Kuratowski|1920}} defined a set ''S'' to be finite when | |||
: ''P''(''S'')∖{∅} = ⋂{''X'' ∈ ''P''(''P''(''S'')∖{∅}); (∀''x''∈''S'', {''x''}∈''X'') and (∀''A'',''B''∈''X'', ''A''∪''B''∈''X'')}. | : ''P''(''S'')∖{∅} = ⋂{''X'' ∈ ''P''(''P''(''S'')∖{∅}); (∀''x''∈''S'', {''x''}∈''X'') and (∀''A'',''B''∈''X'', ''A''∪''B''∈''X'')}. | ||
In other words, ''S'' is finite when the set of all non-empty subsets of ''S'' is equal to the [[intersection (set theory)|intersection]] of all classes ''X'' which satisfy: | In other words, ''S'' is finite when the set of all non-empty subsets of ''S'' is equal to the [[intersection (set theory)|intersection]] of all classes ''X'' which satisfy: | ||
Line 81: | Line 77: | ||
* the set {''x''} is an element of ''X'' for all ''x'' in ''S'', | * the set {''x''} is an element of ''X'' for all ''x'' in ''S'', | ||
* ''X'' is closed under pairwise unions. | * ''X'' is closed under pairwise unions. | ||
Kuratowski showed that this is equivalent to the numerical definition of a finite set.</ref> सहज रूप से, | Kuratowski showed that this is equivalent to the numerical definition of a finite set.</ref> सहज रूप से, K(S) में S के परिमित उपसमुच्चय होते हैं। महत्वपूर्ण रूप से, किसी को उत्पन्न करने के लिए प्रवर्तन, पुनरावर्तन या प्राकृतिक संख्याओं की परिभाषा की आवश्यकता नहीं होती है, क्योंकि कोई रिक्त समुच्चय और एकल वाले सभी उप-अर्ध जालिका के प्रतिच्छेदन को ले कर K(S) प्राप्त कर सकते है। | ||
अर्ध जालिका और अमूर्त बीजगणित की अन्य धारणाओं से अपरिचित पाठक पूरी तरह से प्रारंभिक सूत्रीकरण वरण कर सकते हैं। कुराटोव्स्की परिमित का अर्थ S से है, जो समुच्चय K(S) में स्थित है, जिसे निम्नानुसार बनाया गया है। इस प्रकार लिखिए कि, P(S) के सभी उपसमुच्चय X के समुच्चय के लिए M , | |||
* X में रिक्त समुच्चय है | * X में रिक्त समुच्चय है, | ||
* | * ''P''(''S'') में प्रत्येक समुच्चय ''T'' के लिए, यदि ''X'' में ''T'' होता है तो ''X'' में किसी एकल के साथ ''T'' का संयोजन भी होता है। | ||
तब K(S) को M के प्रतिच्छेदन के रूप में परिभाषित किया जा सकता है। | तब K(S) को M के प्रतिच्छेदन के रूप में परिभाषित किया जा सकता है। | ||
जेडएफ में, कुराटोव्स्की परिमित का तात्पर्य इसके विपरीत न होकर डेडेकाइंड परिमित से है। एक लोकप्रिय शैक्षणिक सूत्रीकरण के संदर्भ में, जब वरण का सिद्धांत बुरी तरह से विफल हो जाता है, तो किसी के पास सॉक्स का एक अपरिमित परिवार हो सकता है, जिसमें एक सॉक्स को उनके अधिकतम परिमित जोड़ों से चयनित करने का कोई तरीका नहीं होता है। इससे ऐसे सॉक्स डेडेकाइंड का समुच्चय परिमित हो जाएगे, जैसे कि सॉक्स का कोई अनंत क्रम नहीं हो सकता है, क्योंकि ऐसा क्रम अनुक्रम में पहला सॉक्स चुनकर असीम रूप से कई जोड़े के लिए एक सॉक्स के वरण चुनने की अनुमति देगा। हालांकि, सॉक्स के एक ही समुच्चय के लिए कुराटोव्स्की परिमितता विफल हो जाएगी। | |||
=== परिमितता की अन्य अवधारणाएँ === | === परिमितता की अन्य अवधारणाएँ === | ||
