पट्टा(बेल्ट): Difference between revisions
(Added Images) |
No edit summary |
||
(31 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[File:Power transmission belt.gif|thumb| | [[File:Power transmission belt.gif|thumb|चित्र 1. (a)शक्ति संचरण बेल्ट]] | ||
== परिचय == | == परिचय == | ||
पट्टे का उपयोग दो शाफ्ट के बीच शक्ति संचारित करने के लिए किया जाता है। पट्टे दो तरह के होते हैं, समतल(फ्लैट) और V-आकार का पट्टा(vee) | पट्टे का उपयोग दो शाफ्ट<ref>डॉ. आर.के.बंसल, थ्योरी ऑफ़ मशीन्स। पृष्ठ. 284"( Dr. R. K. Bansal,Theory of Machines. page. 284)"</ref> के बीच [[शक्ति (भौतिकी)|शक्ति]] संचारित करने के लिए किया जाता है। पट्टे दो तरह के होते हैं, समतल(फ्लैट) और V-आकार का पट्टा(vee)। पुली के ऊपर पट्टे चल रहे हैं जो दो शाफ्ट पर लगे होते हैं। पट्टे का उपयोग तब किया जाता है जब [[शाफ्ट]] के बीच की दूरी बड़ी होती है। गियर्स का उपयोग तब किया जाता है जब शाफ्ट के बीच की दूरी कम होती है। | ||
[[File: | [[File:Belt types.jpg|thumb|चित्र 1. (b) बेल्ट प्रकार]] | ||
== बेल्ट के प्रकार == | |||
* समतल पट्टा(फ्लैट बेल्ट) - इस पट्टे में एक आयताकार अनुप्रस्थ काट(रेक्टैंगुलर क्रॉस सेक्शन) है, जैसा कि चित्र 1.(a) में दिखाया गया है। ये पट्टा चरखी केंद्रों के बीच लंबी दूरी तक शक्ति संचारित करने में सक्षम हैं।<ref>[https://www.theengineerspost.com/types-of-belt-drives/#:~:text=Flat%20belt%3A%20This%20belt%20has,long%20distances%20between%20pulley%20centres. बेल्ट ड्राइव("Belt Drives")]</ref> इस ऊर्जस्विता कर्मशक्ति(ड्राइव) की कार्यक्षमता लगभग 98% है और कम रव पैदा करती है। | |||
* V-आकार का पट्टा(vee बेल्ट) - इस पट्टे का उपयोग खांचेदार घिरनी(ग्रूव्ड पुली) के साथ किया जाता है, V-आकार के पट्टे के अनुप्रस्थ काट में समलंबी(ट्रेपेज़ॉइडल) होते हैं, जैसा कि चित्र 1.(b) में दिखाया गया है। यह पट्टा बड़े गति अनुपात की अनुमति देता है और उच्च शक्ति संचारित कर सकता है। | |||
* वृत्तीय पट्टा(सर्कुलर बेल्ट)- इस प्रकार के पट्टे में एक वृत्तीय/गोलाकार अनुप्रस्थ काट होता है, जैसा कि चित्र 1.(c) में दिखाया गया है और खांचेदार घिरनी के साथ प्रयोग किया जाता है। | |||
== बेल्ट ड्राइव के प्रकार == | == बेल्ट ड्राइव के प्रकार == | ||
Line 10: | Line 16: | ||
क्रॉस बेल्ट ड्राइव | क्रॉस बेल्ट ड्राइव | ||
कंपाउंड बेल्ट ड्राइव | कंपाउंड बेल्ट ड्राइव[[File:Open Belt Drive.jpg|thumb|232x232px|चित्र 2.ओपन बेल्ट ड्राइव]] | ||
== ओपन बेल्ट ड्राइव == | |||
ओपन बेल्ट ड्राइव में चित्र -2 में दो पुली A और B होते हैं। ड्राइवर पुली वह पुली होती है जो घूमने वाले शाफ्ट से जुड़ी होती है। ड्रिवेन पुली वह पुली होती है जो शाफ्ट से जुड़ी होती है और घुमाई जाती है। यहाँ ड्राइवर पुली चरखी A है और ड्रिवेन पुली चरखी B है। | |||
बेल्ट और पुली की सतह के बीच मौजूद घर्षणी पकड़ के कारण, यांत्रिक शक्ति या परिक्रमण(रोटरी मोशन) को ड्राइविंग पुली से ड्रिवेन पुली तक संचारित किया जाता है। | |||
