व्युत्क्रमों के योगों की सूची: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
गणित और विशेष रूप से [[संख्या सिद्धांत]] में, व्युत्क्रमों का योग सामान्यतः कुछ या सभी [[सकारात्मक संख्या]] [[पूर्णांक|पूर्णांकों]] (संख्याओं की गिनती) के गुणक व्युत्क्रमों के लिए गणना की जाती है - अर्थात, यह सामान्यतः [[इकाई अंश|इकाई अंशों]] का योग होता है। यदि अपरिमित रूप से कई संख्याओं का उनके व्युत्क्रमों का योग है, सामान्यतः शर्तों को एक निश्चित क्रम में दिया जाता है और उनमें से पहले ''n'' का योग किया जाता है, फिर उनमें से पहले ''n''+1 का योग देने के लिए एक और सम्मिलित किया जाता है, आदि। | गणित और विशेष रूप से [[संख्या सिद्धांत]] में, '''व्युत्क्रमों का योग''' सामान्यतः कुछ या सभी [[सकारात्मक संख्या|घनात्मक संख्या]] [[पूर्णांक|पूर्णांकों]] (संख्याओं की गिनती) के गुणक व्युत्क्रमों के लिए गणना की जाती है - अर्थात, यह सामान्यतः [[इकाई अंश|इकाई अंशों]] का योग होता है। यदि अपरिमित रूप से कई संख्याओं का उनके व्युत्क्रमों का योग है, सामान्यतः शर्तों को एक निश्चित क्रम में दिया जाता है और उनमें से पहले ''n'' का योग किया जाता है, फिर उनमें से पहले ''n''+1 का योग देने के लिए एक और सम्मिलित किया जाता है, आदि। | ||
यदि केवल बहुत संख्याओं को सम्मिलित किया जाता है, तो मुख्य विवाद सामान्यतः योग के मूल्य के लिए एक सरल अभिव्यक्ति खोजने के लिए होता है, या योग को एक निश्चित मान से कम होने की आवश्यकता होती है, या यह निर्धारित करने के लिए कि योग सदैव एक पूर्णांक है या नहीं। | यदि केवल बहुत संख्याओं को सम्मिलित किया जाता है, तो मुख्य विवाद सामान्यतः योग के मूल्य के लिए एक सरल अभिव्यक्ति खोजने के लिए होता है, या योग को एक निश्चित मान से कम होने की आवश्यकता होती है, या यह निर्धारित करने के लिए कि योग सदैव एक पूर्णांक है या नहीं। | ||
व्युत्क्रमों की एक [[अनंत श्रृंखला]] के लिए, विवाद दुगने होते हैं: सबसे पहले, [[भिन्न श्रृंखला]]ओं का अनुक्रम करता है - अर्थात, क्या यह अंततः किसी भी संख्या से अधिक हो जाता है - या क्या यह अभिसरित होता है, जिसका अर्थ है कि कुछ ऐसी संख्या है जो इसे कभी भी पार किए बिना अव्यवस्थिततः बंद हो जाती है? (यदि इसके व्युत्क्रमों का योग अलग हो जाता है तो | व्युत्क्रमों की एक [[अनंत श्रृंखला]] के लिए, विवाद दुगने होते हैं: सबसे पहले, [[भिन्न श्रृंखला]]ओं का अनुक्रम करता है - अर्थात, क्या यह अंततः किसी भी संख्या से अधिक हो जाता है - या क्या यह अभिसरित होता है, जिसका अर्थ है कि कुछ ऐसी संख्या है जो इसे कभी भी पार किए बिना अव्यवस्थिततः बंद हो जाती है? (यदि इसके व्युत्क्रमों का योग अलग हो जाता है तो घनात्मक पूर्णांकों के एक सम्मुच्चय को [[बड़ा सेट (कॉम्बिनेटरिक्स)|बड़ा]] कहा जाता है, और यदि यह अभिसरण करता है तो छोटा होता है।) दूसरा, यदि यह अभिसरण करता है, तो इसके अभिसरण मूल्य के लिए एक सरल अभिव्यक्ति क्या है, वह है मूल्य परिमेय संख्या या [[अपरिमेय संख्या]], और क्या वह मान [[बीजगणितीय संख्या]] या [[पारलौकिक संख्या]] है?<ref>Unless given here, references are in the linked articles.</ref> | ||
