हानि फलन: Difference between revisions
No edit summary |
No edit summary |
||
(60 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical relation assigning a probability event to a cost}} | {{Short description|Mathematical relation assigning a probability event to a cost}} | ||
[[गणितीय अनुकूलन]] और [[निर्णय सिद्धांत]] में, हानि फलन या | [[गणितीय अनुकूलन]] और [[निर्णय सिद्धांत]] में, '''हानि फलन''' या व्यय फलन (कभी-कभी त्रुटि फलन भी कहा जाता है) <ref name="ttf2001">{{cite book|first1=Trevor |last1=Hastie |authorlink1= |first2=Robert |last2=Tibshirani |authorlink2=Robert Tibshirani|first3=Jerome H. |last3=Friedman |authorlink3=Jerome H. Friedman |title=The Elements of Statistical Learning |publisher=Springer |year=2001 |isbn=0-387-95284-5 |page=18 |url=https://web.stanford.edu/~hastie/ElemStatLearn/}}</ref> ऐसा फलन है जो [[वास्तविक संख्या]] पर घटना (संभाव्यता सिद्धांत) या अधिक चर के मूल्यों को मानचित्रित करता है जो घटना से जुड़ी कुछ व्यय का प्रतिनिधित्व करता है। [[अनुकूलन समस्या]] हानि फलन को अल्प करने का प्रयास करती है। उद्देश्य फलन या तो हानि फलन है या इसका विपरीत (विशिष्ट डोमेन में, विभिन्न रूप से पुरस्कार फलन, लाभ फलन, उपयोगिता फलन, [[फिटनेस फलन|फिटनेस फलन]], आदि) कहा जाता है, जिस स्थिति में इसे अधिकतम किया जाना है। हानि फलन में पदानुक्रम के कई स्तरों में शब्द सम्मिलित हो सकते हैं। | ||
आँकड़ों में,सामान्यतः [[पैरामीटर अनुमान]] के लिए हानि फलन का उपयोग किया जाता है, और प्रश्न में घटना | आँकड़ों में, सामान्यतः [[पैरामीटर अनुमान]] के लिए हानि फलन का उपयोग किया जाता है, और प्रश्न में घटना आँकड़ों के उदाहरण के लिए अनुमानित और वास्तविक मूल्यों के मध्य अंतर का कुछ फलन है। [[पियरे-साइमन लाप्लास]] जितनी प्राचीन अवधारणा को 20वीं दशक के मध्य में [[अब्राहम का जन्म हुआ|अब्राहम वाल्ड]] द्वारा आंकड़ों में पुनः प्रस्तुत किया गया था।<ref>{{cite book |first=A. |last=Wald |title=Statistical Decision Functions |publisher=Wiley |year=1950 |url=https://psycnet.apa.org/record/1951-01400-000}}</ref> [[अर्थशास्त्र]] के संदर्भ में, उदाहरण के लिए, यह सामान्यतः [[आर्थिक लागत|आर्थिक व्यय]] या [[पछतावा (निर्णय सिद्धांत)|निर्णय सिद्धांत]] है। [[सांख्यिकीय वर्गीकरण]] में, यह उदाहरण के त्रुटिपूर्ण वर्गीकरण के लिए दंड है। [[जिवानांकिकी]] में, इसका उपयोग बीमा संदर्भ में प्रीमियम पर भुगतान किए गए मॉडल लाभों के लिए विशेष रूप से 1920 के दशक में हेराल्ड क्रैमर के फलनों के पश्चात से किया जाता है।<ref>{{cite book |last=Cramér |first=H. |year=1930 |title=On the mathematical theory of risk |work=Centraltryckeriet }}</ref> [[इष्टतम नियंत्रण]] में, वांछित मूल्य प्राप्त करने में विफल रहने के लिए हानि का दंड है। [[वित्तीय जोखिम प्रबंधन|वित्तीय संकट प्रबंधन]] में, फलन को मौद्रिक हानि के लिए मानचित्रित किया जाता है। | ||
== उदाहरण == | == उदाहरण == | ||
=== | === निर्णय सिद्धांत === | ||
{{main| | {{main|निर्णय सिद्धांत}} | ||
लियोनार्ड जे. सैवेज ने | लियोनार्ड जे. सैवेज ने विचार दिया कि अन्य-बायेसियन विधियों जैसे कि [[अल्पमहिष्ठ|न्यूनतम]] उपयोग करते हुए, हानि का फलन निर्णय सिद्धांत के विचार पर आधारित होना चाहिए, अर्थात, किसी निर्णय से जुड़ी हानि सबसे उत्तम निर्णय के परिणामों के मध्य का अंतर होना चाहिए। यह किया जा सकता था कि अंतर्निहित परिस्थितियों की जानकारी हो और निर्णय जो वास्तव में उनके ज्ञात होने से पूर्व लिया गया हो। | ||
=== द्विघात हानि फलन === | === द्विघात हानि फलन === | ||
द्विघात हानि फलन का उपयोग | द्विघात हानि फलन का उपयोग करते समय अल्प से अल्प वर्ग तकनीकों में किया जाता है। भिन्नता के गुणों के साथ-साथ सममित होने के कारण यह प्रायः अन्य हानि फलनों की अपेक्षा में अधिक गणितीय रूप से विनयशील होता है: लक्ष्य के ऊपर त्रुटि लक्ष्य के नीचे त्रुटि के समान परिमाण के समान हानि का कारण बनती है। यदि लक्ष्य t है, तो द्विघात हानि फलन है | ||
:<math>\lambda(x) = C (t-x)^2 \; </math> | :<math>\lambda(x) = C (t-x)^2 \; </math> | ||
कुछ स्थिर C के लिए; स्थिरांक के मान | कुछ स्थिर C के लिए; स्थिरांक के मान में किसी निर्णय पर कोई अंतर नहीं होता है, और इसे 1 के सामान समुच्चय के रूप अनुपस्थित किया जा सकता है। इसे 'वर्ग त्रुटि हानि' ('SEL') के रूप में भी जाना जाता है। <ref name="ttf2001" /> | ||
[[t- परीक्षण]], [[प्रतिगमन विश्लेषण]] मॉडल, प्रयोगों के डिजाइन, और | [[t- परीक्षण]], [[प्रतिगमन विश्लेषण]] मॉडल, प्रयोगों के डिजाइन, और अधिक कुछ सहित कई सामान्य आँकड़े, रैखिक प्रतिगमन सिद्धांत का उपयोग करके अल्प से अल्प वर्ग विधियों का उपयोग करते हैं, जो द्विघात हानि फलन पर आधारित है। | ||