ड्राइवर पुली A, पट्टे को नीचे की तरफ से खींचती है और इसे ऊपर की तरफ पहुंचाती है। इस प्रकार पट्टे के निचले भाग का तनाव ऊपरी भाग के तनाव से अधिक होगा। नीचे की तरफ को ''टाइट साइड'' कहा जाता है और ऊपर की तरफ को ''स्लैक साइड'' कहा जाता है। | |||
कभी-कभी बेल्ट-ड्राइव में, पट्टे और पुली के बीच कुछ फिसलन होने की संभावना हमेशा होती है, जिसके कारण संचालित पुली कम गति से घूमती है, परिणामस्वरूप बिजली संचरण कम हो जाता है। इसलिए बेल्ट ड्राइव को एक सकारात्मक प्रकार की विद्युत संचरण प्रणाली नहीं कहा जाता है। | |||
=== वेगानुपात === | |||
वेगानुपात ड्राइवर(चालक) के [[वेग]] से ड्रिवेन(संचालित) के वेग का अनुपात है।<ref>[https://www.engineersgallery.com/velocity-ratio-and-slip-of-a-belt-drive/ वेगानुपात("Velocity Ratio")]</ref> | |||
मान लीजिए, N1= चालक की गति; d1 = चालक का व्यास | |||
N2 = संचालित की गति; d2 = संचालित की गति | |||
एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई = चालक की परिधि X प्रति मिनट चक्करों की संख्या | |||
= π d1 X N1 | |||
एक मिनट में ड्रिवेन(चालित) के ऊपर से गुजरने वाली पट्टे की लंबाई = चालित X की परिधि प्रति मिनट क्रांतियों की संख्या | |||
= π d2 X N2 | |||
एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई = एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई | |||
π d1 X N1 = π d2 X N2 | |||
वेगानुपात इस प्रकार है:<math>\frac{N_2}{N_1} = \frac{d_1}{d_2}</math>------------ समीकरण (1) | |||
== स्लिप ऑफ द बेल्ट == | |||
जब ड्राइवर पुली घूमती है, पुली की सतह और पट्टे के बीच मजबूत पकड़ के कारण, ड्राइवर पुली,पट्टे को ले जाती है। पुली और पट्टे के बीच मजबूत पकड़ [[घर्षण]] द्वारा प्राप्त की जाती है जिसे घर्षणी पकड़ के रूप में जाना जाता है। लेकिन कभी-कभी घर्षणी पकड़ पर्याप्त नहीं होती है, जिसके कारण ड्राइवर पुली बिना पट्टे के कुछ आगे की ओर गति कर सकती है। इसका मतलब है कि ड्राइवर पुली और पट्टे के बीच एक सापेक्ष [[गति (भौतिकी)|गति]] होती है। पुली परिधि(रिम)और पट्टे की रैखिक गति के बीच का अंतर स्लिप का एक उपाय है। साधारणतः स्लिप को प्रतिशत के रूप में व्यक्त किया जाता है | |||
== क्रीप ऑफ द बेल्ट == | |||
एक बेल्ट ड्राइव में पट्टा , ड्राइवर(चालक) और संचालित (अनुयायी) पुली के ऊपर से गुजर रही है। पावर ट्रांसमिशन के दौरान पट्टा तनाव के अधीन है। पट्टे का वह भाग जो अनुयायी को छोड़ देता है और चालक के पास जाता है, बेल्ट के तंग हिस्से के रूप में जाना जाता है और तनाव T<sub>1</sub> के अधीन होता है। पट्टे का वह भाग जो चालक को छोड़ देता है और अनुयायी के पास जाता है, बेल्ट के ढीले पक्ष के रूप में जाना जाता है और तनाव T<sub>2</sub> के अधीन होता है। T<sub>1</sub> > T<sub>2</sub> । पुली के दोनों किनारों पर अलग-अलग तनाव के कारण पट्टे में खिंचाव अलग-अलग होगा। पट्टे का एक निश्चित भाग जब ढीली तरफ से तंग तरफ जाता है, फैलता है और वही हिस्सा फिर से सिकुड़ता है जब वह तंग तरफ से ढीली तरफ जाता है। लंबाई में इन परिवर्तनों के कारण, पट्टे और पुली की सतहों के बीच एक सापेक्ष गति होगी जिसे ''क्रीप'' के रूप में जाना जाता है।<ref>[https://old.amu.ac.in/emp/studym/99996967.pdf क्रीप("Creep")]</ref> ''क्रीप'' ,अनुयायी (चालित पुली) की गति को थोड़ा कम कर देता है।[[File:Cross Belt Drive.jpg|thumb|चित्र 3. क्रॉस बेल्ट ड्राइव]] | |||