== पूरी तरह से कई नियम == | == पूरी तरह से कई नियम == | ||
* | * घनात्मक पूर्णांकों के एक सम्मुच्चय का [[अनुकूल माध्य]] उनके व्युत्क्रमों के योग के व्युत्क्रम की संख्याओं की संख्या है। | ||
*[[ऑप्टिक समीकरण|चाक्षुष समीकरण]] के लिए आवश्यक है कि दो धनात्मक पूर्णांकों a और b के व्युत्क्रमों का योग तीसरे धनात्मक पूर्णांक c के व्युत्क्रम के बराबर हो। सभी समाधान a = mn + m2, b = mn + n2, c = mn द्वारा दिए गए हैं। यह समीकरण प्रारंभिक ज्यामिति में विभिन्न संदर्भों में प्रकट होता है। | *[[ऑप्टिक समीकरण|चाक्षुष समीकरण]] के लिए आवश्यक है कि दो धनात्मक पूर्णांकों a और b के व्युत्क्रमों का योग तीसरे धनात्मक पूर्णांक c के व्युत्क्रम के बराबर हो। सभी समाधान a = mn + m2, b = mn + n2, c = mn द्वारा दिए गए हैं। यह समीकरण प्रारंभिक ज्यामिति में विभिन्न संदर्भों में प्रकट होता है। | ||
*फर्मेट-कातालान निराधार कल्पना एक निश्चित [[डायोफैंटाइन समीकरण]] से संबंधित है, दो शब्दों के योग को समान करता है, प्रत्येक एक | *फर्मेट-कातालान निराधार कल्पना एक निश्चित [[डायोफैंटाइन समीकरण]] से संबंधित है, दो शब्दों के योग को समान करता है, प्रत्येक एक घनात्मक पूर्णांक को एक घनात्मक पूर्णांक घात के लिए उठाया जाता है, जो एक घनात्मक पूर्णांक घात (आधार के साथ) के लिए एक घनात्मक पूर्णांक भी है। पूर्णांक जिनका कोई अभाज्य गुणनखंड उभयनिष्ठ नहीं है)। यह निराधार कल्पना पूछती है कि क्या समीकरण में समाधानों की अनंतता है जिसमें समीकरण में तीन घातांकों के व्युत्क्रमों का योग 1 से कम होना चाहिए। इस प्रतिबंध का उद्देश्य समाधानों की ज्ञात अनंतता को रोकना है जिसमें दो घातांक 2 हैं और अन्य प्रतिपादक कोई भी संख्या है। | ||
*n-वें [[हार्मोनिक संख्या|सुसंगत संख्या]], जो कि पहले n | *n-वें [[हार्मोनिक संख्या|सुसंगत संख्या]], जो कि पहले n घनात्मक पूर्णांकों के व्युत्क्रमों का योग है, n = 1 स्थिति को छोड़कर कभी भी पूर्णांक नहीं है। | ||
*इसके अतिरिक्त, जोज़सेफ कुर्शक ने 1918 में सिद्ध किया कि लगातार प्राकृतिक संख्याओं के व्युत्क्रमों का योग (चाहे 1 से प्रारम्भ हो या नहीं) कभी भी पूर्णांक नहीं होता है। | *इसके अतिरिक्त, जोज़सेफ कुर्शक ने 1918 में सिद्ध किया कि लगातार प्राकृतिक संख्याओं के व्युत्क्रमों का योग (चाहे 1 से प्रारम्भ हो या नहीं) कभी भी पूर्णांक नहीं होता है। | ||
*अभाज्य संख्याओं के व्युत्क्रमों के योग के अपसरण का योग किसी भी n के लिए पूर्णांक नहीं है। | *अभाज्य संख्याओं के व्युत्क्रमों के योग के अपसरण का योग किसी भी n के लिए पूर्णांक नहीं है। | ||
Line 71: | Line 71: | ||
{{reflist}} | {{reflist}} | ||
{{DEFAULTSORT:Sums of reciprocals}} | {{DEFAULTSORT:Sums of reciprocals}} | ||
[[Category:All articles containing potentially dated statements|Sums of reciprocals]] | |||
[[Category:Articles containing potentially dated statements from 2020|Sums of reciprocals]] | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Sums of reciprocals]] | ||
[[Category:Created On 07/02/2023]] | [[Category:Created On 07/02/2023|Sums of reciprocals]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page|Sums of reciprocals]] | ||
