वलय सिद्धांत: Difference between revisions
(Created page with "{{about|a mathematical concept|}} {{short description|Branch of algebra}} {{Algebraic structures|ring}} {{Ring theory sidebar}} बीजगणित में, वलय...") |
m (Abhishek moved page रिंग थ्योरी to वलय सिद्धांत without leaving a redirect) |
(No difference)
|
Revision as of 18:39, 17 February 2023
Algebraic structures |
---|
Algebraic structure → Ring theory Ring theory |
---|
बीजगणित में, वलय सिद्धांत वलय (गणित) का अध्ययन है[1]—बीजगणितीय संरचनाएं जिनमें जोड़ और गुणन परिभाषित हैं और पूर्णांकों के लिए परिभाषित उन संक्रियाओं के समान गुण हैं। वलय सिद्धांत छल्लों की संरचना का अध्ययन करता है, एक बीजगणित का उनका प्रतिनिधित्व, या, अलग-अलग भाषा में, मॉड्यूल (अंगूठी सिद्धांत), छल्लों की विशेष कक्षाएं (समूह के छल्ले, विभाजन के छल्ले, सार्वभौमिक आवरण बीजगणित), साथ ही गुणों की एक सरणी जो सिद्धांत के भीतर और इसके अनुप्रयोगों के लिए, जैसे समरूप बीजगणित और बहुपद पहचान वलय, दोनों के लिए रुचिकर साबित हुआ।
क्रमविनिमेय वलय गैर क्रमविनिमेय वाले की तुलना में बहुत बेहतर समझे जाते हैं। बीजगणितीय ज्यामिति और बीजगणितीय संख्या सिद्धांत, जो क्रमविनिमेय वलयों के कई प्राकृतिक उदाहरण प्रदान करते हैं, ने क्रमविनिमेय वलय सिद्धांत के विकास को बहुत प्रेरित किया है, जो अब क्रमविनिमेय बीजगणित के नाम से आधुनिक गणित का एक प्रमुख क्षेत्र है। क्योंकि ये तीन क्षेत्र (बीजगणितीय ज्यामिति, बीजगणितीय संख्या सिद्धांत और क्रमविनिमेय बीजगणित) इतने घनिष्ठ रूप से जुड़े हुए हैं कि आमतौर पर यह तय करना मुश्किल और अर्थहीन होता है कि कोई विशेष परिणाम किस क्षेत्र से संबंधित है। उदाहरण के लिए, हिल्बर्ट का नलस्टेलेंसज़ एक प्रमेय है जो बीजगणितीय ज्यामिति के लिए मौलिक है, और इसे कम्यूटेटिव बीजगणित के संदर्भ में कहा और सिद्ध किया गया है। इसी तरह, फ़र्मेट की अंतिम प्रमेय को प्राथमिक अंकगणित के संदर्भ में कहा गया है, जो क्रमविनिमेय बीजगणित का एक हिस्सा है, लेकिन इसके प्रमाण में बीजगणितीय संख्या सिद्धांत और बीजगणितीय ज्यामिति दोनों के गहरे परिणाम शामिल हैं।
गैर-अनुवर्ती छल्ले स्वाद में काफी भिन्न होते हैं, क्योंकि अधिक असामान्य व्यवहार उत्पन्न हो सकता है। जबकि सिद्धांत अपने आप में विकसित हुआ है, हाल ही की एक प्रवृत्ति ने एक ज्यामितीय फैशन में गैर-अनुक्रमिक रिंगों के कुछ वर्गों के सिद्धांत का निर्माण करके क्रमविनिमेय विकास को समानांतर करने की मांग की है जैसे कि वे फ़ंक्शन (गणित) के छल्ले थे (गैर-गणित) मौजूदा) 'नॉनकम्यूटेटिव स्पेस'। यह प्रवृत्ति 1980 के दशक में गैर-अनुक्रमिक ज्यामिति के विकास और क्वांटम समूहों की खोज के साथ शुरू हुई। इसने गैर-अनुक्रमिक रिंगों की बेहतर समझ पैदा की है, विशेष रूप से नॉन-कम्यूटेटिव नोथेरियन रिंग्स।