सह परिमितता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 56: Line 56:


* {{Citation|last1=Steen|first1=Lynn Arthur|author1-link=Lynn Arthur Steen|last2=Seebach|first2=J. Arthur Jr.|author2-link=J. Arthur Seebach, Jr.|title=[[Counterexamples in Topology]]|orig-year=1978|publisher=[[Springer-Verlag]]|location=Berlin, New York|edition=[[Dover Publications|Dover]] reprint of 1978|isbn=978-0-486-68735-3|mr=507446|year=1995}} ''(See example 18)''
* {{Citation|last1=Steen|first1=Lynn Arthur|author1-link=Lynn Arthur Steen|last2=Seebach|first2=J. Arthur Jr.|author2-link=J. Arthur Seebach, Jr.|title=[[Counterexamples in Topology]]|orig-year=1978|publisher=[[Springer-Verlag]]|location=Berlin, New York|edition=[[Dover Publications|Dover]] reprint of 1978|isbn=978-0-486-68735-3|mr=507446|year=1995}} ''(See example 18)''
[[Category: अनंत सेट सिद्धांत में बुनियादी अवधारणाएं]] [[Category: सामान्य टोपोलॉजी]]


[[Category: Machine Translated Page]]
[[Category:Created On 14/02/2023]]
[[Category:Created On 14/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनंत सेट सिद्धांत में बुनियादी अवधारणाएं]]
[[Category:सामान्य टोपोलॉजी]]

Latest revision as of 10:41, 21 February 2023

सह-अन्तिमता से भ्रमित न हो।

गणित में, समुच्चय का सहपरिमितता उपसमुच्चय एक उप-समुच्चय है जिसका में पूरक परिमित समुच्चय है। दूसरे शब्दों में, मे के सभी लेकिन बहुत अधिक तत्व सम्मिलित हैं। यदि पूरक परिमित नहीं है, लेकिन यह गणनीय है, तो कोई कहता है कि समुच्चय सहगणनीय है।

ये स्वाभाविक रूप से उत्पन्न होते हैं जब परिमित समुच्चयों पर संरचनाओं को सामान्यीकृत करते हुए विशेष रूप से अनंत उत्पादों पर उत्पाद सांस्थिति या प्रत्यक्ष योग के रूप में व्यवस्थित करते हैं

समुच्चय के पूरक के पास सम्मिलित गुण का वर्णन करने के लिए उपसर्ग "सह" का उपयोग अन्य शब्दों जैसे " सह-अत्यल्प समुच्चय" में इसके उपयोग के अनुरूप है।

बूलियन बीजगणित

के सभी उपसमुच्चयों का समुच्चय जो या तो परिमित या सहसंबद्ध हैं बूलियन बीजगणित (संरचना) बनाता है, जिसका अर्थ है कि यह संघ, प्रतिच्छेदन और पूरकता के संचालन के अंतर्गत संवृत है। यह बूलियन बीजगणित पर परिमित-सहपरिमित बीजगणित है। बूलियन बीजगणित मे अद्वितीय गैर-व्यावहारिक अतिसूक्ष्मनिस्यंदक होता है (अर्थात, बीजगणित के तत्व द्वारा उत्पन्न एक अधिकतम शोधन नहीं है) यदि और केवल यदि कोई अनंत समुच्चय सम्मिलित है जैसे कि , पर परिमित -सहपरिमित बीजगणित पर समरूपी है इस स्थिति में, गैर-प्रमुख अतिसूक्ष्मनिस्यंदक सभी सहपरिमित समुच्चय का समूह है।

सहपरिमित सांस्थिति

सहपरिमित सांस्थिति (कभी -कभी परिमित पूरक सांस्थिति कहा जाता है) एक सामयिक समष्टि है जिसे प्रत्येक समुच्चय पर परिभाषित किया जा सकता है इसमें निश्चित रूप से विवृत समुच्चय और खाली समुच्चय इसके सभी सहपरिमित उपसमुच्चय होते हैं। परिणामस्वरूप, सहपरिमित सांस्थिति में, केवल संवृत उप-समुच्चय परिमित समुच्चय या सम्पूर्ण हैं, प्रतीकात्मक रूप से, कोई सांस्थिति को इस रूप में लिखता है