[[Category:Pages with script errors|Sums of reciprocals]] | |||
[[Category:Templates Vigyan Ready|Sums of reciprocals]] | |||
[[Category:अनुक्रम और श्रृंखला|Sums of reciprocals]] | |||
[[Category:गणित से संबंधित सूचियाँ|Sums of reciprocals]] | |||
[[Category:डायोफैंटाइन समीकरण|Sums of reciprocals]] |
Latest revision as of 15:19, 3 November 2023
गणित और विशेष रूप से संख्या सिद्धांत में, व्युत्क्रमों का योग सामान्यतः कुछ या सभी घनात्मक संख्या पूर्णांकों (संख्याओं की गिनती) के गुणक व्युत्क्रमों के लिए गणना की जाती है - अर्थात, यह सामान्यतः इकाई अंशों का योग होता है। यदि अपरिमित रूप से कई संख्याओं का उनके व्युत्क्रमों का योग है, सामान्यतः शर्तों को एक निश्चित क्रम में दिया जाता है और उनमें से पहले n का योग किया जाता है, फिर उनमें से पहले n+1 का योग देने के लिए एक और सम्मिलित किया जाता है, आदि।
यदि केवल बहुत संख्याओं को सम्मिलित किया जाता है, तो मुख्य विवाद सामान्यतः योग के मूल्य के लिए एक सरल अभिव्यक्ति खोजने के लिए होता है, या योग को एक निश्चित मान से कम होने की आवश्यकता होती है, या यह निर्धारित करने के लिए कि योग सदैव एक पूर्णांक है या नहीं।
व्युत्क्रमों की एक अनंत श्रृंखला के लिए, विवाद दुगने होते हैं: सबसे पहले, भिन्न श्रृंखलाओं का अनुक्रम करता है - अर्थात, क्या यह अंततः किसी भी संख्या से अधिक हो जाता है - या क्या यह अभिसरित होता है, जिसका अर्थ है कि कुछ ऐसी संख्या है जो इसे कभी भी पार किए बिना अव्यवस्थिततः बंद हो जाती है? (यदि इसके व्युत्क्रमों का योग अलग हो जाता है तो घनात्मक पूर्णांकों के एक सम्मुच्चय को बड़ा कहा जाता है, और यदि यह अभिसरण करता है तो छोटा होता है।) दूसरा, यदि यह अभिसरण करता है, तो इसके अभिसरण मूल्य के लिए एक सरल अभिव्यक्ति क्या है, वह है मूल्य परिमेय संख्या या अपरिमेय संख्या, और क्या वह मान बीजगणितीय संख्या या पारलौकिक संख्या है?[1]
पूरी तरह से कई नियम
- घनात्मक पूर्णांकों के एक सम्मुच्चय का अनुकूल माध्य उनके व्युत्क्रमों के योग के व्युत्क्रम की संख्याओं की संख्या है।
- चाक्षुष समीकरण के लिए आवश्यक है कि दो धनात्मक पूर्णांकों a और b के व्युत्क्रमों का योग तीसरे धनात्मक पूर्णांक c के व्युत्क्रम के बराबर हो। सभी समाधान a = mn + m2, b = mn + n2, c = mn द्वारा दिए गए हैं। यह समीकरण प्रारंभिक ज्यामिति में विभिन्न संदर्भों में प्रकट होता है।
- फर्मेट-कातालान निराधार कल्पना एक निश्चित डायोफैंटाइन समीकरण से संबंधित है, दो शब्दों के योग को समान करता है, प्रत्येक एक घनात्मक पूर्णांक को एक घनात्मक पूर्णांक घात के लिए उठाया जाता है, जो एक घनात्मक पूर्णांक घात (आधार के साथ) के लिए एक घनात्मक पूर्णांक भी है। पूर्णांक जिनका कोई अभाज्य गुणनखंड उभयनिष्ठ नहीं है)। यह निराधार कल्पना पूछती है कि क्या समीकरण में समाधानों की अनंतता है जिसमें समीकरण में तीन घातांकों के व्युत्क्रमों का योग 1 से कम होना चाहिए। इस प्रतिबंध का उद्देश्य समाधानों की ज्ञात अनंतता को रोकना है जिसमें दो घातांक 2 हैं और अन्य प्रतिपादक कोई भी संख्या है।