[2] रिंग और बुनियादी अवधारणाओं और उनके गुणों की परिभाषा के लिए, रिंग (गणित) देखें। रिंग थ्योरी में प्रयुक्त शब्दों की परिभाषाएं रिंग थ्योरी की शब्दावली में पाई जा सकती हैं।
कम्यूटेटिव रिंग्स
एक वलय को क्रमविनिमेय कहा जाता है यदि इसका गुणन क्रमविनिमेय है। क्रमविनिमेय छल्ले परिचित संख्या प्रणालियों के समान हैं, और क्रमविनिमेय छल्ले के लिए विभिन्न परिभाषाओं को पूर्णांकों के गुणों को औपचारिक रूप देने के लिए डिज़ाइन किया गया है। बीजगणितीय ज्यामिति में क्रमविनिमेय वलय भी महत्वपूर्ण हैं। क्रमविनिमेय वलय सिद्धांत में, संख्याओं को अक्सर आदर्श (अंगूठी सिद्धांत) द्वारा प्रतिस्थापित किया जाता है, और प्रधान आदर्श की परिभाषा अभाज्य संख्याओं के सार को पकड़ने की कोशिश करती है। इंटीग्रल डोमेन, गैर-तुच्छ कम्यूटेटिव रिंग जहां कोई दो गैर-शून्य तत्व शून्य देने के लिए गुणा करते हैं, पूर्णांक की एक और संपत्ति का सामान्यीकरण करते हैं और विभाज्यता का अध्ययन करने के लिए उचित क्षेत्र के रूप में कार्य करते हैं। प्रिंसिपल आदर्श डोमेन अभिन्न डोमेन हैं जिसमें प्रत्येक आदर्श को एक तत्व द्वारा उत्पन्न किया जा सकता है, पूर्णांक द्वारा साझा की जाने वाली दूसरी संपत्ति। यूक्लिडियन डोमेन अभिन्न डोमेन हैं जिनमें सबसे बड़ा सामान्य विभाजक किया जा सकता है। क्रमविनिमेय वलयों के महत्वपूर्ण उदाहरण बहुपद के वलयों और उनके कारक वलयों के रूप में बनाए जा सकते हैं। सारांश: यूक्लिडियन डोमेन ⊂ प्रमुख आदर्श डोमेन ⊂ अद्वितीय गुणनखंड डोमेन ⊂ इंटीग्रल डोमेन ⊂ कम्यूटेटिव रिंग।
बीजगणितीय ज्यामिति
बीजगणितीय ज्यामिति कई तरह से क्रमविनिमेय बीजगणित की दर्पण छवि है। यह पत्राचार हिल्बर्ट के नलस्टेलेंसज़ के साथ शुरू हुआ जो एक बीजगणितीय विविधता के बिंदुओं के बीच एक-से-एक पत्राचार स्थापित करता है, और इसकी समन्वय अंगूठी के अधिकतम आदर्शों को स्थापित करता है। इस पत्राचार को संबंधित कम्यूटेटिव रिंगों के बीजगणितीय गुणों में बीजगणितीय किस्मों के अधिकांश ज्यामितीय गुणों के अनुवाद (और साबित करने) के लिए विस्तारित और व्यवस्थित किया गया है। अलेक्जेंडर ग्रोथेंडिक ने बीजगणितीय किस्मों के एक सामान्यीकरण, योजना (गणित) की शुरुआत करके इसे पूरा किया, जिसे किसी भी कम्यूटेटिव रिंग से बनाया जा सकता है। ज्यादा ठीक, क्रमविनिमेय वलय के एक वलय का वर्णक्रम इसके प्रमुख आदर्शों का स्थान है जो जरिस्की टोपोलॉजी से सुसज्जित है, और छल्लों के एक शीफ (गणित) के साथ संवर्धित है। ये वस्तुएं एफ़िन योजनाएं हैं (एफ़ाइन किस्मों का सामान्यीकरण), और एक सामान्य योजना तब एक साथ ग्लूइंग (विशुद्ध रूप से बीजगणितीय विधियों द्वारा) प्राप्त की जाती है, ऐसी कई एफ़िन योजनाएं, चार्ट (टोपोलॉजी) को एक साथ ग्लूइंग करके कई गुना बनाने के तरीके के अनुरूप होती हैं। ) एक एटलस (टोपोलॉजी) का।