द्विघात हानि फलन का उपयोग [[रैखिक-द्विघात नियामक|रैखिक-द्विघात इष्टतम नियंत्रण]] समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। | द्विघात हानि फलन का उपयोग [[रैखिक-द्विघात नियामक|रैखिक-द्विघात इष्टतम नियंत्रण]] समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। प्रायः हानि को उनके वांछित मूल्यों से ब्याज के चर के विचलन में [[द्विघात रूप]] में व्यक्त किया जाता है; यह दृष्टिकोण विनयशील है क्योंकि इसका परिणाम रैखिक प्रथम-क्रम स्थितियों में होता है। [[स्टोकेस्टिक नियंत्रण]] के संदर्भ में, द्विघात रूप के अपेक्षित मूल्य का उपयोग किया जाता है। | ||
=== 0-1 हानि फलन === | === 0-1 हानि फलन === | ||
सांख्यिकी और निर्णय सिद्धांत में, | सांख्यिकी और निर्णय सिद्धांत में, प्रायः उपयोग किया जाने वाला हानि फलन 0-1 हानि फलन होता है | ||
: <math>L(\hat{y}, y) = I(\hat{y} \ne y), \, </math> | : <math>L(\hat{y}, y) = I(\hat{y} \ne y), \, </math> | ||
जहां <math>I</math> सूचक फलन है। | |||
तात्पर्य यदि इनपुट का मूल्यांकन सही है, तो आउटपुट 1 है। अन्यथा, यदि इनपुट का मूल्यांकन | तात्पर्य यह है कि यदि इनपुट का मूल्यांकन सही है, तो आउटपुट 1 है। अन्यथा, यदि इनपुट का मूल्यांकन त्रुटिपूर्ण है, तो आउटपुट 0 होगा। | ||
== हानि और उद्देश्य | == हानि और उद्देश्य फलनों का निर्माण == | ||
{{See also|स्कोरिंग नियम}} | {{See also|स्कोरिंग नियम}} | ||
कई अनुप्रयोगों में, विशेष | कई अनुप्रयोगों में, विशेष स्थिति के रूप में हानि फलनों सहित वस्तुनिष्ठ फलन, समस्या निर्माण द्वारा निर्धारित किए जाते हैं। अन्य स्थितियों में, निर्णयकर्ता की वरीयता को अनुकूलन के लिए उपयुक्त रूप में अदिश-मूल्यवान फलन (जिसे [[उपयोगिता]] फलन भी कहा जाता है) द्वारा प्राप्त और प्रतिनिधित्व किया जाना चाहिए- [[रैगनार फ्रेश|राग्नार फ्रिस्क]] ने अपने नोबेल पुरस्कार व्याख्यान में इस समस्या पर प्रकाश डाला है।<ref>{{cite book| first=Ragnar|last=Frisch|date=1969 |title= The Nobel Prize–Prize Lecture|chapter=From utopian theory to practical applications: the case of econometrics|url=https://www.nobelprize.org/prizes/economic-sciences/1969/frisch/lecture/|access-date=15 February 2021}}</ref> | ||
उद्देश्य | उद्देश्य फलनों के निर्माण के लिए उपस्थित विधियों को दो समर्पित सम्मेलनों की परिचालन में एकत्रित किया जाता है।<ref name="TangianGruber1997">{{Cite book | ||
|last1=Tangian |first1=Andranik |last2=Gruber |first2=Josef |date=1997 | |last1=Tangian |first1=Andranik |last2=Gruber |first2=Josef |date=1997 | ||
|title= Constructing Scalar-Valued Objective Functions. Proceedings of the Third International Conference on Econometric Decision Models: Constructing Scalar-Valued Objective Functions, University of Hagen, held in Katholische Akademie Schwerte September 5–8, 1995|series= Lecture Notes in Economics and Mathematical Systems |volume=453|isbn= 978-3-540-63061-6 |doi= 10.1007/978-3-642-48773-6 | |title= Constructing Scalar-Valued Objective Functions. Proceedings of the Third International Conference on Econometric Decision Models: Constructing Scalar-Valued Objective Functions, University of Hagen, held in Katholische Akademie Schwerte September 5–8, 1995|series= Lecture Notes in Economics and Mathematical Systems |volume=453|isbn= 978-3-540-63061-6 |doi= 10.1007/978-3-642-48773-6 | ||
Line 41: | Line 41: | ||
|series= Lecture Notes in Economics and Mathematical Systems |volume=510 | |series= Lecture Notes in Economics and Mathematical Systems |volume=510 | ||
|publisher=Springer |location=Berlin|isbn= 978-3-540-42669-1 |doi= 10.1007/978-3-642-56038-5 }}</ref> | |publisher=Springer |location=Berlin|isbn= 978-3-540-42669-1 |doi= 10.1007/978-3-642-56038-5 }}</ref> | ||
और 271 जर्मन क्षेत्रों के मध्य | विशेष रूप से, [[Andranik Tangian|एंड्रानिक टैंजियन]] ने दिखाया कि सबसे उपयोगी उद्देश्य फलन-द्विघात और योज्य कुछ उदासीनता बिंदुओं द्वारा निर्धारित किए जाते हैं। उन्होंने इस संपत्ति का उपयोग इन वस्तुनिष्ठ फलनों के निर्माण के लिए मॉडल में या तो [[क्रमिक उपयोगिता]] या [[कार्डिनल उपयोगिता]] आँकड़ों से किया था, जो निर्णय निर्माताओं के साथ कंप्यूटर-सहायता प्राप्त साक्षात्कारों के माध्यम से प्राप्त हुए थे।<ref name="Tangian2002">{{Cite journal|last=Tangian |first=Andranik |year=2002|title= Constructing a quasi-concave quadratic objective function from interviewing a decision maker|journal= European Journal of Operational Research |volume=141 |issue=3 |pages=608–640 |doi=10.1016/S0377-2217(01)00185-0 |s2cid= 39623350 }}</ref><ref name="Tangian2004additiveUtility">{{Cite journal|last=Tangian |first=Andranik |year=2004|title= A model for ordinally constructing additive objective functions|journal= European Journal of Operational Research |volume=159 |issue=2 |pages=476–512|doi = 10.1016/S0377-2217(03)00413-2 | s2cid= 31019036 }}</ref> अन्य विचारों के अतिरिक्त, उन्होंने 16 वेस्टफेलियन विश्वविद्यालयों और 271 जर्मन क्षेत्रों के मध्य अकर्मण्य दर को सामान करने के लिए यूरोपीय सब्सिडी के लिए बजट को इष्टतम रूप से वितरित करने के लिए वस्तुनिष्ठ फलनों का निर्माण किया।<ref name="Tangian2004universityBudgets">{{Cite journal |last=Tangian |first=Andranik |year=2004 |title= Redistribution of university budgets with respect to the status quo |journal= European Journal of Operational Research |volume=157 |issue=2 |pages=409–428|doi = 10.1016/S0377-2217(03)00271-6 }}</ref><ref name="Tangian2008RegionalEnemployment">{{Cite journal|last=Tangian |first=Andranik |year=2008 | ||