== क्रॉस बेल्ट ड्राइव == | |||
ओपन बेल्ट ड्राइव में दोनों पुली एक ही दिशा में घूमती हैं, जबकि क्रॉस बेल्ट ड्राइव में पुली विपरीत दिशा में घूमती हैं। | |||
ड्राइवर पुली A बेल्ट को CD की तरफ से खींचती है और इसे FE की तरफ पहुंचाती है। इस प्रकार बेल्ट CD में तनाव बेल्ट FE से अधिक होता है । CD साइड को टाइट साइड के रूप में जाना जाता है और FE साइड को स्लैक साइड के रूप में जाना जाता है। | |||
[[File:Compound Belt Drive.jpg|thumb|चित्र 4. कंपाउंड बेल्ट ड्राइव]] | |||
== कंपाउंड बेल्ट ड्राइव == | |||
एक कंपाउंड बेल्ट ड्राइव का उपयोग तब किया जाता है जब शक्ति को एक शाफ्ट से दूसरे में कई पुली के माध्यम से प्रेषित किया जाता है। चित्र 4. कंपाउंड बेल्ट ड्राइव को दिखाता है जहां पुली 1 पुली 2 को चलाती है। पुली 2 और 3 एक ही शाफ्ट से जुड़ी होती हैं, इसलिए पुली1, पुली 3 को भी चलाती है। पुली 3, पुली 4 को चलाती है। | |||
=== कंपाउंड बेल्ट ड्राइव का वेगानुपात === | |||
वेगानुपात चालक के वेग से चालक के वेग का अनुपात है। | |||
मान लीजिए, | |||
N1= पुली की गति 1 r.p.m में; d1= पुली का व्यास 1 | |||
N2= पुली की गति 2 r.p.m में; d2= पुली की गति 2 | |||
N3= पुली की गति 3 r.p.m में; d3= पुली की गति 3 | |||
N4= पुली की गति 4 r.p.m में; d4= पुली की गति 4 | |||
समीकरण (1) से पुली का वेगानुपात 1 और 2 है | |||
<math>\frac{N_2}{N_1} = \frac{d_1}{d_2}</math> -------------------------(i) | |||
इसी प्रकार पुली 3 और 4 का वेगानुपात है | |||
<math>\frac{N_4}{N_3} = \frac{d_3}{d_4}</math>--------------------------(ii) | |||
समीकरण (i) और (ii) को गुणा करने पर | |||
<math>\frac{N_2}{N_1} X \frac{N_4}{N_3} = \frac{d_1}{d_2} X \frac{d_3}{d_4}</math> | |||
N2 = N3 क्योंकि पुली 2 और 3 एक ही शाफ्ट से जुड़े होते हैं। | |||
<math>\frac{N_4}{N_1} = \frac{d_1}{d_2} X \frac{d_3}{d_4}</math> | |||
जो कि इस प्रकार है | |||
<math>\frac{Speed \ of \ last \ follower }{Speed \ of \ first \ driver} = \frac{Product \ of \ diameter \ of \ drivers}{Product \ of \ diameter \ of \ followers}</math> | |||
== बाहरी संबंध == | |||
[http://mechanicsmap.psu.edu/websites/7_friction/7-7_belt_friction/beltfriction.html बेल्ट घर्षण(Belt Friction)] | |||
[https://www.heiyi-belt.com/Belt-Drives-Types-Slip-Creep-V-belts-Advantages-Disadvantages-HEIYI-id3678333.html स्लिप एंड क्रीप(Slip and Creep)] | |||
== यह भी देखें == | |||
[[Belt (Mechanical)]] | |||
== संदर्भ == | |||
<references /> | |||
[[Category:Organic Articles]] | |||
[[Category:Pages with broken file links]] | |||
[[Category:यांत्रिक इंजीनियरी]] |
Latest revision as of 14:03, 9 January 2023
परिचय