जेडएफ समुच्चय सिद्धांत में [[विकल्प के स्वयंसिद्ध]] के बिना, एक समुच्चय | जेडएफ समुच्चय सिद्धांत में [[विकल्प के स्वयंसिद्ध|वरण के स्वयंसिद्ध]] के बिना, एक समुच्चय ''S'' के लिए परिमितता की निम्नलिखित अवधारणाएं अलग हैं। उन्हें संख्या के घटते क्रम में व्यवस्थित किया जाता है, यानी यदि एक समुच्चय ''S'' सूची में एक मानदंड पूरा करता है तो यह निम्नलिखित सभी मानदंडों को पूरा करेगा। वरण के स्वयंसिद्ध के अभाव में विपरीत निहितार्थ सभी असाध्य हैं, लेकिन अगर वरण के स्वयंसिद्ध मान लिया जाए तो ये सभी अवधारणाएँ समान हैं।<ref>This list of 8 finiteness concepts is presented with this numbering scheme by both {{harvnb|Howard|Rubin|1998|pp=278–280}}, and {{harvnb|Lévy|1958|pp=2–3}}, although the details of the presentation of the definitions differ in some respects which do not affect the meanings of the concepts.</ref> (ध्यान दें कि इनमें से किसी भी परिभाषा को पहले परिभाषित करने के लिए परिमित [[क्रमिक संख्याओं]] के समुच्चय की आवश्यकता नहीं है, समानता और सदस्यता संबंधों के संदर्भ में वे सभी शुद्ध समुच्चय-सैद्धांतिक परिभाषाएँ हैं, जिनमें ω सम्मिलित नहीं है।) | ||
* | * प्रथम-परिमित, ''S'' के उपसमुच्चय के प्रत्येक गैर-रिक्त समुच्चय में एक ⊆-अधिकतम अवयव होता है। (यह एक ⊆-न्यूनतम अवयव के अस्तित्व की आवश्यकता के बराबर है। यह परिमितता की मानक संख्यात्मक अवधारणा के समतुल्य भी है।) | ||
* इया- | * इया-परिमित, दो समुच्चयों में ''S'' के प्रत्येक विभाजन के लिए, दो समुच्चयों में से कम से कम एक प्रथम-परिमित है। (इस संपत्ति के साथ एक समुच्चय जो प्रथम- परिमित नहीं है, एक [[ अनाकार सेट |अनाकार समुच्चय]] कहलाता है।<ref>{{harvtxt|de la Cruz|Dzhafarov|Hall|2006|p=8}}</ref>) | ||
* | * द्वितीय- परिमित, प्रत्येक गैर-रिक्त ⊆-एकदिष्ट ''S के उपसमुच्चय के'' समुच्चय में एक ⊆-अधिकतम अवयव होता है। | ||
* तृतीय- | * तृतीय-परिमित, शक्ति समुच्चय ''P''(''S'') डेडेकाइंड परिमित है। | ||
* चतुर्थ | * चतुर्थ परिमित, S डेडेकाइंड परिमित है। | ||
* | * पंचम परिमित, ∣''S''∣ = 0 या 2 ,  ∣''S''∣ > ∣''S''|। | ||
* | * छठी- परिमित,0 ∣''S''∣ = 0 या ∣''S''∣ = 1 या ∣''S''∣<sup>2</sup> > ∣S∣ | ||
* 'सातवीं परिमित' | * 'सातवीं परिमित', S, प्रथम- परिमित है या सुव्यवस्थित नहीं है। | ||
प्रगल्भ निहितार्थ (मजबूत से कमजोर तक) जेडएफ के भीतर प्रमेय हैं। [[ मूत्रालय |यूरेलेमेंट्स]] के साथ जेडएफ में विपरीत प्रभाव (कमजोर से मजबूत तक) के प्रति-उदाहरण [[ मॉडल सिद्धांत |प्रतिरूप सिद्धांत]] का उपयोग करते हुए पाए जाते हैं।<ref>{{harvnb|Lévy|1958}} found counter-examples to each of the reverse implications in Mostowski models. Lévy attributes most of the results to earlier papers by Mostowski and Lindenbaum.</ref> | |||
इन परिमितता की अधिकांश परिभाषाओं और उनके नामों का श्रेय {{harvnb|हॉवर्ड | रुबिन|1998|p=278}} द्वारा {{harvnb|टार्स्की|1954}} को दिया जाता है। हालाँकि,आगे के निहितार्थों के लिए प्रमाणों (या प्रमाणों के संदर्भ) के साथ, परिभाषाएँ प्रथम, द्वितीय, तृतीय, चतुर्थ और पंचम को {{harvnb|टार्स्की|1924|pp=49, 93}} में प्रस्तुत किया गया था। उस समय, प्रत्युदाहरणों को खोजने के लिए प्रतिरूप सिद्धांत पर्याप्त रूप से उन्नत नहीं था। | |||
