पाउली समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Quantum mechanics|cTopic=Equations}}
{{Quantum mechanics|cTopic=Equations}}
[[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] में, पाउली समीकरण या श्रोडिंगर-पाउली समीकरण, स्पिन-½  कणों के लिए श्रोडिंगर समीकरण का सूत्रीकरण है, जो बाहरी [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] क्षेत्र के साथ कण के [[ स्पिन (भौतिकी) |स्पिन]] की बातचीत को ध्यान में रखता है। यह डिराक समीकरण की गैर-सापेक्षतावादी सीमा है और इसका उपयोग वहां किया जा सकता है जहां कण [[ प्रकाश की गति |प्रकाश की गति]] से बहुत कम गति से गति कर रहे हैं ताकि सापेक्षतावादी प्रभावों को उपेक्षित किया जा सके। यह 1927 में [[ वोल्फगैंग पाउली |वोल्फगैंग पाउली]] द्वारा तैयार किया गया था।<ref>{{Cite journal|last=Pauli|first=Wolfgang|author-link=Wolfgang Pauli|year=1927|title=चुंबकीय इलेक्ट्रॉन के क्वांटम यांत्रिकी पर|url=http://link.springer.com/10.1007/BF01397326|journal=Zeitschrift für Physik|language=de|volume=43|issue=9–10|pages=601–623|doi=10.1007/BF01397326|bibcode=1927ZPhy...43..601P|s2cid=128228729|issn=0044-3328}}</ref>
[[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] में, '''पाउली समीकरण''' या श्रोडिंगर-पाउली समीकरण, स्पिन-½  कणों के लिए श्रोडिंगर समीकरण का सूत्रीकरण है, जो बाहरी [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] क्षेत्र के साथ कण के [[ स्पिन (भौतिकी) |स्पिन]] की बातचीत को ध्यान में रखता है। यह डिराक समीकरण की गैर-सापेक्षतावादी सीमा है और इसका उपयोग वहां किया जा सकता है जहां कण [[ प्रकाश की गति |प्रकाश की गति]] से बहुत कम गति से गति कर रहे हैं ताकि सापेक्षतावादी प्रभावों को उपेक्षित किया जा सके। यह 1927 में [[ वोल्फगैंग पाउली |वोल्फगैंग पाउली]] द्वारा तैयार किया गया था।<ref>{{Cite journal|last=Pauli|first=Wolfgang|author-link=Wolfgang Pauli|year=1927|title=चुंबकीय इलेक्ट्रॉन के क्वांटम यांत्रिकी पर|url=http://link.springer.com/10.1007/BF01397326|journal=Zeitschrift für Physik|language=de|volume=43|issue=9–10|pages=601–623|doi=10.1007/BF01397326|bibcode=1927ZPhy...43..601P|s2cid=128228729|issn=0044-3328}}</ref>
== समीकरण ==
== समीकरण ==


Line 14: Line 14:
|पृष्ठभूमि का रंग = #ECFCF4}}
|पृष्ठभूमि का रंग = #ECFCF4}}


यहाँ σ = ( σ x , σ y , σ z ) सुविधा के लिए सदिश में एकत्र किए गए पाउली ऑपरेटर हैं, और p ^ = - i ℏ ∇ स्थिति प्रतिनिधित्व में गति संचालिका है। सिस्टम की स्थिति, ψ (डायराक नोटेशन में लिखी गई), को दो-घटक स्पिनर वेवफंक्शन, या एक कॉलम वेक्टर (आधार के चुनाव के बाद) के रूप में माना जा सकता है:  
यहाँ σ = ( σ <sub>x</sub> , σ <sub>y</sub> , σ <sub>z</sub> ) सुविधा के लिए सदिश में एकत्र किए गए पाउली ऑपरेटर हैं, और '''p ^ = - iℏ∇''' स्थिति प्रतिनिधित्व में गति संचालिका है। सिस्टम की स्थिति, (डायराक नोटेशन में लिखी गई), को दो-घटक स्पिनर वेवफंक्शन, या एक कॉलम वेक्टर (आधार के चुनाव के बाद) के रूप में माना जा सकता है:  