|title= Multi-criteria optimization of regional employment policy: A simulation analysis for Germany |journal= Review of Urban and Regional Development |volume=20 |issue=2|pages=103–122 |url= https://onlinelibrary.wiley.com/doi/10.1111/j.1467-940X.2008.00144.x |doi = 10.1111/j.1467-940X.2008.00144.x }}</ref> | |title= Multi-criteria optimization of regional employment policy: A simulation analysis for Germany |journal= Review of Urban and Regional Development |volume=20 |issue=2|pages=103–122 |url= https://onlinelibrary.wiley.com/doi/10.1111/j.1467-940X.2008.00144.x |doi = 10.1111/j.1467-940X.2008.00144.x }}</ref> | ||
== अपेक्षित | == अपेक्षित हानि == | ||
कुछ संदर्भों में, हानि फलन का मान ही यादृच्छिक | कुछ संदर्भों में, हानि फलन का मान ही यादृच्छिक चर है क्योंकि यह यादृच्छिक चर X के परिणाम पर निर्भर करता है। | ||
=== सांख्यिकी === | === सांख्यिकी === | ||
[[फ़्रीक्वेंटिस्ट]] और बायेसियन | [[फ़्रीक्वेंटिस्ट]] और बायेसियन सांख्यिकीय सिद्धांत दोनों में हानि फलन के [[अपेक्षित मूल्य]] के आधार पर निर्णय लेना सम्मिलित है; चूंकि, इस चर को दो प्रतिमानों के अनुसार भिन्न-भिन्न परिभाषित किया गया है। | ||
==== फ़्रीक्वेंटिस्ट अपेक्षित | ==== फ़्रीक्वेंटिस्ट अपेक्षित हानि ==== | ||
हम | हम पूर्व में होने वाले संदर्भ में अपेक्षित हानि को परिभाषित करते हैं। इसे प्रेक्षित मान X के प्रायिकता वितरण, P<sub>''θ''</sub> के संबंध में अपेक्षित मान लेकर प्राप्त किया जाता है इसे निर्णय नियम δ और पैरामीटर θ के 'संकटफलन' के रूप में भी जाना जाता है।<ref>{{SpringerEOM| title=Risk of a statistical procedure |id=R/r082490 |first=M.S. |last=Nikulin}}</ref><ref> | ||
{{cite book | {{cite book | ||
|title=Statistical decision theory and Bayesian Analysis | |title=Statistical decision theory and Bayesian Analysis | ||
Line 73: | Line 72: | ||
|doi=10.1007/0-387-71599-1 |isbn=978-0-387-95231-4 |mr=1835885 | |doi=10.1007/0-387-71599-1 |isbn=978-0-387-95231-4 |mr=1835885 | ||
|series=Springer Texts in Statistics | |series=Springer Texts in Statistics | ||
}}</ref> | }}</ref> यहाँ निर्णय नियम X के परिणाम पर निर्भर करता है। संकट फलन निम्न द्वारा दिया गया है: | ||
: <math>R(\theta, \delta) = \operatorname{E}_\theta L\big( \theta, \delta(X) \big) = \int_X L\big( \theta, \delta(x) \big) \, \mathrm{d} P_\theta (x) .</math> | : <math>R(\theta, \delta) = \operatorname{E}_\theta L\big( \theta, \delta(X) \big) = \int_X L\big( \theta, \delta(x) \big) \, \mathrm{d} P_\theta (x) .</math> | ||
यहाँ, θ प्रकृति की निश्चित | यहाँ, θ प्रकृति की निश्चित किंतु संभवतः अज्ञात अवस्था है, X सांख्यिकीय जनसंख्या से स्टोकेस्टिक रूप से खींची गई टिप्पणियों का सदिश है, <math>\operatorname{E}_\theta</math>, X के सभी जनसंख्या मूल्यों पर अपेक्षा है, dP<sub>''θ''</sub> X के घटना स्थान पर संभावना माप है (θ द्वारा पैरामीट्रिज्ड) और समाकलन का मूल्यांकन X के संपूर्ण [[समर्थन (माप सिद्धांत)]] पर किया जाता है। | ||
==== बायेसियन अपेक्षित | ==== बायेसियन अपेक्षित हानि ==== | ||
बायेसियन दृष्टिकोण में, [[पश्च वितरण]] | बायेसियन दृष्टिकोण में, अपेक्षा की गणना पैरामीटर θ के [[पश्च वितरण]] {{pi}}<sup>*</sup> का उपयोग करके की जाती है: | ||
:<math>\rho(\pi^*,a) = \int_\Theta L(\theta, a) \, \mathrm{d} \pi^* (\theta).</math> | :<math>\rho(\pi^*,a) = \int_\Theta L(\theta, a) \, \mathrm{d} \pi^* (\theta).</math> | ||
जिससे परिचालन का चयन करना चाहिए जो अपेक्षित हानि को अल्प करता है। चूंकि इसका परिणाम उसी क्रिया को चयन करने में होगा जैसा कि फ़्रीक्वेंटिस्ट संकट का उपयोग करके चयन किया जाएगा, बायेसियन दृष्टिकोण पर बल दिया गया है कि कोई केवल वास्तविक देखे गए आँकड़ों के अनुसार इष्टतम परिचालन को चयन करने में रुचि रखता है, जबकि वास्तविक फ़्रीक्वेंटिस्ट इष्टतम निर्णय नियम का चयन करता है। जो सभी संभव प्रेक्षणों का फलन है, अधिक कठिन समस्या है। | |||
====सांख्यिकी में उदाहरण ==== | ====सांख्यिकी में उदाहरण ==== | ||
