संबंधित दरें: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
(→संदर्भ) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 133: | Line 133: | ||
{{reflist}} | {{reflist}} | ||
[[Category:All articles with style issues]] | |||
[[Category:Articles with short description]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 24/11/2022]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using sidebar with the child parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia articles with style issues from October 2015]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:विभेदक कलन]] | [[Category:विभेदक कलन]] | ||
[[Category:विभेदक समीकरण]] | [[Category:विभेदक समीकरण]] | ||
Latest revision as of 17:18, 26 October 2023
This article is written like a manual or guidebook. (October 2015) (Learn how and when to remove this template message) |
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
अंतर कलन में, संबंधित दरों की समस्याओं में एक दर का पता लगाना सम्मलित होता है, जिस पर उस समीकरण को अन्य मात्राओं से संबंधित करके बदल जाता है, जिनकी परिवर्तन की दर ज्ञात होती है। परिवर्तन की दर अधिकांश समय से सम्बंधित होती है। क्योंकि विज्ञान और इंजीनियरिंग अधिकांश मात्राओं को एक-दूसरे से संबंधित करते हैं, इन क्षेत्रों में संबंधित दरों के उपाय का व्यापक अनुप्रयोग होता है। समय या किसी अन्य चर के संबंध में विभेदीकरण के लिए श्रृंखला नियम के अनुप्रयोग की आवश्यकता होती है,[1] चूंकि अधिकांश समस्याओं में कई चर सम्मलित होते हैं।
मौलिक रूप से, यदि कोई कार्य इस प्रकार परिभाषित किया गया है , फिर फ़ंक्शन का व्युत्पन्न दूसरे चर के संबंध में लिया जा सकता है। हमारा मानना है का एक कार्य है , अर्थात। . फिर , इसलिए
- लीबनिज संकेतन में लिखा है, यह है:
इस प्रकार, यदि यह ज्ञात है कि , के संबंध में कैसे बदलता है, तो हम कैसे निर्धारित कर सकते हैं के संबंध में बदलता है और इसके विपरीत। हम श्रृंखला नियम के इस अनुप्रयोग को कलन के योग, अंतर, गुणनफल और भागफल के नियमों आदि के साथ बढ़ा सकते हैं।
उदाहरण के लिए, यदि फिर
प्रक्रिया
संबंधित दरों की समस्याओं से निपटने का सबसे साधारण उपाय निम्नलिखित है:[2]
- ज्ञात चर की पहचान करें, जिसमें परिवर्तन की दर सम्मलित हो जिसे पाया जाना है। (समस्या का चित्र या निरूपण सब कुछ क्रम में रखने में मदद कर सकता है)
- उन मात्राओं के संबंध में एक समीकरण का निर्माण करें जिनकी परिवर्तन की दर उस मात्रा के लिए ज्ञात है जिसकी परिवर्तन की दर ज्ञात की जानी है।
- समय के संबंध में समीकरण के दोनों पक्षों को भिन्न करें। अधिकांश, इस चरण में शृंखला नियम का उपयोग किया जाता है।
- परिवर्तन की ज्ञात दरों और समीकरण में ज्ञात मात्राओं को प्रतिस्थापित करें।
- बदलाव की वांछित दर के लिए समाधान करें।
इस प्रक्रिया में त्रुटियां अधिकांश समय के संबंध में व्युत्पन्न खोजने से पहले चर के लिए ज्ञात मानों में प्लगिंग के कारण होती हैं। ऐसा करने से एक गलत परिणाम निकलेगा, क्योंकि यदि उन मानों को भिन्नता से पहले चर के लिए प्रतिस्थापित किया जाता है, तो वे चर स्थिरांक बन जाएंगे; और जब समीकरण को विभेदित किया जाता है, तो शून्य उन सभी चरों के स्थानों पर दिखाई देते हैं जिनके लिए मानों को जोड़ा गया था।
उदाहरण
एक 10 मीटर की सीढ़ी इमारत की दीवार के बराबर झुकी हुई है, और सीढ़ी का आधार इमारत से 3 मीटर प्रति सेकंड की दर से फिसल रहा है। जब सीढ़ी का आधार दीवार से 6 मीटर की दूरी पर है, तो सीढ़ी का शीर्ष दीवार के नीचे कितनी तेजी से फिसल रहा है?