पॉली ऑपरेटरों की वजह से [[ हैमिल्टनियन (क्वांटम यांत्रिकी) |हैमिल्टनियन]] ऑपरेटर 2 × 2 मैट्रिक्स है।
पॉली ऑपरेटरों की वजह से [[ हैमिल्टनियन (क्वांटम यांत्रिकी) |हैमिल्टनियन]] ऑपरेटर 2 × 2 मैट्रिक्स है।
Line 47: Line 47:
<math> \left[\frac{1}{2m}\left[\left(|\mathbf{\hat{p}}|^2 - q (\mathbf{\hat{L}}+2\mathbf{\hat{S}})\cdot\mathbf{B}\right)\right] + q \phi\right]|\psi \rangle = i \hbar \frac{\partial}{\partial t} |\psi\rangle</math>
<math> \left[\frac{1}{2m}\left[\left(|\mathbf{\hat{p}}|^2 - q (\mathbf{\hat{L}}+2\mathbf{\hat{S}})\cdot\mathbf{B}\right)\right] + q \phi\right]|\psi \rangle = i \hbar \frac{\partial}{\partial t} |\psi\rangle</math>


जहाँ S = σ / 2 कण का चक्रण है। स्पिन के सामने फैक्टर 2 को डायराक जी-फैक्टर के रूप में जाना जाता है। बी में शब्द फॉर्म का है <math display="inline">-\boldsymbol{\mu}\cdot\mathbf{B}</math> जो एक चुंबकीय पल <math display="inline">\boldsymbol{\mu}</math>और एक चुंबकीय क्षेत्र के बीच सामान्य बातचीत है, जैसे ज़ीमान प्रभाव में।
जहाँ S = σ / 2 कण का चक्रण है। स्पिन के सामने फैक्टर 2 को डायराक जी-फैक्टर के रूप में जाना जाता है। B में शब्द फॉर्म का है <math display="inline">-\boldsymbol{\mu}\cdot\mathbf{B}</math> जो एक चुंबकीय पल <math display="inline">\boldsymbol{\mu}</math>और एक चुंबकीय क्षेत्र के बीच सामान्य बातचीत है, जैसे ज़ीमान प्रभाव में।


समदैशिक स्थिर चुंबकीय क्षेत्र में आवेश <math display="inline">-e</math> वाले इलेक्ट्रॉन के लिए, कुल कोणीय संवेग <math display="inline">\mathbf{J}=\mathbf{L}+\mathbf{S}</math> और [[ विग्नर-एकार्ट प्रमेय |विग्नेर-एकार्ट प्रमेय]] का उपयोग करके समीकरण को और कम किया जा सकता है। इस प्रकार हम पाते हैं
समदैशिक स्थिर चुंबकीय क्षेत्र में आवेश <math display="inline">-e</math> वाले इलेक्ट्रॉन के लिए, कुल कोणीय संवेग <math display="inline">\mathbf{J}=\mathbf{L}+\mathbf{S}</math> और [[ विग्नर-एकार्ट प्रमेय |विग्नेर-एकार्ट प्रमेय]] का उपयोग करके समीकरण को और कम किया जा सकता है। इस प्रकार हम पाते हैं
Line 71: Line 71:
+q\, \phi\right] \psi.</math>
+q\, \phi\right] \psi.</math>
=== एक फ़ोल्डी-वौथ्युसेन रूपांतरण से ===
=== एक फ़ोल्डी-वौथ्युसेन रूपांतरण से ===
एक बाहरी क्षेत्र में डिराक समीकरण से शुरू करके और फोल्डी-वौथ्यूसेन परिवर्तन का प्रदर्शन करते हुए, पाउली समीकरण को भी सख्ती से प्राप्त किया जा सकता है।<ref name=":0" />
एक बाहरी क्षेत्र में डिराक समीकरण से प्रारम्भ करके और फोल्डी-वौथ्यूसेन परिवर्तन का प्रदर्शन करते हुए, पाउली समीकरण को भी सख्ती से प्राप्त किया जा सकता है।<ref name=":0" />
== पाउली कपलिंग ==
== पाउली कपलिंग ==
पाउली का समीकरण न्यूनतम युग्मन की आवश्यकता से प्राप्त होता है, जो ''g''-factor ''g''=2 प्रदान करता है। अधिकांश प्राथमिक कणों में विषम जी-कारक होते हैं, जो 2 से भिन्न होते हैं। सापेक्षतावादी [[ क्वांटम क्षेत्र सिद्धांत |क्वांटम क्षेत्र सिद्धांत]] के डोमेन में, एक गैर-न्यूनतम युग्मन को परिभाषित करता है, जिसे कभी-कभी पाउली युग्मन कहा जाता है, ताकि एक विषम कारक जोड़ा जा सके।
पाउली का समीकरण न्यूनतम युग्मन की आवश्यकता से प्राप्त होता है, जो ''g''-factor ''g''=2 प्रदान करता है। अधिकांश प्राथमिक कणों में विषम जी-कारक होते हैं, जो 2 से भिन्न होते हैं। सापेक्षतावादी [[ क्वांटम क्षेत्र सिद्धांत |क्वांटम क्षेत्र सिद्धांत]] के डोमेन में, एक अन्यूनतम युग्मन को परिभाषित करता है, जिसे कभी-कभी पाउली युग्मन कहा जाता है, ताकि एक विषम कारक जोड़ा जा सके।