नॉनकम्यूटेटिव रिंग्स
अक्रमानुक्रमिक वलय कई प्रकार से आव्यूह (गणित) के वलयों से मिलते जुलते हैं। बीजगणितीय ज्यामिति के मॉडल के बाद, हाल ही में गैर-अनुक्रमिक ज्यामिति को गैर-अनुक्रमिक रिंगों के आधार पर परिभाषित करने का प्रयास किया गया है। गैर-अनुवर्ती छल्ले और साहचर्य बीजगणित (अंगूठियां जो सदिश स्थान भी हैं) का अक्सर मॉड्यूल के उनके श्रेणी सिद्धांत के माध्यम से अध्ययन किया जाता है। एक अंगूठी पर एक मॉड्यूल (गणित) एक एबेलियन समूह (गणित) है जो अंगूठी एंडोमोर्फिज्म की अंगूठी के रूप में कार्य करता है, जिस तरह से क्षेत्र (गणित) के समान होता है (अभिन्न डोमेन जिसमें प्रत्येक गैर-शून्य तत्व उलटा होता है) वेक्टर रिक्त स्थान पर कार्य करें। गैर-अनुक्रमिक छल्ले के उदाहरण वर्ग मैट्रिक्स (गणित) के छल्ले या अधिक आम तौर पर एबेलियन समूहों या मॉड्यूल के एंडोमोर्फिज्म के छल्ले और मोनॉइड रिंगों द्वारा दिए जाते हैं।
प्रतिनिधित्व सिद्धांत
प्रतिनिधित्व सिद्धांत गणित की एक शाखा है जो गैर-कम्यूटेटिव रिंगों पर भारी पड़ता है। यह वेक्टर रिक्त स्थान के रैखिक परिवर्तनों के रूप में उनके तत्व (सेट सिद्धांत) का प्रतिनिधित्व करके सार बीजगणित बीजगणितीय संरचनाओं का अध्ययन करता है, और अध्ययन करता है इन अमूर्त बीजगणितीय संरचनाओं पर मॉड्यूल (गणित)। संक्षेप में, एक प्रतिनिधित्व एक अमूर्त बीजगणितीय वस्तु को मैट्रिक्स (गणित) और मैट्रिक्स जोड़ और मैट्रिक्स गुणन के संदर्भ में बीजगणितीय संचालन द्वारा अपने तत्वों का वर्णन करके अधिक ठोस बनाता है, जो गैर-कम्यूटेटिव है। इस तरह के विवरण के लिए उत्तरदायी बीजगणितीय वस्तुओं में समूह (गणित), सहयोगी बीजगणित और झूठ बीजगणित शामिल हैं। इनमें से सबसे प्रमुख (और ऐतिहासिक रूप से पहला) समूह प्रतिनिधित्व है, जिसमें समूह के तत्वों को उलटा मैट्रिक्स द्वारा इस तरह से दर्शाया जाता है कि समूह संचालन मैट्रिक्स गुणन है।
कुछ प्रासंगिक प्रमेय
आम
- समरूपता प्रमेय#छल्ले
- नाकायमा की लेम्मा
संरचना प्रमेय
- आर्टिन-वेडरबर्न प्रमेय अर्धसरल छल्ले की संरचना निर्धारित करता है
- जैकबसन घनत्व प्रमेय आदिम छल्ले की संरचना निर्धारित करता है
- गोल्डी का प्रमेय सेमीप्राइम आदर्श गोल्डी रिंग की संरचना निर्धारित करता है