- n-वें सुसंगत संख्या, जो कि पहले n घनात्मक पूर्णांकों के व्युत्क्रमों का योग है, n = 1 स्थिति को छोड़कर कभी भी पूर्णांक नहीं है।
- इसके अतिरिक्त, जोज़सेफ कुर्शक ने 1918 में सिद्ध किया कि लगातार प्राकृतिक संख्याओं के व्युत्क्रमों का योग (चाहे 1 से प्रारम्भ हो या नहीं) कभी भी पूर्णांक नहीं होता है।
- अभाज्य संख्याओं के व्युत्क्रमों के योग के अपसरण का योग किसी भी n के लिए पूर्णांक नहीं है।
- चार पूर्णांकों के 14 अलग-अलग संयोजन हैं जैसे कि उनके व्युत्क्रमों का योग 1 है, जिनमें से छह चार अलग-अलग पूर्णांकों का उपयोग करते हैं और आठ कम से कम एक पूर्णांक दोहराते हैं।
- मिस्र का एक अंश धनात्मक पूर्णांकों के व्युत्क्रमों की परिमित संख्या का योग होता है। एर्दोस-ग्राहम समस्या के प्रमाण के अनुसार, यदि एक से अधिक पूर्णांकों का समुच्चय एक समुच्चय का परिमित रूप से कई उपसमुच्चयों में विभाजन है, तो एक उपसमुच्चय का उपयोग 1 के मिस्री भिन्न प्रतिनिधित्व को बनाने के लिए किया जा सकता है।
- एर्डोस-स्ट्रॉस अनुमान कहता है कि सभी पूर्णांक n ≥ 2 के लिए, परिमेय संख्या 4/n को धनात्मक पूर्णांकों के तीन व्युत्क्रमों के योग के रूप में व्यक्त किया जा सकता है।
- फर्मेट भागफल 2 के साथ विशेष मान, जो विषम अभाज्य p के लिए है , जब प्रमापीय अंकगणित p में व्यक्त किया जाता है और -2 से गुणा किया जाता है, तो {1, p − 1} श्रेणी के पहले भाग में स्थित संख्याओं के व्युत्क्रम mod p के योग के बराबर होता है।
- किसी भी त्रिभुज में, ऊँचाई के व्युत्क्रम का योग अंतःवृत्त की त्रिज्या के व्युत्क्रम के बराबर होता है (चाहे वे पूर्णांक हों या न हों)।
- यूक्लिडियन समतल में जरूरी नहीं कि एक त्रिकोण को कोण और होने के रूप में निर्दिष्ट किया जा सकता है। तब त्रिभुज यूक्लिडियन समष्टि में होता है यदि p, q, और r के व्युत्क्रमों का योग 1 के बराबर होता है, गोलाकार त्रिकोणमिति में होता है यदि वह योग 1 से अधिक है, और अतिशयोक्तिपूर्ण ज्यामिति में होता है यदि योग 1 से कम है।
- एक सुसंगत भाजक संख्या एक धनात्मक पूर्णांक है जिसके भाजकों का एक सुसंगत माध्य है जो एक पूर्णांक है। इनमें से पहले पांच 1, 6, 28, 140 और 270 हैं। यह ज्ञात नहीं है कि क्या कोई सुसंगत भाजक संख्या (1 के अतिरिक्त) विषम हैं, लेकिन 1024 से कम कोई विषम संख्या नहीं है।
- एक पूर्ण संख्या के विभाजकों के व्युत्क्रमों का योग 2 होता है।
- जब आठ बिंदुओं को एक गोले की सतह पर किसी अभिदिशा में उनके बीच की दूरी को अधिकतम करने के उद्देश्य से वितरित किया जाता है, तो परिणामी आकार एक वर्ग प्रतिवाद के अनुरूप होता है। बिंदुओं को वितरित करने के विशिष्ट तरीकों में सम्मिलित हैं, उदाहरण के लिए, बिंदुओं के बीच की दूरी के वर्गों के सभी व्युत्क्रमों के योग को कम करना।
अपरिमित रूप से अनेक पद
अभिसरण श्रृंखला
- बढ़ते धनात्मक पूर्णांकों का एक सम-मुक्त अनुक्रम वह है जिसके लिए कोई भी संख्या पिछले वाले के किसी भी उपसमुच्चय का योग नहीं है। किसी भी सम-मुक्त अनुक्रम में संख्याओं के व्युत्क्रमों का योग 2.8570 से कम है।
- अष्टकोणीय संख्याओं के व्युत्क्रमों का योग एक ज्ञात मान में परिवर्तित होता है जो न केवल अपरिमेय संख्या है, बल्कि पारलौकिक संख्या भी है, और जिसके लिए एक सप्तकोणीय संख्या का योग उपस्थित है।
- जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग, जिनमें से बहुत से या अपरिमित रूप से कई हो सकते हैं, को परिमित माना जाता है और इसे ब्रून का स्थिरांक कहा जाता है, वह लगभग 1.9022 है। पांच का व्युत्क्रम योग में दो बार पारंपरिक रूप से प्रकट होता है।
- प्रोथ अभाज्य संख्याओं के व्युत्क्रमों का योग, जिनमें से बहुत से या अपरिमित रूप से कई हो सकते हैं, परिमित होने के लिए जाना जाता है, वह 0 0.747392479 है।[2]
- अभाज्य चौपाइयां जुड़वाँ अभाज्य संख्याओं के जोड़े होते हैं जिनके बीच केवल एक विषम संख्या होती है। अभाज्य चौपाइयों में संख्याओं के व्युत्क्रमों का योग लगभग 0.8706 है।
- पूर्ण घात के व्युत्क्रमों का योग (अनुलिपि सहित) 1 है।
- पूर्ण घात के व्युत्क्रमों का योग (अनुलिपि को छोड़कर) लगभग 0.8745 है।[3]
- घात के व्युत्क्रम का योग लगभग 1.2913 के बराबर है। योग बिल्कुल एक निश्चित अभिन्न के बराबर है:
- इस पहचान की खोज जोहान बर्नौली ने 1697 में की थी, और अब इसे सोफोमोर की दो स्वप्न पहचानों में से एक के रूप में जाना जाता है।
- गोल्डबैक-यूलर प्रमेय कहता है कि संख्याओं के व्युत्क्रमों का योग जो एक पूर्ण घात से 1 कम है (अनुलिपि को छोड़कर) 1 है।
- सभी गैर-शून्य त्रिकोणीय संख्या के व्युत्क्रमों का योग 2 है।
- पारस्परिक फाइबोनैचि स्थिरांक फाइबोनैचि संख्याओं के व्युत्क्रमों का योग है, जिसे परिमित और अपरिमेय माना जाता है और यह लगभग 3.3599 के बराबर है। फाइबोनैचि संख्याओं के व्युत्क्रमों के उपसमुच्चयों के अन्य परिमित योगों के लिए, फाइबोनैचि संख्या योग देखें।
- एक चरघातांकी क्रमगुणन एक संचालन है जिसे पुनरावर्ती रूप से परिभाषित किया गया है। उदाहरण के लिए, जहां घातांक का मूल्यांकन ऊपर से नीचे किया जाता है। 1 से आगे घातीय भाज्यों के व्युत्क्रमों का योग लगभग 1.6111 और पारलौकिक है।
- एक शक्तिशाली संख्या एक धनात्मक पूर्णांक है, जिसके लिए प्रत्येक अभाज्य उसके अभाज्य गुणनखण्ड में कम से कम दो बार प्रकट होता है। घातशाली संख्याओं के व्युत्क्रमों का योग 1.9436 के करीब है।[4]
- क्रमगुणित के व्युत्क्रम का योग अतिश्रेष्ट संख्या e (गणितीय स्थिरांक) है।
- वर्ग संख्याओं के व्युत्क्रमों का योग (बेसल समस्या) पारलौकिक संख्या π2/6 है, या ζ(2) जहां ζ रीमैन जीटा फलन है।
- धनात्मक पूर्णांकों के घनों के व्युत्क्रमों के योग को एपेरी का स्थिरांक ζ(3) कहा जाता है, और लगभग 1.2021 के बराबर होता है। यह संख्या अपरिमेय संख्या है, लेकिन यह ज्ञात नहीं है कि यह पारलौकिक है या नहीं।
- 2 की गैर-ऋणात्मक पूर्णांक घातों के व्युत्क्रम का योग 2 होता है। यह किसी भी ज्यामितीय श्रृंखला के व्युत्क्रमों के योग का एक विशेष स्तिथि है जहां पहला शब्द और सामान्य अनुपात धनात्मक पूर्णांक हैं। यदि पहला पद a है और सामान्य अनुपात r है तो योग r/a(r-1) है।
- केम्पनर श्रृंखला उन सभी धनात्मक पूर्णांकों के व्युत्क्रमों का योग है जिसमें आधार 10 में अंक 9 नहीं है। सुसंगत श्रृंखला (गणित) के विपरीत, जो उन संख्याओं को बाहर नहीं करती है, यह श्रृंखला विशेष रूप से लगभग 22.9207 तक अभिसरण करती है।