:<math>\gamma^{\mu}p_\mu\to \gamma^{\mu}p_\mu-q\gamma^{\mu}A_\mu +a\sigma_{\mu\nu}F^{\mu\nu}</math>
:<math>\gamma^{\mu}p_\mu\to \gamma^{\mu}p_\mu-q\gamma^{\mu}A_\mu +a\sigma_{\mu\nu}F^{\mu\nu}</math>
जहां <math>p_\mu</math>[[ चार गति |चार गति]] ऑपरेटर है, <math>A_\mu</math> [[ विद्युत चुम्बकीय चार-क्षमता |विद्युत चुम्बकीय चार-क्षमता]] है, <math>a</math> विषम चुंबकीय द्विध्रुव आघूर्ण के समानुपाती होता है, <math>F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}</math>[[ विद्युत चुम्बकीय टेंसर |विद्युत चुम्बकीय टेंसर]] है, और <math display="inline">\sigma_{\mu\nu}=\frac{i}{2}[\gamma_{\mu},\gamma_{\nu}]</math> लोरेंट्ज़ियन स्पिन मैट्रिसेस और [[ गामा मैट्रिक्स |गामा मैट्रिक्स]] के कम्यूटेटर हैं <math>\gamma^{\mu}</math>.<ref>{{Cite book|last=Das|first=Ashok|url=https://books.google.com/books?id=HFFkDQAAQBAJ|title=क्वांटम फील्ड थ्योरी पर व्याख्यान|date=2008|publisher=World Scientific|isbn=978-981-283-287-0|language=en}}</ref><ref>{{Cite journal|last1=Barut|first1=A. O.|last2=McEwan|first2=J.|date=January 1986|title=स्पिन-गेज इनवेरियन द्वारा पाउली कपलिंग के साथ मासलेस न्यूट्रिनो की चार अवस्थाएँ|url=http://link.springer.com/10.1007/BF00417466|journal=Letters in Mathematical Physics|language=en|volume=11|issue=1|pages=67–72|doi=10.1007/BF00417466|bibcode=1986LMaPh..11...67B|s2cid=120901078|issn=0377-9017}}</ref> गैर-सापेक्षतावादी क्वांटम यांत्रिकी के संदर्भ में, श्रोडिंगर समीकरण के साथ काम करने के बजाय, पाउली युग्मन पाउली समीकरण (या [[ ज़िमन ऊर्जा |ज़िमन ऊर्जा]] को पोस्ट करने) के लिए मनमाने ढंग से जी-फैक्टर का उपयोग करने के बराबर है।
जहां <math>p_\mu</math>[[ चार गति |चार गति]] ऑपरेटर है, <math>A_\mu</math> [[ विद्युत चुम्बकीय चार-क्षमता |विद्युत चुम्बकीय चार-क्षमता]] है, <math>a</math> विषम चुंबकीय द्विध्रुव आघूर्ण के समानुपाती होता है, <math>F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}</math>[[ विद्युत चुम्बकीय टेंसर |विद्युत चुम्बकीय टेंसर]] है, और <math display="inline">\sigma_{\mu\nu}=\frac{i}{2}[\gamma_{\mu},\gamma_{\nu}]</math> लोरेंट्ज़ियन स्पिन मैट्रिसेस और [[ गामा मैट्रिक्स |गामा मैट्रिक्स]] के कम्यूटेटर हैं <math>\gamma^{\mu}</math>.<ref>{{Cite book|last=Das|first=Ashok|url=https://books.google.com/books?id=HFFkDQAAQBAJ|title=क्वांटम फील्ड थ्योरी पर व्याख्यान|date=2008|publisher=World Scientific|isbn=978-981-283-287-0|language=en}}</ref><ref>{{Cite journal|last1=Barut|first1=A. O.|last2=McEwan|first2=J.|date=January 1986|title=स्पिन-गेज इनवेरियन द्वारा पाउली कपलिंग के साथ मासलेस न्यूट्रिनो की चार अवस्थाएँ|url=http://link.springer.com/10.1007/BF00417466|journal=Letters in Mathematical Physics|language=en|volume=11|issue=1|pages=67–72|doi=10.1007/BF00417466|bibcode=1986LMaPh..11...67B|s2cid=120901078|issn=0377-9017}}</ref> अनापेक्षिकीय क्वांटम यांत्रिकी के संदर्भ में, श्रोडिंगर समीकरण के साथ काम करने के बजाय, पाउली युग्मन पाउली समीकरण (या [[ ज़िमन ऊर्जा |ज़िमन ऊर्जा]] को पोस्ट करने) के लिए मनमाने ढंग से ''g''-फैक्टर का उपयोग करने के बराबर है।