छठी-परिमित के माध्यम से प्रथम-परिमित में से प्रत्येक गुण इस अर्थ में लघुता की धारणा है कि इस तरह की विशेशता के साथ समुच्चय के किसी भी उपसमुच्चय में विशेशताए भी होगी। यह पंचम-परिमित से सातवीं-परिमित के लिए सही नहीं है, क्योंकि उनके अनगिनत अनंत उपसमुच्चय हो सकते हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 146: | Line 143: | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
{{Set theory}} | {{Set theory}} | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:Articles with unsourced statements from April 2017]] | |||
[[Category:Articles with unsourced statements from September 2009]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 14/11/2022]] | [[Category:Created On 14/11/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:कार्डिनल नंबर]] | |||
[[Category:सेट सिद्धांत में बुनियादी अवधारणाएं]] |
Latest revision as of 12:18, 16 October 2023
गणित में, विशेष रूप से समुच्चय सिद्धान्त में, एक परिमित समुच्चय एक समुच्चय (गणित) होता है जिसमें अवयवो की एक परिमित संख्या होती है। अनौपचारिक रूप से, एक परिमित समुच्चय एक ऐसा समुच्चय होता है जिसे सैद्धांतिक रूप से कोई भी गिन सकता है और गिनना समाप्त कर सकता है। उदाहरण के लिए,
यह पाँच अवयवों वाला एक परिमित समुच्चय है। एक परिमित समुच्चय के अवयवो की संख्या एक प्राकृतिक संख्या (संभवतः शून्य) है तथा इसे समुच्चय का गणनांक (या गणन संख्या) कहा जाता है। वह समुच्चय जो परिमित समुच्चय नहीं है, अपरिमित समुच्चय कहलाता है। उदाहरण के लिए, सभी धनात्मक पूर्णांकों का समुच्चय अनंत है,
साहचर्य में, गणना के गणितीय अध्ययन में परिमित समुच्चय विशेष रूप से महत्वपूर्ण हैं। परिमित समुच्चय से जुड़े कई तर्क कोष्ठ सिद्धांत पर भरोसा करते हैं, जो बताता है कि एक बड़े परिमित समुच्चय से एक छोटे परिमित समुच्चय तक एकैकी फलन(गणित) सम्मिलित नहीं हो सकता है।
परिभाषा और शब्दावली
औपचारिक रूप से, समुच्चय S परिमित कहा जाता है यदि किसी प्राकृत संख्या n
के लिए एक एकैकी आच्छादन 1 सम्मिलित हो तो। जो संख्या n समुच्चय का गणनांक है, जिसे |S| के रूप में दर्शाया गया है। रिक्त समुच्चय { } या ∅ को गणनांक शून्य के साथ परिमित माना जाता है।[1][2][3][4]
यदि एक समुच्चय परिमित है, तो इसके अवयवों को - कई तरीकों से - एक क्रम में लिखा जा सकता है,
साहचर्य में, n अवयवों के साथ एक परिमित समुच्चय को कभी-कभी n-समुच्चय कहा जाता है और k अवयवों वाले सबसमुच्चय को k-सबसमुच्चय कहा जाता है। उदाहरण के लिए, समुच्चय {5,6,7} एक तीन अवयवो वाला समुच्चय है - जो तीन अवयवो वाला परिमित समुच्चय - और {6,7} इसका 2-उपसमुच्चय है।
(प्राकृतिक संख्या की परिभाषा से परिचित जो खुद को समुच्चय सिद्धान्त में परम्परागत मानते हैं, तथाकथि वॉन न्यूमैन संरचना, एकैकी आच्छादन के अस्तित्व का उपयोग करना पसंद कर सकते हैं, जो समतुल्य है।)
मूल गुण
परिमित समुच्चय S का कोई भी उचित उपसमुच्चय परिमित होता है और इसमें स्वयं S से कम अवयव होते हैं। परिणामस्वरूप, एक परिमित समुच्चय S और S के उचित उपसमुच्चय के बीच कोई एकैकी आच्छादन नहीं हो सकता है। इस गुण के साथ कोई भी समुच्चय डेडेकाइंड-परिमित कहलाता है। समुच्चय सिद्धांत के लिए मानक ज़र्मेलो-फ्रैंकेल (जेडएफसी) स्वयंसिद्धों का उपयोग करते हुए, प्रत्येक डेडेकिंड-परिमित समुच्चय भी परिमित कहलाता है, लेकिन इस निहितार्थ को केवल जेडएफ ( ज़र्मेलो-फ्रैंकेल स्वयंसिद्ध वरण के स्वयंसिद्ध के बिना ) में सिद्ध नहीं किया जा सकता है। गणनीय वरण का स्वयंसिद्ध, वरण के स्वयंसिद्ध का एक कमजोर संस्करण है, जो इस तुल्यता को साबित करने के लिए पर्याप्त है।