- ज़ारिस्की-सैमुअल प्रमेय एक क्रमविनिमेय प्रधान आदर्श वलय की संरचना निर्धारित करता है
- हॉपकिंस-लेविट्ज़की प्रमेय एक नोथेरियन रिंग के लिए एक आर्टिनियन रिंग होने के लिए आवश्यक और पर्याप्त शर्तें देता है
- मोरिटा सिद्धांत में प्रमेय निर्धारित होते हैं जब दो रिंगों में समकक्ष मॉड्यूल श्रेणियां होती हैं
- कार्टन-ब्रेयर-हुआ प्रमेय विभाजन के छल्ले की संरचना पर अंतर्दृष्टि देता है
- वेडरबर्न की छोटी प्रमेय बताती है कि परिमित डोमेन (रिंग सिद्धांत) क्षेत्र (गणित) हैं
अन्य
- स्कोलेम-नोथेर प्रमेय साधारण वलयों के automorphism की विशेषता बताता है
अंगूठियों की संरचनाएं और अपरिवर्तनीय
एक क्रमविनिमेय अंगूठी का आयाम
इस खंड में, R एक क्रमविनिमेय वलय को दर्शाता है। R का क्रुल आयाम प्रधान आदर्शों की सभी श्रृंखलाओं की लंबाई n का सर्वोच्च है . यह पता चला है कि बहुपद अंगूठी एक क्षेत्र पर k का आयाम n है। आयाम सिद्धांत के मौलिक प्रमेय में कहा गया है कि निम्नलिखित संख्याएं एक नोथेरियन स्थानीय अंगूठी के लिए मेल खाती हैं :[3]
- आर का क्रुल आयाम।
- जनरेटर की न्यूनतम संख्या -प्राथमिक आदर्श।
- ग्रेडेड रिंग का आयाम (समतुल्य रूप से, 1 प्लस इसके हिल्बर्ट बहुपद की डिग्री)।
एक कम्यूटेटिव रिंग R को कैटेनरी रिंग कहा जाता है यदि प्रधान आदर्शों के प्रत्येक जोड़े के लिए , प्रधान आदर्शों की एक परिमित श्रृंखला मौजूद है यह इस अर्थ में अधिकतम है कि श्रृंखला में दो आदर्शों के बीच एक अतिरिक्त प्रधान आदर्श सम्मिलित करना असंभव है, और ऐसी सभी अधिकतम श्रृंखलाएँ और समान लंबाई हो। व्यावहारिक रूप से अनुप्रयोगों में दिखाई देने वाले सभी नोथेरियन रिंग कैटेनरी हैं। रैटलिफ ने साबित किया कि एक नोएथेरियन लोकल इंटीग्रल डोमेन आर कैटेनरी है अगर और केवल अगर हर प्रमुख आदर्श के लिए ,
कहाँ की ऊँचाई (रिंग थ्योरी) है .[4] यदि R एक अभिन्न डोमेन है जो एक अंतिम रूप से उत्पन्न k-बीजगणित है, तो इसका आयाम k के ऊपर इसके अंशों के क्षेत्र की श्रेष्ठता की डिग्री है। यदि S एक क्रमविनिमेय वलय R का अभिन्न विस्तार है, तो S और R का आयाम समान है।
बारीकी से संबंधित अवधारणाएं गहराई (रिंग थ्योरी) और वैश्विक आयाम की हैं। सामान्य तौर पर, यदि R एक नोथेरियन स्थानीय वलय है, तो R की गहराई R के आयाम से कम या उसके बराबर है। जब समानता होती है, तो R को कोहेन-मैकाले वलय कहा जाता है। एक नियमित स्थानीय वलय कोहेन-मैकाले वलय का एक उदाहरण है। यह Serre का एक प्रमेय है कि R एक नियमित स्थानीय वलय है यदि और केवल यदि इसका परिमित वैश्विक आयाम है और उस स्थिति में वैश्विक आयाम R का क्रुल आयाम है। इसका महत्व यह है कि एक वैश्विक आयाम एक समरूप बीजगणित धारणा है .