सीढ़ी और दीवार के आधार के बीच की दूरी, x, और दीवार पर सीढ़ी की ऊंचाई, y, कर्ण, h के रूप में सीढ़ी के साथ एक समकोण त्रिभुज की भुजाओं का प्रतिनिधित्व करती है। इसका उद्देश्य dy/dt, समय के संबंध में y के परिवर्तन की दर, t, जब h, x और dx/dt, x के परिवर्तन की दर ज्ञात है, ज्ञात करना है।
चरण 1:
चरण दो: पाइथागोरस प्रमेय से, समीकरण
एक समकोण त्रिभुज के लिए x, y और h के बीच संबंध का वर्णन करता है। इस समीकरण के दोनों पक्षों को समय, t, उपज के संबंध में भिन्न करना
चरण 3: परिवर्तन की वांछित दर के लिए समाधान करने पर, dy/dt, हमें देता है
चरण 4 और 5: चरण 1 से चरों का उपयोग करने से हमें मिलता है:
पाइथागोरस प्रमेय का उपयोग करके y के लिए समाधान करने देता है:
समीकरण के लिए 8 में प्लगिंग:
अधिकांश यह माना जाता है कि नकारात्मक मान नीचे की दिशा का प्रतिनिधित्व करते हैं। ऐसा करने में, सीढ़ी का शीर्ष दीवार के नीचे की दर से फिसल रहा है 9/4 मीटर प्रति सेकंड।
भौतिकी उदाहरण
क्योंकि एक भौतिक मात्रा अधिकांश दूसरे पर निर्भर करती है, जो बदले में दूसरों पर निर्भर करती है, जैसे कि समय, संबंधित-दर विधियों का भौतिकी में व्यापक अनुप्रयोग है। यह खंड संबंधित दरों गतिकी कीनेमेटीक्स और विद्युत चुम्बकीय प्रेरण का एक उदाहरण दर्शाता है |
दो वाहनों के सापेक्ष कीनेमेटीक्स
उदाहरण के लिए, किनेमेटिक्स समस्या पर विचार कर सकते है जहां एक वाहन 80 मील प्रति घंटे की गति से चौराहे पश्चिम की ओर जा रहा है, जबकि दूसरा 60 मील प्रति घंटे की गति से चौराहे से उत्तर की ओर जा रहा है।कोई यह पूछ सकता है कि क्या वाहन आगे समीप है या दूर हो रहे हैं और उस समय किस दर पर जब उत्तर की ओर जाने वाला वाहन चौराहे से 3 मील उत्तर में है और पश्चिम की ओर का वाहन चौराहे से 4 मील पूर्व में है।
बड़ा विचार: दो वाहनों के बीच की दूरी के परिवर्तन की दर की गणना करने के लिए श्रृंखला नियम का प्रयोग करें।
योजना:
- समन्वय प्रणाली चुनें
- चर पहचानें
- चित्र बनाओ
- बड़ा विचार: दो वाहनों के बीच की दूरी के परिवर्तन की दर की गणना करने के लिए श्रृंखला नियम का प्रयोग करें
- पाइथागोरस प्रमेय के माध्यम से x और y के संदर्भ में c व्यक्त करें
- dx/dt और dy/dt के संदर्भ में श्रृंखला नियम का उपयोग करके dc/dt व्यक्त करें
- x, y, dx/dt, dy/dt में स्थानापन्न
- सरलीकृत करें।
निर्देशांक प्रणाली चुनें: y-अक्ष को उत्तर और x-अक्ष को पूर्व की ओर संकेत करें।
चर पहचानें: 'y(t) को उद्गम स्थल से उत्तर की ओर जाने वाले वाहन की दूरी और 'x(t) को मूल से पश्चिम की ओर जाने वाले वाहन की दूरी के रूप में परिभाषित करें .
पाइथागोरस प्रमेय के माध्यम से x और y के संदर्भ में c को व्यक्त करें:
dx/dt और dy/dt: के संदर्भ में श्रृंखला नियम का उपयोग करके dc/dt व्यक्त करें
Apply derivative operator to entire function | |
Square root is outside function; Sum of squares is inside function | |
Distribute differentiation operator | |
Apply chain rule to x(t) and y(t)} | |
Simplify. |
x में स्थानापन्न = 4 मील, y = 3 मील, dx/dt = −80 मील/घंटा, dy/dt = 60 मील/घंटा और सरल करें
परिणाम,दोनों वाहन 28 मील/घंटा की दर से एक साथ पास आ रहे हैं।
चुंबकीय क्षेत्र में कंडक्टिंग लूप स्पिनिंग का विद्युत चुम्बकीय प्रेरण
क्षेत्र A के एक लूप के माध्यम से चुंबकीय प्रवाह जिसका सामान्य कोण θ है B चुंबकीय क्षेत्र में है|
फैराडे के विद्युत चुम्बकीय प्रेरण के नियम में कहा गया है कि प्रेरित विद्युत प्रभावन बल चुंबकीय प्रवाह के परिवर्तन की नकारात्मक दर है एक संवाहक पाश के माध्यम से।
यदि लूप क्षेत्र A और चुंबकीय क्षेत्र B को स्थिर रखा जाता है, लेकिन लूप को घुमाया जाता है जिससे कोण θ समय का ज्ञात कार्य हो, θ के परिवर्तन की दर परिवर्तन की दर से संबंधित हो सकती है (और इसलिए विद्युत प्रभावन बल) प्रवाह संबंध के व्युत्पन्न समय को लेकर
यदि उदाहरण के लिए, लूप एक स्थिर कोणीय वेग ω पर घूम रहा है, θ = ωt, तब
संदर्भ
- ↑ "संबंधित दरें". Whitman College. Retrieved 2013-10-27.
- ↑ Kreider, Donald. "संबंधित दरें". Dartmouth. Retrieved 2013-10-27.