एक ही गणनांक के दो परिमित समुच्चयों के बीच कोई भी अंतःक्षेपी फलन भी एक विशेषण फलन (एक आच्छादान) है। इसी तरह, एक ही गणनांक के दो परिमित समुच्चयों के बीच कोई भी आच्छादान एक अंतःक्षेपण है।
साथ में, दो परिमित समुच्चयों का मिलन परिमित होता है,
वास्तव में, समावेश-बहिष्करण सिद्धांत द्वारा,
सामान्यतः अधिक, परिमित समुच्चयों की किसी भी परिमित संख्या का मिलन परिमित होता है। इसके साथ,परिमित समुच्चयों का कार्तीय गुणन भी परिमित है,
इसी प्रकार, बहुत से परिमित समुच्चयों का कार्तीय गुणनफल परिमित होता है। n अवयवों वाले परिमित समुच्चय में 2n विशिष्ट उपसमुच्चय होते हैं। अर्थात्, एक परिमित समुच्चय S का घात समुच्चय P(S) परिमित है, जिसकी प्रधानता 2 |S| है।
परिमित समुच्चय का कोई भी उपसमुच्चय परिमित होता है। परिमित समुच्चय के अवयवों पर लागू होने पर किसी फलन के मानों का समुच्चय परिमित होता है।
सभी परिमित समुच्चय गणनीय हैं, लेकिन सभी गणनीय समुच्चय परिमित नहीं हैं। (हालांकि, कुछ लेखक, "गणनीय" का अर्थ "गणनीय रूप से अनंत" करने के लिए उपयोग करते हैं, इसलिए परिमित समुच्चयों को गणनीय नहीं मानते हैं।)
एक परिमित समुच्चय पर मुक्त अर्धजलिका इसके गैर-रिक्त उपसमुच्चयों का समुच्चय है, जिसमें समुच्चय संयोजन द्वारा दिए गए संयोजित संचालन सम्मिलित हैं।
परिमितता के लिए आवश्यक और पर्याप्त शर्तें
ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में वरण के स्वयंसिद्ध (जेडएफ) के बिना, निम्नलिखित सभी स्थितियाँ समतुल्य हैं,[5]
- S एक परिमित समुच्चय है। अर्थात्, S को एकैकी पत्राचार में उन प्राकृतिक संख्याओं के समुच्चयो के साथ रखा जा सकता है जो कुछ विशिष्ट प्राकृतिक संख्या से कम हैं।
- ( काज़िमिर्ज़ कुराटोस्की ) S में वे सभी गुण हैं जो गणितीय प्रेरण द्वारा सिद्ध किये जा सकते है जो रिक्त समुच्चय से शुरू होते है और एक समय में एक नये अवयव को जोड़ते है। (कुराटोस्की परिमितता के समुच्चय-सैद्धांतिक सूत्रीकरण के लिए नीचे देखें।)
- (पॉल स्टैकेल) S को सुक्रमित किया या जा सकता है जो आगे और पीछे दोनों ओर से सुव्यवस्थित है। अर्थात्, S के प्रत्येक गैर-रिक्त उपसमुच्चय में न्यूनतम उपसमुच्चय और सबसे बड़े उपसमुच्चय दोनों अवयव होते हैं।
- P(P(S)) से स्वयं में प्रत्येक एकैकी फलन आच्छादक है। अर्थात्, S के घातांक का घात डेडेकाइंड-परिमित है (नीचे देखें)।[6]
- P(P(S)) से स्वयं पर प्रत्येक विशेषण फलन एकैकी है।
- (अल्फ्रेड टार्स्किक) S के उपसमुच्चय के प्रत्येक गैर-रिक्त परिवार में समावेश के संबंध में एक न्यूनतम अवयव है।[7] (समान रूप से, S के उपसमुच्चय के प्रत्येक गैर-रिक्त परिवार में समावेश के संबंध में एक अधिकतम अवयव होता है।)
- S को अच्छी तरह से व्यवस्थित किया जा सकता है और इस पर कोई भी दो सुव्यवस्थित आदेश समरूपी हैं। दूसरे शब्दों में, S पर सुव्यवस्थित में बिल्कुल एक समरूपी आदेश होता है।
यदि वरण का स्वयंसिद्ध भी माना जाता है (गणनीय वरण का स्वयंसिद्ध पर्याप्त है[8]), तो निम्नलिखित सभी स्थितियाँ समतुल्य हैं,
- S एक परिमित समुच्चय है।
- (रिचर्ड डेडेकिंड ) S से स्वयं में प्रत्येक एकैकी फलन आच्छादक है।
- S से स्वयं पर प्रत्येक विशेषण फलन एकैकी है।