== यह भी देखें ==
== यह भी देखें ==
Line 99: Line 99:


{{DEFAULTSORT:Pauli Equation}}
{{DEFAULTSORT:Pauli Equation}}
श्रेणी:क्वांटम यांत्रिकी


[[Category:Articles with short description|Pauli Equation]]
[[Category:Articles with short description|Pauli Equation]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 Deutsch-language sources (de)|Pauli Equation]]
[[Category:CS1 English-language sources (en)|Pauli Equation]]
[[Category:Collapse templates|Pauli Equation]]
[[Category:Collapse templates|Pauli Equation]]
[[Category:Created On 27/12/2022|Pauli Equation]]
[[Category:Created On 27/12/2022|Pauli Equation]]
Line 111: Line 111:
[[Category:Short description with empty Wikidata description|Pauli Equation]]
[[Category:Short description with empty Wikidata description|Pauli Equation]]
[[Category:Sidebars with styles needing conversion|Pauli Equation]]
[[Category:Sidebars with styles needing conversion|Pauli Equation]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Pauli Equation]]
[[Category:Templates Vigyan Ready|Pauli Equation]]
[[Category:Templates generating microformats|Pauli Equation]]
[[Category:Templates that are not mobile friendly|Pauli Equation]]
[[Category:Templates using TemplateData|Pauli Equation]]
[[Category:Wikipedia metatemplates|Pauli Equation]]

Latest revision as of 13:22, 4 September 2023

क्वांटम यांत्रिकी में, पाउली समीकरण या श्रोडिंगर-पाउली समीकरण, स्पिन-½ कणों के लिए श्रोडिंगर समीकरण का सूत्रीकरण है, जो बाहरी विद्युत चुम्बकीय क्षेत्र के साथ कण के स्पिन की बातचीत को ध्यान में रखता है। यह डिराक समीकरण की गैर-सापेक्षतावादी सीमा है और इसका उपयोग वहां किया जा सकता है जहां कण प्रकाश की गति से बहुत कम गति से गति कर रहे हैं ताकि सापेक्षतावादी प्रभावों को उपेक्षित किया जा सके। यह 1927 में वोल्फगैंग पाउली द्वारा तैयार किया गया था।[1]

समीकरण

द्रव्यमान और विद्युत आवेश के एक कण के लिए, चुंबकीय वेक्टर क्षमता और विद्युत अदिश क्षमता द्वारा वर्णित विद्युत चुम्बकीय क्षेत्र में, पाउली समीकरण पढ़ता है:

Pauli equation (general)

यहाँ σ = ( σ x , σ y , σ z ) सुविधा के लिए सदिश में एकत्र किए गए पाउली ऑपरेटर हैं, और p ^ = - iℏ∇ स्थिति प्रतिनिधित्व में गति संचालिका है। सिस्टम की स्थिति, Iψ (डायराक नोटेशन में लिखी गई), को दो-घटक स्पिनर वेवफंक्शन, या एक कॉलम वेक्टर (आधार के चुनाव के बाद) के रूप में माना जा सकता है:

पॉली ऑपरेटरों की वजह से हैमिल्टनियन ऑपरेटर 2 × 2 मैट्रिक्स है।

श्रोडिंगर समीकरण में प्रतिस्थापन से पॉली समीकरण प्राप्त होता है। यह हैमिल्टनियन विद्युत चुम्बकीय क्षेत्र के साथ बातचीत करने वाले चार्ज कण के लिए चिरसम्मत हैमिल्टनियन के समान है। इस चिरसम्मत स्थिति के विवरण के लिए लोरेन्ट्ज़ बल देखें। विद्युत चुम्बकीय क्षेत्र की अनुपस्थिति में एक मुक्त कण के लिए गतिज ऊर्जा शब्द सिर्फ है जहाँ गतिज गति है, जबकि विद्युत चुम्बकीय क्षेत्र की उपस्थिति में, इसमें न्यूनतम युग्मन शामिल है, जहाँ अब गतिज संवेग है और विहित संवेग है।

पाउली सदिश पहचान का उपयोग करके पाउली संचालकों को गतिज ऊर्जा शब्द से हटाया जा सकता है:

ध्यान दें कि वेक्टर के विपरीत, अवकल संकारक गैर-शून्य क्रॉस उत्पाद स्वयं के साथ है। इसे स्केलर फ़ंक्शन पर लागू क्रॉस उत्पाद पर विचार करके देखा जा सकता है :

जहाँ चुंबकीय क्षेत्र है।

पूर्ण पाउली समीकरण के लिए, तब प्राप्त होता है[2]

Pauli equation (standard form)

कमजोर चुंबकीय क्षेत्र

ऐसे मामले के लिए जहां चुंबकीय क्षेत्र स्थिर और समरूप है, सममित गेज का उपयोग करके का विस्तार किया जा सकता है स्थिति संकारक है और A अब संकारक है। हम प्राप्त करते हैं

जहां कण कोणीय गति ऑपरेटर है और हमने चुंबकीय क्षेत्र वर्ग में उपेक्षा की है। इसलिए हम प्राप्त करते हैं

जहाँ S = σ / 2 कण का चक्रण है। स्पिन के सामने फैक्टर 2 को डायराक जी-फैक्टर के रूप में जाना जाता है। B में शब्द फॉर्म का है जो एक चुंबकीय पल और एक चुंबकीय क्षेत्र के बीच सामान्य बातचीत है, जैसे ज़ीमान प्रभाव में।

समदैशिक स्थिर चुंबकीय क्षेत्र में आवेश वाले इलेक्ट्रॉन के लिए, कुल कोणीय संवेग और विग्नेर-एकार्ट प्रमेय का उपयोग करके समीकरण को और कम किया जा सकता है। इस प्रकार हम पाते हैं

जहां बोह्र मैग्नेटॉन है और से संबंधित चुंबकीय क्वांटम संख्या है। शब्द को लैंडे जी-फैक्टर के रूप में जाना जाता है और इसे यहां दिया गया है

[lower-alpha 1]

जहां कक्षीय क्वांटम संख्या से संबंधित है और से संबंधित कुल कक्षीय क्वांटम संख्या है .

डायराक समीकरण से

पाउली समीकरण डायराक समीकरण की गैर-सापेक्षतावादी सीमा है, स्पिन -½ कणों के लिए गति का आपेक्षिक क्वांटम समीकरण।[3]

व्युत्पत्ति

डायराक समीकरण के रूप में लिखा जा सकता है:

जहां और दो-घटक स्पिनर हैं, जो एक बिस्पिनर बनाते हैं।


निम्नलिखित अंसात्ज़ (ansatz) का प्रयोग:

दो नए स्पिनरों के साथ , समीकरण बन जाता है
गैर-सापेक्षतावादी सीमा में, और बाकी ऊर्जा के संबंध में गतिज और इलेक्ट्रोस्टैटिक ऊर्जा छोटी होती है .