मोरिता तुल्यता
दो वलय R, S को मोरिटा समतुल्य कहा जाता है यदि R पर बाएँ मॉड्यूल की श्रेणी S के ऊपर बाएँ मॉड्यूल की श्रेणी के बराबर है। वास्तव में, दो कम्यूटेटिव रिंग जो मोरिटा समतुल्य हैं, आइसोमॉर्फिक होना चाहिए, इसलिए धारणा नहीं जोड़ती है क्रमविनिमेय वलयों के श्रेणी सिद्धांत में कुछ भी नया। हालांकि, कम्यूटेटिव रिंग मोरिटा नॉनकम्यूटेटिव रिंग्स के बराबर हो सकते हैं, इसलिए मोरिटा समानता आइसोमोर्फिज्म की तुलना में मोटे हैं। बीजगणितीय टोपोलॉजी और कार्यात्मक विश्लेषण में मोरिटा तुल्यता विशेष रूप से महत्वपूर्ण है।
=== एक अंगूठी और पिकार्ड समूह === पर पूरी तरह से उत्पन्न प्रोजेक्टिव मॉड्यूल मान लीजिए कि R एक क्रमविनिमेय वलय है और आर पर सूक्ष्म रूप से उत्पन्न प्रक्षेपी मॉड्यूल के आइसोमोर्फिज्म वर्गों का सेट; चलो भी उपसमुच्चय जिसमें स्थिर रैंक n वाले उपसमुच्चय होते हैं। (एक मॉड्यूल एम का रैंक निरंतर कार्य है .[5]) आमतौर पर Pic(R) द्वारा निरूपित किया जाता है। यह एक एबेलियन समूह है जिसे आर का पिकार्ड समूह कहा जाता है।[6] यदि R, R के अंशों F के क्षेत्र के साथ एक अभिन्न डोमेन है, तो समूहों का एक सटीक क्रम है:[7]
कहाँ R के भिन्नात्मक आदर्शों का समुच्चय है। यदि R एक नियमित रिंग डोमेन है (अर्थात, किसी भी प्रमुख आदर्श पर नियमित), तो Pic(R) वास्तव में R का विभाजक वर्ग समूह है।[8] उदाहरण के लिए, यदि R एक प्रमुख आदर्श डोमेन है, तो Pic(R) गायब हो जाता है। बीजगणितीय संख्या सिद्धांत में, R को पूर्णांकों का वलय माना जाएगा, जो Dedekind है और इस प्रकार नियमित है। यह इस प्रकार है कि Pic(R) एक परिमित समूह (वर्ग संख्या की परिमितता) है जो एक PID होने से पूर्णांकों के वलय के विचलन को मापता है। कोई समूह को पूरा करने पर भी विचार कर सकता है ; इसका परिणाम क्रमविनिमेय वलय K होता है0(आर)। ध्यान दें कि के0(आर) = के0(एस) यदि दो कम्यूटेटिव रिंग्स आर, एस मोरिटा समकक्ष हैं।
गैर-अनुवर्ती छल्ले की संरचना