* | * अदिश पैरामीटर θ के लिए, निर्णय फलन जिसका आउटपुट <math>\hat\theta</math> θ का अनुमान है, और द्विघात हानि फलन ([[चुकता त्रुटि हानि|वर्ग त्रुटि हानि]]) <math display="block"> L(\theta,\hat\theta)=(\theta-\hat\theta)^2,</math> संकट फलन अनुमान की औसत वर्ग त्रुटि बन जाता है, <math display="block">R(\theta,\hat\theta)= \operatorname{E}_\theta(\theta-\hat\theta)^2.</math>माध्य वर्ग त्रुटि को अल्प कर के पाया गया अनुमानक पश्च वितरण के माध्य का अनुमान लगाता है। | ||
* घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व | * घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व फलन ही है। हानि फलन को सामान्यतः उपयुक्त [[समारोह स्थान|फलन स्थान]] में मानक (गणित) के रूप में चयन किया जाता है। उदाहरण के लिए, L<sup>2 मानदंड के लिए,<sup><math display="block">L(f,\hat f) = \|f-\hat f\|_2^2\,,</math> संकट फलन माध्य एकीकृत वर्ग त्रुटि बन जाता है <math display="block">R(f,\hat f)=\operatorname{E} \|f-\hat f\|^2.\,</math> | ||
=== अनिश्चितता के | === अनिश्चितता के अनुसार आर्थिक विकल्प === | ||
अर्थशास्त्र में, अनिश्चितता के | अर्थशास्त्र में, अनिश्चितता के अनुसार निर्णय लेने को प्रायः ब्याज के अनिश्चित चर के वॉन न्यूमैन-मॉर्गेनस्टर्न यूटिलिटी फलन का उपयोग करके तैयार किया जाता है, जैसे कि अवधि के अंत में संपत्ति का होना। चूँकि इस चर का मान अनिश्चित है, इसलिए उपयोगिता फलन का मान अनिश्चित है; यह उपयोगिता का अपेक्षित मूल्य है जिसे अधिकतम किया जाता है। | ||
== [[निर्णय नियम]] == | == [[निर्णय नियम]] == | ||
निर्णय नियम इष्टतमता मानदंड का उपयोग करके विकल्प बनाता है। | निर्णय नियम इष्टतमता मानदंड का उपयोग करके विकल्प बनाता है। कुछ सामान्यतः उपयोग किए जाने वाले मानदंड हैं: | ||
* | *न्यूनतम: सबसे अल्प हानि के साथ निर्णय नियम का चयन करें- अर्थात, सबसे दुर्गति स्थिति (अधिकतम संभव) हानि को अल्प करें: <math display="block"> \underset{\delta} {\operatorname{arg\,min}} \ \max_{\theta \in \Theta} \ R(\theta,\delta). </math> | ||
*[[अपरिवर्तनीय अनुमानक]]: निर्णय नियम | *[[अपरिवर्तनीय अनुमानक]]: निर्णय नियम का चयन करें जो अपरिवर्तनीय आवश्यकता को पूर्ण करता है। | ||
*न्यूनतम औसत हानि के साथ निर्णय नियम | *न्यूनतम औसत हानि के साथ निर्णय नियम का चयन करें (अर्थात हानि फलन के अपेक्षित मूल्य को अल्प करें): <math display="block"> \underset{\delta} {\operatorname{arg\,min}} \operatorname{E}_{\theta \in \Theta} [R(\theta,\delta)] = \underset{\delta} {\operatorname{arg\,min}} \ \int_{\theta \in \Theta} R(\theta,\delta) \, p(\theta) \,d\theta. </math> | ||
== हानि | == हानि फलन का चयन == | ||
ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष | ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष प्रारम्भ समस्या के संदर्भ में अनुभव किए गए वास्तविक स्वीफलन भिन्नता के अनुरूप अनुमानक का चयन करने की आवश्यकता होती है। इस प्रकार, हानि फलनों के प्रारम्भ उपयोग में, प्रारम्भ समस्या को मॉडल करने के लिए किस सांख्यिकीय पद्धति का उपयोग करना है, यह उस हानि को जानने पर निर्भर करता है जो समस्या की विशेष परिस्थितियों में त्रुटिपूर्ण होने से अनुभव किया जाएगा।<ref>{{cite book |last=Pfanzagl |first=J. |year=1994 |title=Parametric Statistical Theory |location=Berlin |publisher=Walter de Gruyter |isbn=978-3-11-013863-4 }}</ref> | ||
सामान्य उदाहरण में [[स्थान पैरामीटर]] का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के | सामान्य उदाहरण में [[स्थान पैरामीटर]] का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के अनुसार, माध्य या औसत स्थान का अनुमान लगाने के लिए आँकड़ा है जो अल्प से अल्प वर्गों के अनुसार अनुभवी हानि को अल्प करता है। वर्ग-त्रुटि हानि फलन, जबकि माध्य अनुमानक है जो निरपेक्ष-अंतर हानि फलन के अनुसार अनुभव किए गए अपेक्षित हानि को अल्प करता है। अभी भी भिन्न-भिन्न अनुमानक अन्य, अल्प सामान्य परिस्थितियों में इष्टतम होंगे। | ||
[[अर्थ]]शास्त्र में, जब एजेंट संकट तटस्थ होता है, | [[अर्थ]]-शास्त्र में, जब एजेंट संकट तटस्थ होता है, जो उद्देश्य फलन को केवल मौद्रिक मात्रा के अपेक्षित मूल्य के रूप में व्यक्त किया जाता है, जैसे कि लाभ, आय या अंत-अवधि का धन, [[जोखिम से बचने|संकट-प्रतिकूल]] या संकट एजेंटों के लिए, हानि को उपयोगिता के नकारात्मक के रूप में मापा जाता है, और अनुकूलित किए जाने वाले उद्देश्य फलन उपयोगिता का अपेक्षित मूल्य है। | ||
व्यय के अन्य उपाय संभव हैं, उदाहरण के लिए [[सार्वजनिक स्वास्थ्य]] या [[सुरक्षा इंजीनियरिंग|सुरक्षा अभियांत्रिकी]] के क्षेत्र में [[मृत्यु दर]] या रुग्णता का होना। | |||
अधिकांश अनुकूलन एल्गोरिदम के लिए, हानि फलन होना वांछनीय है जो विश्व स्तर पर [[निरंतर | अधिकांश अनुकूलन एल्गोरिदम के लिए, हानि फलन होना वांछनीय है जो विश्व स्तर पर [[निरंतर फलन|निरंतर]] फलन और भिन्न-भिन्न फलन हो। | ||