पट्टे का उपयोग दो शाफ्ट[1] के बीच शक्ति संचारित करने के लिए किया जाता है। पट्टे दो तरह के होते हैं, समतल(फ्लैट) और V-आकार का पट्टा(vee)। पुली के ऊपर पट्टे चल रहे हैं जो दो शाफ्ट पर लगे होते हैं। पट्टे का उपयोग तब किया जाता है जब शाफ्ट के बीच की दूरी बड़ी होती है। गियर्स का उपयोग तब किया जाता है जब शाफ्ट के बीच की दूरी कम होती है।
बेल्ट के प्रकार
- समतल पट्टा(फ्लैट बेल्ट) - इस पट्टे में एक आयताकार अनुप्रस्थ काट(रेक्टैंगुलर क्रॉस सेक्शन) है, जैसा कि चित्र 1.(a) में दिखाया गया है। ये पट्टा चरखी केंद्रों के बीच लंबी दूरी तक शक्ति संचारित करने में सक्षम हैं।[2] इस ऊर्जस्विता कर्मशक्ति(ड्राइव) की कार्यक्षमता लगभग 98% है और कम रव पैदा करती है।
- V-आकार का पट्टा(vee बेल्ट) - इस पट्टे का उपयोग खांचेदार घिरनी(ग्रूव्ड पुली) के साथ किया जाता है, V-आकार के पट्टे के अनुप्रस्थ काट में समलंबी(ट्रेपेज़ॉइडल) होते हैं, जैसा कि चित्र 1.(b) में दिखाया गया है। यह पट्टा बड़े गति अनुपात की अनुमति देता है और उच्च शक्ति संचारित कर सकता है।
- वृत्तीय पट्टा(सर्कुलर बेल्ट)- इस प्रकार के पट्टे में एक वृत्तीय/गोलाकार अनुप्रस्थ काट होता है, जैसा कि चित्र 1.(c) में दिखाया गया है और खांचेदार घिरनी के साथ प्रयोग किया जाता है।
बेल्ट ड्राइव के प्रकार
ओपन बेल्ट ड्राइव
क्रॉस बेल्ट ड्राइव
कंपाउंड बेल्ट ड्राइव
ओपन बेल्ट ड्राइव
ओपन बेल्ट ड्राइव में चित्र -2 में दो पुली A और B होते हैं। ड्राइवर पुली वह पुली होती है जो घूमने वाले शाफ्ट से जुड़ी होती है। ड्रिवेन पुली वह पुली होती है जो शाफ्ट से जुड़ी होती है और घुमाई जाती है। यहाँ ड्राइवर पुली चरखी A है और ड्रिवेन पुली चरखी B है।
बेल्ट और पुली की सतह के बीच मौजूद घर्षणी पकड़ के कारण, यांत्रिक शक्ति या परिक्रमण(रोटरी मोशन) को ड्राइविंग पुली से ड्रिवेन पुली तक संचारित किया जाता है।
ड्राइवर पुली A, पट्टे को नीचे की तरफ से खींचती है और इसे ऊपर की तरफ पहुंचाती है। इस प्रकार पट्टे के निचले भाग का तनाव ऊपरी भाग के तनाव से अधिक होगा। नीचे की तरफ को टाइट साइड कहा जाता है और ऊपर की तरफ को स्लैक साइड कहा जाता है।
कभी-कभी बेल्ट-ड्राइव में, पट्टे और पुली के बीच कुछ फिसलन होने की संभावना हमेशा होती है, जिसके कारण संचालित पुली कम गति से घूमती है, परिणामस्वरूप बिजली संचरण कम हो जाता है। इसलिए बेल्ट ड्राइव को एक सकारात्मक प्रकार की विद्युत संचरण प्रणाली नहीं कहा जाता है।
वेगानुपात
वेगानुपात ड्राइवर(चालक) के वेग से ड्रिवेन(संचालित) के वेग का अनुपात है।[3]
मान लीजिए, N1= चालक की गति; d1 = चालक का व्यास
N2 = संचालित की गति; d2 = संचालित की गति
एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई = चालक की परिधि X प्रति मिनट चक्करों की संख्या
= π d1 X N1
एक मिनट में ड्रिवेन(चालित) के ऊपर से गुजरने वाली पट्टे की लंबाई = चालित X की परिधि प्रति मिनट क्रांतियों की संख्या
= π d2 X N2
एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई = एक मिनट में चालक के ऊपर से गुजरने वाली पट्टे की लंबाई
π d1 X N1 = π d2 X N2
वेगानुपात इस प्रकार है:------------ समीकरण (1)
स्लिप ऑफ द बेल्ट