- S रिक्त है या S के प्रत्येक आंशिक क्रम में एक अधिकतम अवयव है।
मूलभूत मुद्दे
अनंत समुच्चयों का गणितीय उपचार प्रदान करने के लिए जॉर्ज कैंटर ने समुच्चय के अपने सिद्धांत की शुरुआत की। इस प्रकार परिमित और अनंत के बीच का अंतर समुच्चय सिद्धांत के केंद्र में है। कुछ मूलभूतवादी, सख्त परिमितवादी, अनंत समुच्चयों के अस्तित्व को अस्वीकार करते हैं और इस प्रकार केवल परिमित समुच्चयों पर आधारित गणित की अनुशंसा करते हैं। मुख्यधारा के गणितज्ञ सख्त परिमितता को बहुत सीमित मानते हैं, लेकिन इसकी सापेक्ष स्थिरता को स्वीकार करते हैं, वंशानुगत रूप से परिमित समुच्चयों का ब्रह्मांड ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत का एक प्रतिरूप बनाता है जिसमें अनंतता के स्वयंसिद्ध को इसके तार्किक निषेध द्वारा प्रतिस्थापित किया जाता है।
यहां तक कि अधिकांश गणितज्ञों के लिए जो अनंत समुच्चयों को संमिलित करता हैं, वह कुछ महत्वपूर्ण संदर्भों में, परिमित और अनंत के बीच औपचारिक अंतर का एक बारीक कारण बना सकता है। कठिनाई गोडेल की अपूर्णता प्रमेय से उत्पन्न होती है। पीनो अंकगणित (और निश्चित रूप से इसके विपरीत भी) के भीतर आनुवंशिक रूप से परिमित समुच्चय के सिद्धांत की व्याख्या कर सकते हैं, इसलिए पीनो अंकगणित के सिद्धांत की अपूर्णता का तात्पर्य आनुवंशिक रूप से परिमित समुच्चय के सिद्धांत से है। विशेष रूप से, दोनों सिद्धांतों के तथाकथित गैर-मानक प्रतिरूपों की अधिकता सम्मिलित है। एक प्रतीयमान विरोधाभास यह है कि वंशानुगत रूप से परिमित समुच्चय के सिद्धांत के गैर-मानक प्रतिरूप हैं जिनमें अनंत समुच्चय होते हैं, लेकिन ये अनंत समुच्चय प्रतिरूप के भीतर से परिमित दिखते हैं। (यह तब हो सकता है जब प्रतिरूप में इन समुच्चयों की अनंतता को देखने के लिए आवश्यक समुच्चय या फलन का अभाव हो।) अपूर्णता प्रमेयों के कारण, न तो कोई प्रथम-क्रम विधेय , और न ही प्रथम-क्रम विधेय की कोई पुनरावर्ती योजना , ऐसे सभी प्रतिरूपों के मानक भाग की विशेषता बता सकती है। तो, कम से कम पहले क्रम के तर्क के दृष्टिकोण से, कोई केवल परिमितता का लगभग वर्णन करने की उम्मीद कर सकता है।
सामान्यतः अधिक, अनौपचारिक धारणाएं जैसे समुच्चय, और विशेष रूप से परिमित समुच्चय, औपचारिक प्रणालियों की एक श्रृंखला में व्याख्या प्राप्त कर सकती हैं जो उनके स्वयंसिद्ध और तार्किक तंत्र में भिन्न होती हैं। सबसे प्रसिद्ध स्वयंसिद्ध समुच्चय सिद्धांतों में ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ), ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत वरण के स्वयंसिद्ध के साथ (जेडएफसी), वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत (एनबीजी), गैर-स्थापित समुच्चय सिद्धांत ,तथा बर्ट्रेंड रसेल का प्रकार सिद्धांत और उनके विभिन्न प्रतिरूपों के सभी सिद्धांत सम्मिलित हैं। चिरप्रतिष्ठित प्रथम-क्रम तर्क , विभिन्न उच्च-क्रम तर्क और अंतर्ज्ञानवादी तर्क में से कोई भी चुन सकता है।
एक औपचारिकतावादी (गणित) प्रणाली से प्रणाली में अलग-अलग समुच्चय के अर्थ को देखा जा सकता है। कुछ प्रकार के गणितीय प्लेटोवादियों विशेष औपचारिक प्रणालियों को एक अंतर्निहित वास्तविकता के अनुमान के रूप में देख सकते हैं।
परिमितता की समुच्चय-सैद्धांतिक परिभाषाएं