दो | दो अधिक ही सामान्य रूप से उपयोग किए जाने वाले हानि फलन औसत वर्ग त्रुटि हैं, <math>L(a) = a^2</math>, और [[पूर्ण विचलन]], <math>L(a)=|a|</math> है। चूंकि पूर्ण हानि यह है कि <math>a=0</math> यह भिन्न-भिन्न नहीं है। वर्ग हानि यह है कि इसमें [[ग़ैर|अन्य]] का वर्चस्व होने की प्रवृत्ति होती है- जब समुच्चय पर योग किया जाता है <math>a</math> (जैसा कि <math display="inline">\sum_{i=1}^n L(a_i) </math>), अंतिम योग औसत a-मान की अभिव्यक्ति के अतिरिक्त कुछ विशेष रूप से बड़े a-मानों का परिणाम होता है। | ||
हानि फलन का | हानि फलन का चयन के इच्छानुसार नहीं है। यह अधिक ही प्रतिबंधात्मक है और कभी-कभी हानि फलन को इसके वांछनीय गुणों से चिह्नित किया जा सकता है।<ref>Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book {{cite book|title=Robust and Non-Robust Models in Statistics|first1=B.|last1=Klebanov|first2=Svetlozat T.|last2=Rachev|first3=Frank J.|last3=Fabozzi|publisher=Nova Scientific Publishers, Inc.|location=New York|year=2009}} (and references there).</ref> रुचि के सिद्धांतों में, उदाहरण के लिए, i.i.d की स्थिति में सममित आंकड़ों के वर्ग की पूर्णता में अवलोकन, पूर्ण सूचना का सिद्धांत और कुछ अन्य की आवश्यकता है। | ||
डब्ल्यू एडवर्ड्स डेमिंग और [[नसीम निकोलस तालेब]] का | डब्ल्यू एडवर्ड्स डेमिंग और [[नसीम निकोलस तालेब]] का विचार है कि अनुभवजन्य वास्तविकता, उत्तम गणितीय गुण नहीं, हानि के फलनों का चयन करने का एकमात्र आधार होना चाहिए, और वास्तविक हानि प्रायः गणितीय रूप से उत्तम नहीं होते हैं और भिन्न-भिन्न, निरंतर, सममित आदि नहीं होते हैं। उदाहरण के लिए, व्यक्ति जो वायुयान के गेट के बंद होने से पूर्व आता है वह अभी भी वायुयान बना सकता है, किंतु व्यक्ति जो पश्चात में आता है वह नहीं कर सकता है, अंतराल और विषमता जो थोड़ा शीघ्र पहुंचने की अपेक्षा में थोड़ा देर से पहुंचना अधिक मूल्य बना देता है। दवा की मात्रा में, अधिक अल्प दवा की व्यय प्रभावकारिता की कमी हो सकती है, जबकि अधिक व्यय सहनीय विषाक्तता हो सकती है, विषमता का एक और उदाहरण है। ट्रैफ़िक, पाइप, बीम, पारिस्थितिकी, जलवायु, आदि बिंदु तक थोड़े ध्यान देने योग्य परिवर्तन के साथ बढ़े हुए भार या तनाव को सहन कर सकते हैं, फिर वापस आ जाते हैं या भयावह रूप से खंडित हो सकते हैं। डेमिंग और तालेब विचार देते हैं कि ये स्थितियाँ, वास्तविक जीवन की समस्याओं में सामान्य हैं, संभवतः शास्त्रीय कोमल, निरंतर, सममित, विभेदक स्तिथियों की अपेक्षा में अधिक सामान्य हैं।<ref>{{Cite book|title=Out of the Crisis|last=Deming|first=W. Edwards|publisher=The MIT Press|year=2000|isbn=9780262541152}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[वर्गीकरण के लिए हानि फलन]] | |||
* [[वर्गीकरण के लिए हानि | *अधिकतम हानि पर छूट | ||
* | |||
* [[काज हानि]] | * [[काज हानि]] | ||
* [[स्कोरिंग नियम]] | * [[स्कोरिंग नियम]] | ||
Line 136: | Line 134: | ||
|bibcode=1985sdtb.book.....B }} | |bibcode=1985sdtb.book.....B }} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Loss Function]] | |||
[[Category:CS1 errors]] | |||
[[Category:Collapse templates|Loss Function]] | |||
[[Category:Created On 13/02/2023|Loss Function]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page|Loss Function]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Loss Function]] | |||
[[Category:Pages with empty portal template|Loss Function]] | |||
[[Category:Pages with script errors|Loss Function]] | |||
[[Category:Portal-inline template with redlinked portals|Loss Function]] | |||
[[Category:Short description with empty Wikidata description|Loss Function]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category: | [[Category:Templates that add a tracking category]] | ||
[[Category: | [[Category:Templates that generate short descriptions]] | ||
[[Category:Templates using TemplateData]] |
Latest revision as of 16:14, 12 October 2023
गणितीय अनुकूलन और निर्णय सिद्धांत में, हानि फलन या व्यय फलन (कभी-कभी त्रुटि फलन भी कहा जाता है) [1] ऐसा फलन है जो वास्तविक संख्या पर घटना (संभाव्यता सिद्धांत) या अधिक चर के मूल्यों को मानचित्रित करता है जो घटना से जुड़ी कुछ व्यय का प्रतिनिधित्व करता है। अनुकूलन समस्या हानि फलन को अल्प करने का प्रयास करती है। उद्देश्य फलन या तो हानि फलन है या इसका विपरीत (विशिष्ट डोमेन में, विभिन्न रूप से पुरस्कार फलन, लाभ फलन, उपयोगिता फलन, फिटनेस फलन, आदि) कहा जाता है, जिस स्थिति में इसे अधिकतम किया जाना है। हानि फलन में पदानुक्रम के कई स्तरों में शब्द सम्मिलित हो सकते हैं।