यह सांस्थिति ज़ारिस्की सांस्थिति के संदर्भ में स्वाभाविक रूप से होती है। चूंकि एक क्षेत्र (गणित) पर एक चर में बहुपद है परिमित समुच्चयों पर शून्य हैं, या सम्पूर्ण ज़ारिस्की सांस्थिति पर (एफ़ाइन लाइन के रूप में माना जाता है) सहपरिमित सांस्थिति है। किसी भी अलघुकरणीय घटक बीजगणितीय वक्र के लिए भी यही सत्य है; यह सत्य नहीं है, उदाहरण के लिए, समतल में के लिए।

गुण

  • उपसमष्‍टि: सहपरिमित सांस्थिति का प्रत्येक उप -समूह सांस्थिति भी एक सहपरिमित सांस्थिति है।
  • सुसंहिति: चूंकि प्रत्येक विवृत समुच्चय में के बहुत से बिंदुओं को छोड़कर सभी सम्मिलित होते हैं, इसलिए समष्टि सुसंहत समुच्चय और क्रमिक रूप से सुसंहत है।
  • पृथक्करण: सहपरिमित सांस्थिति T1 स्वयंसिद्ध को पूरा करने वाली अपरिष्कृत सांस्थिति है; अर्थात्, यह सबसे छोटी सांस्थिति है जिसके लिए प्रत्येक एकल समुच्चय संवृत है। वास्तव में, पर एकपक्षीय सांस्थिति T1 स्वयंसिद्ध को पूरा करता है यदि और केवल यदि इसमें सहपरिमित सांस्थिति सम्मिलित है। यदि परिमित है तो सहपरिमित सांस्थिति केवल असतत सांस्थिति है। यदि परिमित नहीं है तो यह सांस्थिति हॉसडॉर्फ समष्टि नहीं है (T)2, नियमित या सामान्य है क्योंकि कोई भी दो अरिक्त विवृत समुच्चय अलग नहीं होते हैं (अर्थात, यह अतिसंयोजित समष्टि है)।

द्विक बिन्दु सहपरिमित सांस्थिति

द्विक बिन्दु सहपरिमित सांस्थिति सहपरिमित सांस्थिति है जिसमें प्रत्येक बिंदु दोगुना हो गया है; अर्थात यह दो-तत्व समुच्चय पर अविच्छिन्न सांस्थिति के साथ सहपरिमित सांस्थिति का संस्थानिक उत्पाद है। यह T0 या T1 नहीं है, क्योंकि द्विक के बिंदु सांस्थितिक रूप से अप्रभेद्य हैं। हालाँकि, यह R0 है क्योंकि स्थैतिक रूप से अलग-अलग बिंदुओं को अलग किया जा सकता है।

गणनीय योग्य द्विक बिन्दु सहपरिमित सांस्थिति का एक उदाहरण सम और विषम पूर्णांक का समुच्चय है, एक सांस्थिति के साथ जो उन्हें एक साथ समूहित करता है। माना पूर्णांक का समुच्चय हो, और मान लीजिए पूर्णांक का एक उप-समुच्चय बनें जिसका पूरक समुच्चय है किसी भी पूर्णांक के लिए विवृत समुच्चयों के एक उप-आधार को परिभाषित करें किसी भी पूर्णांक के लिए है यदि एक सम संख्या है, और यदि विषम संख्या है। तब आधार (सांस्थिति) समुच्चय परिमित प्रतिच्छेदन द्वारा उत्पन्न होते हैं, अर्थात् परिमित के लिए सांस्थिति के विवृत समुच्चय हैं

परिणामी स्थान T0 नहीं है (और इसलिए T1 नहीं), क्योंकि बिन्दु और (के लिए यहां तक कि) संस्थानिक रूप से अप्रभेद्य हैं। हालांकि, समष्टि प्रत्येक के बाद से एक सुसंहत समष्टि है, में सभी लेकिन निश्चित रूप से कई बिंदु सम्मिलित हैं।

अन्य उदाहरण

उत्पाद सांस्थिति

संस्थानिक समष्टि के उत्पाद पर उत्पाद सांस्थिति आधार (सांस्थिति) है जहाँ विवृत है, और निश्चित रूप से कई है।

समानता (आवश्यकता के बिना कि सह-परिमितता मे कई पूर्ण समष्टि हैं) वर्ग सांस्थिति है।

प्रत्यक्ष योग

मापांक के प्रत्यक्ष योग के तत्व अनुक्रम हैं जहां सह-अंतिम रूप से कई है।

समानता (इसकी आवश्यकता के बिना कि बहुत से शून्य हैं) प्रत्यक्ष उत्पाद है।

यह भी देखें


संदर्भ

  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446 (See example 18)