ऐसे संदर्भों में जहां प्राकृतिक संख्या की धारणा समुच्चय की किसी भी धारणा से पहले तार्किक रूप से बैठती है, तो एक समुच्चय S को परिमित के रूप में परिभाषित किया जा सकता है क्योकि S विधि के प्राकृतिक संख्याओं के कुछ समुच्चय पर आक्षेप स्वीकार करता है। गणितज्ञ सामान्यतः अधिक समुच्चय सिद्धांतो में संख्या की आधार धारणाओं को चुनते हैं, उदाहरण के लिए वे परिमित सुव्यवस्थित समुच्चयों के क्रम प्रकारों द्वारा प्राकृतिक संख्याओं को प्रतिरूप कर सकते हैं। इस तरह के दृष्टिकोण के लिए परिमितता की संरचनात्मक परिभाषा की आवश्यकता होती है जो प्राकृतिक संख्याओं पर निर्भर नहीं करती है।
विभिन्न गुण जो जेडएफसी सिद्धांत में सभी समुच्चयों के बीच परिमित समुच्चयों को एकल करते हैं, कमजोर प्रणालियों जैसे जेडएफ या अंतर्ज्ञानवादी समुच्चय सिद्धांतों में तार्किक रूप से असमान हो जाते हैं। साहित्य में दो परिभाषाएँ, एक रिचर्ड डेडेकिंड के कारण, दूसरी काज़िमिर्ज़ कुराटोस्की के कारण प्रमुखता से दिखाई देती हैं। ( ऊपर प्रयोग की गई परिभाषा कुरातोव्स्की की है।)
एक समुच्चय S को डेडेकिंड अनंत कहा जाता है यदि कोई अंतःक्षेपक, गैर-आक्षेपिक फलन सम्मिलित हो। ऐसा फलन S और S के उचित उपसमुच्चय के बीच एक आक्षेप प्रदर्शित करता है, अर्थात् f का प्रतिबिम्ब। एक डेडेकाइंड अनंत समुच्चय S, एक फलन f , और एक अवयव x दिया गया है जो f के प्रतिबिम्ब में नहीं है, हम S के अलग-अलग अवयवों का एक अनंत अनुक्रम बना सकते हैं, अर्थात् । इसके विपरीत, अलग-अलग अवयवो से युक्त S में एक अनुक्रम दिया गया हैं, तथा हम एक फलन f को परिभाषित कर सकते हैं जैसे कि अनुक्रम में अवयवों पर f तत्समक फलन की तरह व्यवहार करता है। इस प्रकार डेडेकाइंड अनंत समुच्चय में सबसमुच्चय होते हैं जो प्राकृतिक संख्याओं के साथ विशेष रूप से मेल खाते हैं। डेडेकाइंड परिमित का स्वाभाविक रूप से यह मतलब है कि प्रत्येक अंतःक्षेपक स्व-प्रतिचित्र भी विशेषण है।
कुराटोव्स्की परिमितता को निम्नानुसार परिभाषित किया गया है। किसी भी समुच्चय S को देखते हुए, संघ की द्वि-आधारी संक्रिया एक अर्ध-जालिका की संरचना के साथ शक्ति समुच्चय P(S) प्रदान करती है। रिक्त समुच्चय और एकल (गणित) द्वारा उत्पन्न उप-अर्द्ध जालिका के लिए K(S) लिखा जाता है, यदि S स्वयं K(S) से संबंधित है, तो समुच्चय S कुराटोव्स्की को परिमित कहते हैं।[9] सहज रूप से, K(S) में S के परिमित उपसमुच्चय होते हैं। महत्वपूर्ण रूप से, किसी को उत्पन्न करने के लिए प्रवर्तन, पुनरावर्तन या प्राकृतिक संख्याओं की परिभाषा की आवश्यकता नहीं होती है, क्योंकि कोई रिक्त समुच्चय और एकल वाले सभी उप-अर्ध जालिका के प्रतिच्छेदन को ले कर K(S) प्राप्त कर सकते है।
अर्ध जालिका और अमूर्त बीजगणित की अन्य धारणाओं से अपरिचित पाठक पूरी तरह से प्रारंभिक सूत्रीकरण वरण कर सकते हैं। कुराटोव्स्की परिमित का अर्थ S से है, जो समुच्चय K(S) में स्थित है, जिसे निम्नानुसार बनाया गया है। इस प्रकार लिखिए कि, P(S) के सभी उपसमुच्चय X के समुच्चय के लिए M ,
- X में रिक्त समुच्चय है,
- P(S) में प्रत्येक समुच्चय T के लिए, यदि X में T होता है तो X में किसी एकल के साथ T का संयोजन भी होता है।
तब K(S) को M के प्रतिच्छेदन के रूप में परिभाषित किया जा सकता है।