आँकड़ों में, सामान्यतः पैरामीटर अनुमान के लिए हानि फलन का उपयोग किया जाता है, और प्रश्न में घटना आँकड़ों के उदाहरण के लिए अनुमानित और वास्तविक मूल्यों के मध्य अंतर का कुछ फलन है। पियरे-साइमन लाप्लास जितनी प्राचीन अवधारणा को 20वीं दशक के मध्य में अब्राहम वाल्ड द्वारा आंकड़ों में पुनः प्रस्तुत किया गया था।[2] अर्थशास्त्र के संदर्भ में, उदाहरण के लिए, यह सामान्यतः आर्थिक व्यय या निर्णय सिद्धांत है। सांख्यिकीय वर्गीकरण में, यह उदाहरण के त्रुटिपूर्ण वर्गीकरण के लिए दंड है। जिवानांकिकी में, इसका उपयोग बीमा संदर्भ में प्रीमियम पर भुगतान किए गए मॉडल लाभों के लिए विशेष रूप से 1920 के दशक में हेराल्ड क्रैमर के फलनों के पश्चात से किया जाता है।[3] इष्टतम नियंत्रण में, वांछित मूल्य प्राप्त करने में विफल रहने के लिए हानि का दंड है। वित्तीय संकट प्रबंधन में, फलन को मौद्रिक हानि के लिए मानचित्रित किया जाता है।
उदाहरण
निर्णय सिद्धांत
लियोनार्ड जे. सैवेज ने विचार दिया कि अन्य-बायेसियन विधियों जैसे कि न्यूनतम उपयोग करते हुए, हानि का फलन निर्णय सिद्धांत के विचार पर आधारित होना चाहिए, अर्थात, किसी निर्णय से जुड़ी हानि सबसे उत्तम निर्णय के परिणामों के मध्य का अंतर होना चाहिए। यह किया जा सकता था कि अंतर्निहित परिस्थितियों की जानकारी हो और निर्णय जो वास्तव में उनके ज्ञात होने से पूर्व लिया गया हो।
द्विघात हानि फलन
द्विघात हानि फलन का उपयोग करते समय अल्प से अल्प वर्ग तकनीकों में किया जाता है। भिन्नता के गुणों के साथ-साथ सममित होने के कारण यह प्रायः अन्य हानि फलनों की अपेक्षा में अधिक गणितीय रूप से विनयशील होता है: लक्ष्य के ऊपर त्रुटि लक्ष्य के नीचे त्रुटि के समान परिमाण के समान हानि का कारण बनती है। यदि लक्ष्य t है, तो द्विघात हानि फलन है
कुछ स्थिर C के लिए; स्थिरांक के मान में किसी निर्णय पर कोई अंतर नहीं होता है, और इसे 1 के सामान समुच्चय के रूप अनुपस्थित किया जा सकता है। इसे 'वर्ग त्रुटि हानि' ('SEL') के रूप में भी जाना जाता है। [1]
t- परीक्षण, प्रतिगमन विश्लेषण मॉडल, प्रयोगों के डिजाइन, और अधिक कुछ सहित कई सामान्य आँकड़े, रैखिक प्रतिगमन सिद्धांत का उपयोग करके अल्प से अल्प वर्ग विधियों का उपयोग करते हैं, जो द्विघात हानि फलन पर आधारित है।
द्विघात हानि फलन का उपयोग रैखिक-द्विघात इष्टतम नियंत्रण समस्याओं में भी किया जाता है। इन समस्याओं में, अनिश्चितता के अभाव में भी, सभी लक्ष्य चरों के वांछित मूल्यों को प्राप्त करना संभव नहीं हो सकता है। प्रायः हानि को उनके वांछित मूल्यों से ब्याज के चर के विचलन में द्विघात रूप में व्यक्त किया जाता है; यह दृष्टिकोण विनयशील है क्योंकि इसका परिणाम रैखिक प्रथम-क्रम स्थितियों में होता है। स्टोकेस्टिक नियंत्रण के संदर्भ में, द्विघात रूप के अपेक्षित मूल्य का उपयोग किया जाता है।
0-1 हानि फलन
सांख्यिकी और निर्णय सिद्धांत में, प्रायः उपयोग किया जाने वाला हानि फलन 0-1 हानि फलन होता है
जहां सूचक फलन है।
तात्पर्य यह है कि यदि इनपुट का मूल्यांकन सही है, तो आउटपुट 1 है। अन्यथा, यदि इनपुट का मूल्यांकन त्रुटिपूर्ण है, तो आउटपुट 0 होगा।
हानि और उद्देश्य फलनों का निर्माण
कई अनुप्रयोगों में, विशेष स्थिति के रूप में हानि फलनों सहित वस्तुनिष्ठ फलन, समस्या निर्माण द्वारा निर्धारित किए जाते हैं। अन्य स्थितियों में, निर्णयकर्ता की वरीयता को अनुकूलन के लिए उपयुक्त रूप में अदिश-मूल्यवान फलन (जिसे उपयोगिता फलन भी कहा जाता है) द्वारा प्राप्त और प्रतिनिधित्व किया जाना चाहिए- राग्नार फ्रिस्क ने अपने नोबेल पुरस्कार व्याख्यान में इस समस्या पर प्रकाश डाला है।[4]
उद्देश्य फलनों के निर्माण के लिए उपस्थित विधियों को दो समर्पित सम्मेलनों की परिचालन में एकत्रित किया जाता है।[5][6]
विशेष रूप से, एंड्रानिक टैंजियन ने दिखाया कि सबसे उपयोगी उद्देश्य फलन-द्विघात और योज्य कुछ उदासीनता बिंदुओं द्वारा निर्धारित किए जाते हैं। उन्होंने इस संपत्ति का उपयोग इन वस्तुनिष्ठ फलनों के निर्माण के लिए मॉडल में या तो क्रमिक उपयोगिता या कार्डिनल उपयोगिता आँकड़ों से किया था, जो निर्णय निर्माताओं के साथ कंप्यूटर-सहायता प्राप्त साक्षात्कारों के माध्यम से प्राप्त हुए थे।[7][8] अन्य विचारों के अतिरिक्त, उन्होंने 16 वेस्टफेलियन विश्वविद्यालयों और 271 जर्मन क्षेत्रों के मध्य अकर्मण्य दर को सामान करने के लिए यूरोपीय सब्सिडी के लिए बजट को इष्टतम रूप से वितरित करने के लिए वस्तुनिष्ठ फलनों का निर्माण किया।[9][10]
अपेक्षित हानि
कुछ संदर्भों में, हानि फलन का मान ही यादृच्छिक चर है क्योंकि यह यादृच्छिक चर X के परिणाम पर निर्भर करता है।
सांख्यिकी
फ़्रीक्वेंटिस्ट और बायेसियन सांख्यिकीय सिद्धांत दोनों में हानि फलन के अपेक्षित मूल्य के आधार पर निर्णय लेना सम्मिलित है; चूंकि, इस चर को दो प्रतिमानों के अनुसार भिन्न-भिन्न परिभाषित किया गया है।
फ़्रीक्वेंटिस्ट अपेक्षित हानि
हम पूर्व में होने वाले संदर्भ में अपेक्षित हानि को परिभाषित करते हैं। इसे प्रेक्षित मान X के प्रायिकता वितरण, Pθ के संबंध में अपेक्षित मान लेकर प्राप्त किया जाता है इसे निर्णय नियम δ और पैरामीटर θ के 'संकटफलन' के रूप में भी जाना जाता है।[11][12][13][14] यहाँ निर्णय नियम X के परिणाम पर निर्भर करता है। संकट फलन निम्न द्वारा दिया गया है:
यहाँ, θ प्रकृति की निश्चित किंतु संभवतः अज्ञात अवस्था है, X सांख्यिकीय जनसंख्या से स्टोकेस्टिक रूप से खींची गई टिप्पणियों का सदिश है, , X के सभी जनसंख्या मूल्यों पर अपेक्षा है, dPθ X के घटना स्थान पर संभावना माप है (θ द्वारा पैरामीट्रिज्ड) और समाकलन का मूल्यांकन X के संपूर्ण समर्थन (माप सिद्धांत) पर किया जाता है।