जब ड्राइवर पुली घूमती है, पुली की सतह और पट्टे के बीच मजबूत पकड़ के कारण, ड्राइवर पुली,पट्टे को ले जाती है। पुली और पट्टे के बीच मजबूत पकड़ घर्षण द्वारा प्राप्त की जाती है जिसे घर्षणी पकड़ के रूप में जाना जाता है। लेकिन कभी-कभी घर्षणी पकड़ पर्याप्त नहीं होती है, जिसके कारण ड्राइवर पुली बिना पट्टे के कुछ आगे की ओर गति कर सकती है। इसका मतलब है कि ड्राइवर पुली और पट्टे के बीच एक सापेक्ष गति होती है। पुली परिधि(रिम)और पट्टे की रैखिक गति के बीच का अंतर स्लिप का एक उपाय है। साधारणतः स्लिप को प्रतिशत के रूप में व्यक्त किया जाता है
क्रीप ऑफ द बेल्ट
एक बेल्ट ड्राइव में पट्टा , ड्राइवर(चालक) और संचालित (अनुयायी) पुली के ऊपर से गुजर रही है। पावर ट्रांसमिशन के दौरान पट्टा तनाव के अधीन है। पट्टे का वह भाग जो अनुयायी को छोड़ देता है और चालक के पास जाता है, बेल्ट के तंग हिस्से के रूप में जाना जाता है और तनाव T1 के अधीन होता है। पट्टे का वह भाग जो चालक को छोड़ देता है और अनुयायी के पास जाता है, बेल्ट के ढीले पक्ष के रूप में जाना जाता है और तनाव T2 के अधीन होता है। T1 > T2 । पुली के दोनों किनारों पर अलग-अलग तनाव के कारण पट्टे में खिंचाव अलग-अलग होगा। पट्टे का एक निश्चित भाग जब ढीली तरफ से तंग तरफ जाता है, फैलता है और वही हिस्सा फिर से सिकुड़ता है जब वह तंग तरफ से ढीली तरफ जाता है। लंबाई में इन परिवर्तनों के कारण, पट्टे और पुली की सतहों के बीच एक सापेक्ष गति होगी जिसे क्रीप के रूप में जाना जाता है।[4] क्रीप ,अनुयायी (चालित पुली) की गति को थोड़ा कम कर देता है।
क्रॉस बेल्ट ड्राइव
ओपन बेल्ट ड्राइव में दोनों पुली एक ही दिशा में घूमती हैं, जबकि क्रॉस बेल्ट ड्राइव में पुली विपरीत दिशा में घूमती हैं।
ड्राइवर पुली A बेल्ट को CD की तरफ से खींचती है और इसे FE की तरफ पहुंचाती है। इस प्रकार बेल्ट CD में तनाव बेल्ट FE से अधिक होता है । CD साइड को टाइट साइड के रूप में जाना जाता है और FE साइड को स्लैक साइड के रूप में जाना जाता है।
कंपाउंड बेल्ट ड्राइव
एक कंपाउंड बेल्ट ड्राइव का उपयोग तब किया जाता है जब शक्ति को एक शाफ्ट से दूसरे में कई पुली के माध्यम से प्रेषित किया जाता है। चित्र 4. कंपाउंड बेल्ट ड्राइव को दिखाता है जहां पुली 1 पुली 2 को चलाती है। पुली 2 और 3 एक ही शाफ्ट से जुड़ी होती हैं, इसलिए पुली1, पुली 3 को भी चलाती है। पुली 3, पुली 4 को चलाती है।
कंपाउंड बेल्ट ड्राइव का वेगानुपात
वेगानुपात चालक के वेग से चालक के वेग का अनुपात है।
मान लीजिए,
N1= पुली की गति 1 r.p.m में; d1= पुली का व्यास 1
N2= पुली की गति 2 r.p.m में; d2= पुली की गति 2
N3= पुली की गति 3 r.p.m में; d3= पुली की गति 3
N4= पुली की गति 4 r.p.m में; d4= पुली की गति 4
समीकरण (1) से पुली का वेगानुपात 1 और 2 है
-------------------------(i)
इसी प्रकार पुली 3 और 4 का वेगानुपात है
--------------------------(ii)
समीकरण (i) और (ii) को गुणा करने पर
N2 = N3 क्योंकि पुली 2 और 3 एक ही शाफ्ट से जुड़े होते हैं।
जो कि इस प्रकार है
बाहरी संबंध
स्लिप एंड क्रीप(Slip and Creep)
यह भी देखें
संदर्भ
- ↑ डॉ. आर.के.बंसल, थ्योरी ऑफ़ मशीन्स। पृष्ठ. 284"( Dr. R. K. Bansal,Theory of Machines. page. 284)"
- ↑ बेल्ट ड्राइव("Belt Drives")
- ↑ वेगानुपात("Velocity Ratio")
- ↑ क्रीप("Creep")