- एक पुनरावर्ती संख्या वह है जो अपने अंकों को उलटने पर वही रहती है। पुनरावर्ती संख्याओं के व्युत्क्रमों का योग लगभग 3.3703 हो जाता है।
- एक पेंटाटोप संख्या 5-सत्र पंक्ति 1 4 6 4 1 से प्रारम्भ होने वाली पास्कल के त्रिकोण की किसी भी पंक्ति की पांचवीं कक्षिका में एक संख्या है। पेंटाटोप संख्याओं के व्युत्क्रम का योग 4/3 है।
- सिल्वेस्टर का अनुक्रम एक पूर्णांक अनुक्रम है जिसमें अनुक्रम का प्रत्येक सदस्य पिछले सदस्यों साथ एक और का गुणनफल होता है। अनुक्रम के पहले कुछ पद 2, 3, 7, 43, 1807 हैं। सिल्वेस्टर के अनुक्रम में संख्याओं के व्युत्क्रम का योग 1 है।
- रीमैन जीटा फलन ζ(s) एक जटिल चर s का एक फलन (गणित) है जो अनंत श्रृंखला के योग की विश्लेषणात्मक निरंतरता है यदि s का वास्तविक भाग 1 से अधिक है तो यह अभिसरण करता है।
- सभी फ़र्मेट संख्याओं के व्युत्क्रमों का योग (फ़ॉर्म की संख्याएँ ) (sequence A051158 in the OEIS) अपरिमेय संख्या है।
- प्राणिक संख्याओं (लगातार दो पूर्णांकों के गुणनफल) (0 को छोड़कर) के व्युत्क्रमों का योग 1 है (अंतर्वेधन श्रृंखला देखें)।
अपसारी श्रृंखला
- सुसंगत श्रृंखला (गणित) का n-वाँ आंशिक योग, जो पहले n धनात्मक पूर्णांकों के व्युत्क्रमों का योग है, विचलन करता है क्योंकि n अनंत तक जाता है, यद्यपि बहुत धीरे-धीरे: पहले 1043 का योग पद 100 से कम है। संचयी योग और n के प्राकृतिक लघुगणक के बीच का अंतर यूलर-माशेरोनी स्थिरांक में परिवर्तित होता है, जिसे सामान्यतः इस रूप में दर्शाया जाता है, जो लगभग 0.5772 है।
- अभाज्य संख्याओं के व्युत्क्रमों के योग अपसारित होता है।
- अंकगणितीय प्रगति पर डिरिचलेट के प्रमेय के सुदृढ़ रूप का अर्थ है कि प्ररूप 4n + 3 के अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न है।
- इसी तरह, प्ररूप 4n + 1 के अभाज्य संख्याओं के व्युत्क्रमों का योग अलग-अलग होता है। फर्मेट के प्रमेय द्वारा दो वर्गों के योग पर, यह निम्नानुसार है कि प्ररूप की संख्याओं के व्युत्क्रमों का योग , जहाँ a,b गैर-ऋणात्मक पूर्णांक हैं, दोनों विचलन के साथ या बिना दोहराव के 0 के बराबर नहीं हैं।
- यदि a(i) विशेषता के साथ धनात्मक पूर्णांकों की कोई आरोही श्रृंखला है जिसमें N उपस्थित है जैसे कि a(i+1)−a(i)<N सभी i के लिए फिर व्युत्क्रम का योग 1/a(i) अपसारित होता है।
- अंकगणितीय प्रगति पर एर्डोस अनुमान बताता है कि यदि धनात्मक पूर्णांकों के समुच्चय A के सदस्यों के व्युत्क्रमों का योग अलग हो जाता है, तो A में किसी भी लंबाई की अंकगणितीय प्रगति होती है, चाहे वह कितनी ही बड़ी क्यों न हो। As of 2020[update] अनुमान अप्रमाणित रहता है।
यह भी देखें
- व्यापक सम्मुच्चय
- वर्गों का योग (बहुविकल्पी)
- घातों का योग
संदर्भ
- ↑ Unless given here, references are in the linked articles.
- ↑ Borsos, Bertalan; Kovács, Attila; Tihanyi, Norbert (1 September 2022). "Tight upper and lower bounds for the reciprocal sum of Proth primes". The Ramanujan Journal. 59 (1): 181–198. doi:10.1007/s11139-021-00536-2.
- ↑ Weisstein, Eric W. "Perfect Power". MathWorld.
- ↑ Golomb, Solomon W. (1970). "Powerful numbers". American Mathematical Monthly. 77 (8): 848–852. doi:10.2307/2317020. JSTOR 2317020.