इस प्रकार

डायराक समीकरण के ऊपरी घटक में सम्मिलित, हम पाउली समीकरण (सामान्य रूप) पाते हैं:

एक फ़ोल्डी-वौथ्युसेन रूपांतरण से

एक बाहरी क्षेत्र में डिराक समीकरण से प्रारम्भ करके और फोल्डी-वौथ्यूसेन परिवर्तन का प्रदर्शन करते हुए, पाउली समीकरण को भी सख्ती से प्राप्त किया जा सकता है।[3]

पाउली कपलिंग

पाउली का समीकरण न्यूनतम युग्मन की आवश्यकता से प्राप्त होता है, जो g-factor g=2 प्रदान करता है। अधिकांश प्राथमिक कणों में विषम जी-कारक होते हैं, जो 2 से भिन्न होते हैं। सापेक्षतावादी क्वांटम क्षेत्र सिद्धांत के डोमेन में, एक अन्यूनतम युग्मन को परिभाषित करता है, जिसे कभी-कभी पाउली युग्मन कहा जाता है, ताकि एक विषम कारक जोड़ा जा सके।

जहां चार गति ऑपरेटर है, विद्युत चुम्बकीय चार-क्षमता है, विषम चुंबकीय द्विध्रुव आघूर्ण के समानुपाती होता है, विद्युत चुम्बकीय टेंसर है, और लोरेंट्ज़ियन स्पिन मैट्रिसेस और गामा मैट्रिक्स के कम्यूटेटर हैं .[4][5] अनापेक्षिकीय क्वांटम यांत्रिकी के संदर्भ में, श्रोडिंगर समीकरण के साथ काम करने के बजाय, पाउली युग्मन पाउली समीकरण (या ज़िमन ऊर्जा को पोस्ट करने) के लिए मनमाने ढंग से g-फैक्टर का उपयोग करने के बराबर है।

यह भी देखें

फुटनोट्स

  1. The formula used here is for a particle with spin ½, with a g-factor and orbital g-factor . More generally it is given by: where is the spin quantum number related to .

संदर्भ

  1. Pauli, Wolfgang (1927). "चुंबकीय इलेक्ट्रॉन के क्वांटम यांत्रिकी पर". Zeitschrift für Physik (in Deutsch). 43 (9–10): 601–623. Bibcode:1927ZPhy...43..601P. doi:10.1007/BF01397326. ISSN 0044-3328. S2CID 128228729.
  2. Bransden, BH; Joachain, CJ (1983). परमाणुओं और अणुओं का भौतिकी (1st ed.). Prentice Hall. p. 638–638. ISBN 0-582-44401-2.
  3. 3.0 3.1 Greiner, Walter (2012-12-06). सापेक्षवादी क्वांटम यांत्रिकी: तरंग समीकरण (in English). Springer. ISBN 978-3-642-88082-7.
  4. Das, Ashok (2008). क्वांटम फील्ड थ्योरी पर व्याख्यान (in English). World Scientific. ISBN 978-981-283-287-0.
  5. Barut, A. O.; McEwan, J. (January 1986). "स्पिन-गेज इनवेरियन द्वारा पाउली कपलिंग के साथ मासलेस न्यूट्रिनो की चार अवस्थाएँ". Letters in Mathematical Physics (in English). 11 (1): 67–72. Bibcode:1986LMaPh..11...67B. doi:10.1007/BF00417466. ISSN 0377-9017. S2CID 120901078.

पुस्तकें

  • Schwabl, Franz (2004). क्वांटम यांत्रिकी I. Springer. ISBN 978-3540431060.
  • Schwabl, Franz (2005). उन्नत शिक्षार्थियों के लिए क्वांटम यांत्रिकी. Springer. ISBN 978-3540259046.
  • Claude Cohen-Tannoudji; Bernard Diu; Frank Laloe (2006). क्वांटम यांत्रिकी 2. Wiley, J. ISBN 978-0471569527.