जेडएफ में, कुराटोव्स्की परिमित का तात्पर्य इसके विपरीत न होकर डेडेकाइंड परिमित से है। एक लोकप्रिय शैक्षणिक सूत्रीकरण के संदर्भ में, जब वरण का सिद्धांत बुरी तरह से विफल हो जाता है, तो किसी के पास सॉक्स का एक अपरिमित परिवार हो सकता है, जिसमें एक सॉक्स को उनके अधिकतम परिमित जोड़ों से चयनित करने का कोई तरीका नहीं होता है। इससे ऐसे सॉक्स डेडेकाइंड का समुच्चय परिमित हो जाएगे, जैसे कि सॉक्स का कोई अनंत क्रम नहीं हो सकता है, क्योंकि ऐसा क्रम अनुक्रम में पहला सॉक्स चुनकर असीम रूप से कई जोड़े के लिए एक सॉक्स के वरण चुनने की अनुमति देगा। हालांकि, सॉक्स के एक ही समुच्चय के लिए कुराटोव्स्की परिमितता विफल हो जाएगी।
परिमितता की अन्य अवधारणाएँ
जेडएफ समुच्चय सिद्धांत में वरण के स्वयंसिद्ध के बिना, एक समुच्चय S के लिए परिमितता की निम्नलिखित अवधारणाएं अलग हैं। उन्हें संख्या के घटते क्रम में व्यवस्थित किया जाता है, यानी यदि एक समुच्चय S सूची में एक मानदंड पूरा करता है तो यह निम्नलिखित सभी मानदंडों को पूरा करेगा। वरण के स्वयंसिद्ध के अभाव में विपरीत निहितार्थ सभी असाध्य हैं, लेकिन अगर वरण के स्वयंसिद्ध मान लिया जाए तो ये सभी अवधारणाएँ समान हैं।[10] (ध्यान दें कि इनमें से किसी भी परिभाषा को पहले परिभाषित करने के लिए परिमित क्रमिक संख्याओं के समुच्चय की आवश्यकता नहीं है, समानता और सदस्यता संबंधों के संदर्भ में वे सभी शुद्ध समुच्चय-सैद्धांतिक परिभाषाएँ हैं, जिनमें ω सम्मिलित नहीं है।)
- प्रथम-परिमित, S के उपसमुच्चय के प्रत्येक गैर-रिक्त समुच्चय में एक ⊆-अधिकतम अवयव होता है। (यह एक ⊆-न्यूनतम अवयव के अस्तित्व की आवश्यकता के बराबर है। यह परिमितता की मानक संख्यात्मक अवधारणा के समतुल्य भी है।)
- इया-परिमित, दो समुच्चयों में S के प्रत्येक विभाजन के लिए, दो समुच्चयों में से कम से कम एक प्रथम-परिमित है। (इस संपत्ति के साथ एक समुच्चय जो प्रथम- परिमित नहीं है, एक अनाकार समुच्चय कहलाता है।[11])
- द्वितीय- परिमित, प्रत्येक गैर-रिक्त ⊆-एकदिष्ट S के उपसमुच्चय के समुच्चय में एक ⊆-अधिकतम अवयव होता है।
- तृतीय-परिमित, शक्ति समुच्चय P(S) डेडेकाइंड परिमित है।
- चतुर्थ परिमित, S डेडेकाइंड परिमित है।
- पंचम परिमित, ∣S∣ = 0 या 2 , ∣S∣ > ∣S|।
- छठी- परिमित,0 ∣S∣ = 0 या ∣S∣ = 1 या ∣S∣2 > ∣S∣
- 'सातवीं परिमित', S, प्रथम- परिमित है या सुव्यवस्थित नहीं है।
प्रगल्भ निहितार्थ (मजबूत से कमजोर तक) जेडएफ के भीतर प्रमेय हैं। यूरेलेमेंट्स के साथ जेडएफ में विपरीत प्रभाव (कमजोर से मजबूत तक) के प्रति-उदाहरण प्रतिरूप सिद्धांत का उपयोग करते हुए पाए जाते हैं।[12]
इन परिमितता की अधिकांश परिभाषाओं और उनके नामों का श्रेय हॉवर्ड & रुबिन 1998, p. 278 द्वारा टार्स्की 1954 को दिया जाता है। हालाँकि,आगे के निहितार्थों के लिए प्रमाणों (या प्रमाणों के संदर्भ) के साथ, परिभाषाएँ प्रथम, द्वितीय, तृतीय, चतुर्थ और पंचम को टार्स्की 1924, pp. 49, 93 में प्रस्तुत किया गया था। उस समय, प्रत्युदाहरणों को खोजने के लिए प्रतिरूप सिद्धांत पर्याप्त रूप से उन्नत नहीं था।
छठी-परिमित के माध्यम से प्रथम-परिमित में से प्रत्येक गुण इस अर्थ में लघुता की धारणा है कि इस तरह की विशेशता के साथ समुच्चय के किसी भी उपसमुच्चय में विशेशताए भी होगी। यह पंचम-परिमित से सातवीं-परिमित के लिए सही नहीं है, क्योंकि उनके अनगिनत अनंत उपसमुच्चय हो सकते हैं।
यह भी देखें
टिप्पणियाँ
- ↑ Apostol (1974, p. 38)
- ↑ Cohn (1981, p. 7)
- ↑ Labarre (1968, p. 41)
- ↑ Rudin (1976, p. 25)
- ↑ "समस्या समाधान की कला". artofproblemsolving.com. Retrieved 2022-09-07.