बायेसियन अपेक्षित हानि
बायेसियन दृष्टिकोण में, अपेक्षा की गणना पैरामीटर θ के पश्च वितरण π* का उपयोग करके की जाती है:
जिससे परिचालन का चयन करना चाहिए जो अपेक्षित हानि को अल्प करता है। चूंकि इसका परिणाम उसी क्रिया को चयन करने में होगा जैसा कि फ़्रीक्वेंटिस्ट संकट का उपयोग करके चयन किया जाएगा, बायेसियन दृष्टिकोण पर बल दिया गया है कि कोई केवल वास्तविक देखे गए आँकड़ों के अनुसार इष्टतम परिचालन को चयन करने में रुचि रखता है, जबकि वास्तविक फ़्रीक्वेंटिस्ट इष्टतम निर्णय नियम का चयन करता है। जो सभी संभव प्रेक्षणों का फलन है, अधिक कठिन समस्या है।
सांख्यिकी में उदाहरण
- अदिश पैरामीटर θ के लिए, निर्णय फलन जिसका आउटपुट θ का अनुमान है, और द्विघात हानि फलन (वर्ग त्रुटि हानि) संकट फलन अनुमान की औसत वर्ग त्रुटि बन जाता है,माध्य वर्ग त्रुटि को अल्प कर के पाया गया अनुमानक पश्च वितरण के माध्य का अनुमान लगाता है।
- घनत्व के अनुमान में, अज्ञात पैरामीटर संभाव्यता घनत्व फलन ही है। हानि फलन को सामान्यतः उपयुक्त फलन स्थान में मानक (गणित) के रूप में चयन किया जाता है। उदाहरण के लिए, L2 मानदंड के लिए,संकट फलन माध्य एकीकृत वर्ग त्रुटि बन जाता है
अनिश्चितता के अनुसार आर्थिक विकल्प
अर्थशास्त्र में, अनिश्चितता के अनुसार निर्णय लेने को प्रायः ब्याज के अनिश्चित चर के वॉन न्यूमैन-मॉर्गेनस्टर्न यूटिलिटी फलन का उपयोग करके तैयार किया जाता है, जैसे कि अवधि के अंत में संपत्ति का होना। चूँकि इस चर का मान अनिश्चित है, इसलिए उपयोगिता फलन का मान अनिश्चित है; यह उपयोगिता का अपेक्षित मूल्य है जिसे अधिकतम किया जाता है।
निर्णय नियम
निर्णय नियम इष्टतमता मानदंड का उपयोग करके विकल्प बनाता है। कुछ सामान्यतः उपयोग किए जाने वाले मानदंड हैं:
- न्यूनतम: सबसे अल्प हानि के साथ निर्णय नियम का चयन करें- अर्थात, सबसे दुर्गति स्थिति (अधिकतम संभव) हानि को अल्प करें:
- अपरिवर्तनीय अनुमानक: निर्णय नियम का चयन करें जो अपरिवर्तनीय आवश्यकता को पूर्ण करता है।
- न्यूनतम औसत हानि के साथ निर्णय नियम का चयन करें (अर्थात हानि फलन के अपेक्षित मूल्य को अल्प करें):
हानि फलन का चयन
ध्वनि सांख्यिकीय अभ्यास के लिए किसी विशेष प्रारम्भ समस्या के संदर्भ में अनुभव किए गए वास्तविक स्वीफलन भिन्नता के अनुरूप अनुमानक का चयन करने की आवश्यकता होती है। इस प्रकार, हानि फलनों के प्रारम्भ उपयोग में, प्रारम्भ समस्या को मॉडल करने के लिए किस सांख्यिकीय पद्धति का उपयोग करना है, यह उस हानि को जानने पर निर्भर करता है जो समस्या की विशेष परिस्थितियों में त्रुटिपूर्ण होने से अनुभव किया जाएगा।[15]
सामान्य उदाहरण में स्थान पैरामीटर का अनुमान लगाना सम्मिलित है। विशिष्ट सांख्यिकीय मान्यताओं के अनुसार, माध्य या औसत स्थान का अनुमान लगाने के लिए आँकड़ा है जो अल्प से अल्प वर्गों के अनुसार अनुभवी हानि को अल्प करता है। वर्ग-त्रुटि हानि फलन, जबकि माध्य अनुमानक है जो निरपेक्ष-अंतर हानि फलन के अनुसार अनुभव किए गए अपेक्षित हानि को अल्प करता है। अभी भी भिन्न-भिन्न अनुमानक अन्य, अल्प सामान्य परिस्थितियों में इष्टतम होंगे।
अर्थ-शास्त्र में, जब एजेंट संकट तटस्थ होता है, जो उद्देश्य फलन को केवल मौद्रिक मात्रा के अपेक्षित मूल्य के रूप में व्यक्त किया जाता है, जैसे कि लाभ, आय या अंत-अवधि का धन, संकट-प्रतिकूल या संकट एजेंटों के लिए, हानि को उपयोगिता के नकारात्मक के रूप में मापा जाता है, और अनुकूलित किए जाने वाले उद्देश्य फलन उपयोगिता का अपेक्षित मूल्य है।
व्यय के अन्य उपाय संभव हैं, उदाहरण के लिए सार्वजनिक स्वास्थ्य या सुरक्षा अभियांत्रिकी के क्षेत्र में मृत्यु दर या रुग्णता का होना।
अधिकांश अनुकूलन एल्गोरिदम के लिए, हानि फलन होना वांछनीय है जो विश्व स्तर पर निरंतर फलन और भिन्न-भिन्न फलन हो।
दो अधिक ही सामान्य रूप से उपयोग किए जाने वाले हानि फलन औसत वर्ग त्रुटि हैं, , और पूर्ण विचलन, है। चूंकि पूर्ण हानि यह है कि यह भिन्न-भिन्न नहीं है। वर्ग हानि यह है कि इसमें अन्य का वर्चस्व होने की प्रवृत्ति होती है- जब समुच्चय पर योग किया जाता है (जैसा कि ), अंतिम योग औसत a-मान की अभिव्यक्ति के अतिरिक्त कुछ विशेष रूप से बड़े a-मानों का परिणाम होता है।
हानि फलन का चयन के इच्छानुसार नहीं है। यह अधिक ही प्रतिबंधात्मक है और कभी-कभी हानि फलन को इसके वांछनीय गुणों से चिह्नित किया जा सकता है।[16] रुचि के सिद्धांतों में, उदाहरण के लिए, i.i.d की स्थिति में सममित आंकड़ों के वर्ग की पूर्णता में अवलोकन, पूर्ण सूचना का सिद्धांत और कुछ अन्य की आवश्यकता है।