- ↑ The equivalence of the standard numerical definition of finite sets to the Dedekind-finiteness of the power set of the power set was shown in 1912 by Whitehead & Russell 2009, p. 288. This Whitehead/Russell theorem is described in more modern language by Tarski 1924, pp. 73–74.
- ↑ Tarski 1924, pp. 48–58, demonstrated that his definition (which is also known as I-finite) is equivalent to Kuratowski's set-theoretical definition, which he then noted is equivalent to the standard numerical definition via the proof by Kuratowski 1920, pp. 130–131.
- ↑ Canada, A.; Drabek, P.; Fonda, A. (2005-09-02). हैंडबुक ऑफ डिफरेंशियल इक्वेशन: ऑर्डिनरी डिफरेंशियल इक्वेशन (in English). Elsevier. ISBN 9780080461083.
- ↑ The original paper by Kuratowski 1920 defined a set S to be finite when
- P(S)∖{∅} = ⋂{X ∈ P(P(S)∖{∅}); (∀x∈S, {x}∈X) and (∀A,B∈X, A∪B∈X)}.
- all elements of X are non-empty subsets of S,
- the set {x} is an element of X for all x in S,
- X is closed under pairwise unions.
- ↑ This list of 8 finiteness concepts is presented with this numbering scheme by both Howard & Rubin 1998, pp. 278–280, and Lévy 1958, pp. 2–3, although the details of the presentation of the definitions differ in some respects which do not affect the meanings of the concepts.
- ↑ de la Cruz, Dzhafarov & Hall (2006, p. 8)
- ↑ Lévy 1958 found counter-examples to each of the reverse implications in Mostowski models. Lévy attributes most of the results to earlier papers by Mostowski and Lindenbaum.
संदर्भ
- Apostol, Tom M. (1974), Mathematical Analysis (2nd ed.), Menlo Park: Addison-Wesley, LCCN 72011473
- Cohn, Paul Moritz, F.R.S. (1981), Universal Algebra, Dordrecht: D. Reidel, ISBN 90-277-1254-9, LCCN 80-29568
{{citation}}
: CS1 maint: multiple names: authors list (link) - Dedekind, Richard (2012), Was sind und was sollen die Zahlen?, Cambridge Library Collection (Paperback ed.), Cambridge, UK: Cambridge University Press, ISBN 978-1-108-05038-8
- Dedekind, Richard (1963), Essays on the Theory of Numbers, Dover Books on Mathematics, Beman, Wooster Woodruff (Paperback ed.), Dover Publications Inc., ISBN 0-486-21010-3
- de la Cruz, Omar; Dzhafarov, Damir D.; Hall, Eric J. (2006), "Definitions of finiteness based on order properties" (PDF), Fundamenta Mathematicae, 189 (2): 155–172, doi:10.4064/fm189-2-5, MR 2214576
- Herrlich, Horst (2006), Axiom of Choice, Lecture Notes in Math. 1876, Berlin: Springer-Verlag, ISBN 3-540-30989-6
- Howard, Paul; Rubin, Jean E. (1998). Consequences of the axiom of choice. Providence, Rhode Island: American Mathematical Society. ISBN 9780821809778.
- Kuratowski, Kazimierz (1920), "Sur la notion d'ensemble fini" (PDF), Fundamenta Mathematicae, 1: 129–131, doi:10.4064/fm-1-1-129-131
- Labarre, Anthony E. Jr. (1968), Intermediate Mathematical Analysis, New York: Holt, Rinehart and Winston, LCCN 68019130
- Lévy, Azriel (1958). "The independence of various definitions of finiteness" (PDF). Fundamenta Mathematicae. 46: 1–13. doi:10.4064/fm-46-1-1-13.
- Rudin, Walter (1976), Principles Of Mathematical Analysis (3rd ed.), New York: McGraw-Hill, ISBN 0-07-054235-X
- Suppes, Patrick (1972) [1960], Axiomatic Set Theory, Dover Books on Mathematics (Paperback ed.), Dover Publications Inc., ISBN 0-486-61630-4
- Tarski, Alfred (1924). "Sur les ensembles finis" (PDF). Fundamenta Mathematicae. 6: 45–95. doi:10.4064/fm-6-1-45-95.
- Tarski, Alfred (1954). "Theorems on the existence of successors of cardinals, and the axiom of choice". Nederl. Akad. Wetensch. Proc. Ser. A., Indagationes Math. 16: 26–32. doi:10.1016/S1385-7258(54)50005-3. MR 0060555.
- Whitehead, Alfred North; Russell, Bertrand (February 2009) [1912]. Principia Mathematica. Vol. Two. Merchant Books. ISBN 978-1-60386-183-0.