डब्ल्यू एडवर्ड्स डेमिंग और नसीम निकोलस तालेब का विचार है कि अनुभवजन्य वास्तविकता, उत्तम गणितीय गुण नहीं, हानि के फलनों का चयन करने का एकमात्र आधार होना चाहिए, और वास्तविक हानि प्रायः गणितीय रूप से उत्तम नहीं होते हैं और भिन्न-भिन्न, निरंतर, सममित आदि नहीं होते हैं। उदाहरण के लिए, व्यक्ति जो वायुयान के गेट के बंद होने से पूर्व आता है वह अभी भी वायुयान बना सकता है, किंतु व्यक्ति जो पश्चात में आता है वह नहीं कर सकता है, अंतराल और विषमता जो थोड़ा शीघ्र पहुंचने की अपेक्षा में थोड़ा देर से पहुंचना अधिक मूल्य बना देता है। दवा की मात्रा में, अधिक अल्प दवा की व्यय प्रभावकारिता की कमी हो सकती है, जबकि अधिक व्यय सहनीय विषाक्तता हो सकती है, विषमता का एक और उदाहरण है। ट्रैफ़िक, पाइप, बीम, पारिस्थितिकी, जलवायु, आदि बिंदु तक थोड़े ध्यान देने योग्य परिवर्तन के साथ बढ़े हुए भार या तनाव को सहन कर सकते हैं, फिर वापस आ जाते हैं या भयावह रूप से खंडित हो सकते हैं। डेमिंग और तालेब विचार देते हैं कि ये स्थितियाँ, वास्तविक जीवन की समस्याओं में सामान्य हैं, संभवतः शास्त्रीय कोमल, निरंतर, सममित, विभेदक स्तिथियों की अपेक्षा में अधिक सामान्य हैं।[17]
यह भी देखें
- वर्गीकरण के लिए हानि फलन
- अधिकतम हानि पर छूट
- काज हानि
- स्कोरिंग नियम
- सांख्यिकीय संकट
संदर्भ
- ↑ 1.0 1.1 Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2001). The Elements of Statistical Learning. Springer. p. 18. ISBN 0-387-95284-5.
- ↑ Wald, A. (1950). Statistical Decision Functions. Wiley.
- ↑ Cramér, H. (1930). On the mathematical theory of risk.
{{cite book}}
:|work=
ignored (help) - ↑ Frisch, Ragnar (1969). "From utopian theory to practical applications: the case of econometrics". The Nobel Prize–Prize Lecture. Retrieved 15 February 2021.
- ↑ Tangian, Andranik; Gruber, Josef (1997). Constructing Scalar-Valued Objective Functions. Proceedings of the Third International Conference on Econometric Decision Models: Constructing Scalar-Valued Objective Functions, University of Hagen, held in Katholische Akademie Schwerte September 5–8, 1995. Lecture Notes in Economics and Mathematical Systems. Vol. 453. Berlin: Springer. doi:10.1007/978-3-642-48773-6. ISBN 978-3-540-63061-6.
- ↑ Tangian, Andranik; Gruber, Josef (2002). Constructing and Applying Objective Functions. Proceedings of the Fourth International Conference on Econometric Decision Models Constructing and Applying Objective Functions, University of Hagen, held in Haus Nordhelle, August, 28 — 31, 2000. Lecture Notes in Economics and Mathematical Systems. Vol. 510. Berlin: Springer. doi:10.1007/978-3-642-56038-5. ISBN 978-3-540-42669-1.
- ↑ Tangian, Andranik (2002). "Constructing a quasi-concave quadratic objective function from interviewing a decision maker". European Journal of Operational Research. 141 (3): 608–640. doi:10.1016/S0377-2217(01)00185-0. S2CID 39623350.
- ↑ Tangian, Andranik (2004). "A model for ordinally constructing additive objective functions". European Journal of Operational Research. 159 (2): 476–512. doi:10.1016/S0377-2217(03)00413-2. S2CID 31019036.
- ↑ Tangian, Andranik (2004). "Redistribution of university budgets with respect to the status quo". European Journal of Operational Research. 157 (2): 409–428. doi:10.1016/S0377-2217(03)00271-6.
- ↑ Tangian, Andranik (2008). "Multi-criteria optimization of regional employment policy: A simulation analysis for Germany". Review of Urban and Regional Development. 20 (2): 103–122. doi:10.1111/j.1467-940X.2008.00144.x.
- ↑ Nikulin, M.S. (2001) [1994], "Risk of a statistical procedure", Encyclopedia of Mathematics, EMS Press
- ↑ Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. Bibcode:1985sdtb.book.....B. ISBN 978-0-387-96098-2. MR 0804611.
- ↑ DeGroot, Morris (2004) [1970]. Optimal Statistical Decisions. Wiley Classics Library. ISBN 978-0-471-68029-1. MR 2288194.
- ↑ Robert, Christian P. (2007). The Bayesian Choice. Springer Texts in Statistics (2nd ed.). New York: Springer. doi:10.1007/0-387-71599-1. ISBN 978-0-387-95231-4. MR 1835885.
- ↑ Pfanzagl, J. (1994). Parametric Statistical Theory. Berlin: Walter de Gruyter. ISBN 978-3-11-013863-4.
- ↑ Detailed information on mathematical principles of the loss function choice is given in Chapter 2 of the book Klebanov, B.; Rachev, Svetlozat T.; Fabozzi, Frank J. (2009). Robust and Non-Robust Models in Statistics. New York: Nova Scientific Publishers, Inc. (and references there).
- ↑ Deming, W. Edwards (2000). Out of the Crisis. The MIT Press. ISBN 9780262541152.
अग्रिम पठन
- Aretz, Kevin; Bartram, Söhnke M.; Pope, Peter F. (April–June 2011). "Asymmetric Loss Functions and the Rationality of Expected Stock Returns" (PDF). International Journal of Forecasting. 27 (2): 413–437. doi:10.1016/j.ijforecast.2009.10.008. SSRN 889323.
- Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. Bibcode:1985sdtb.book.....B. ISBN 978-0-387-96098-2. MR 0804611.