क्रमविनिमेय वलय की तुलना में एक अक्रमानुक्रमिक वलय की संरचना अधिक जटिल होती है। उदाहरण के लिए, सरल रिंग रिंग मौजूद हैं जिनमें कोई गैर-तुच्छ उचित (दो तरफा) आदर्श नहीं होते हैं, फिर भी गैर-तुच्छ उचित बाएं या दाएं आदर्श होते हैं। कम्यूटेटिव रिंग्स के लिए विभिन्न इनवेरिएंट मौजूद हैं, जबकि नॉनकम्यूटेटिव रिंग्स के इनवेरिएंट्स को खोजना मुश्किल है। एक उदाहरण के रूप में, एक अंगूठी का नील-कट्टरपंथी, सभी शून्य-शक्तिशाली तत्वों का सेट, अनिवार्य रूप से एक आदर्श नहीं है, जब तक कि अंगूठी क्रमविनिमेय न हो। विशेष रूप से, सभी की अंगूठी में सभी निलपोटेंट तत्वों का सेट n × n एक डिवीजन रिंग पर मेट्रिसेस कभी भी एक आदर्श नहीं बनाते हैं, भले ही डिवीजन रिंग को चुना गया हो। हालांकि, गैर-अनुक्रमिक रिंगों के लिए परिभाषित निराडिकल के अनुरूप हैं, जो कम्यूटेटिविटी ग्रहण करने पर नीलरेडिकल के साथ मेल खाते हैं।
एक अंगूठी के जैकबसन कट्टरपंथी की अवधारणा; यानी, एक रिंग के ऊपर सरल मॉड्यूल राइट (लेफ्ट) मॉड्यूल के ऑल राइट (लेफ्ट) एनीहिलेटर (रिंग थ्योरी) का इंटरसेक्शन एक उदाहरण है। तथ्य यह है कि जैकबसन रेडिकल को रिंग में सभी अधिकतम दाएं (बाएं) आदर्शों के प्रतिच्छेदन के रूप में देखा जा सकता है, यह दर्शाता है कि रिंग की आंतरिक संरचना इसके मॉड्यूल द्वारा कैसे परिलक्षित होती है। यह भी एक तथ्य है कि रिंग में सभी अधिकतम दाएं आदर्शों का प्रतिच्छेदन, सभी रिंगों के संदर्भ में, रिंग में सभी अधिकतम बाएं आदर्शों के प्रतिच्छेदन के समान है; चाहे वलय क्रमविनिमेय हो।
गणित में अपनी सर्वव्यापकता के कारण गैर-अनुक्रमिक छल्ले अनुसंधान का एक सक्रिय क्षेत्र हैं। उदाहरण के लिए, एन-बाय-एन मैट्रिक्स (गणित) की अंगूठी ज्यामिति, भौतिकी और गणित के कई हिस्सों में प्राकृतिक होने के बावजूद गैर-अनुक्रमिक है। अधिक आम तौर पर, एबेलियन समूहों के एंडोमोर्फिज्म रिंग्स शायद ही कभी कम्यूटिव होते हैं, सबसे सरल उदाहरण क्लेन चार-समूह की एंडोमोर्फिज्म रिंग है।
सबसे प्रसिद्ध कड़ाई से गैर-अनुवर्ती अंगूठी में से एक चतुष्कोण है।
अनुप्रयोग
एक संख्या क्षेत्र के पूर्णांकों की अंगूठी
एक बीजगणितीय किस्म का निर्देशांक वलय
यदि एक्स एक एफ़िन बीजगणितीय विविधता है, तो एक्स पर सभी नियमित कार्यों का सेट एक अंगूठी बनाता है जिसे एक्स की समन्वय अंगूठी कहा जाता है। एक अनुमानित विविधता के लिए, एक समान अंगूठी होती है जिसे सजातीय समन्वय अंगूठी कहा जाता है। वे अंगूठियां अनिवार्य रूप से वैसी ही चीजें हैं जैसे किस्में: वे अनिवार्य रूप से एक अनोखे तरीके से मेल खाती हैं। इसे या तो हिल्बर्ट के नलस्टेलेंसैट्ज या योजना-सैद्धांतिक निर्माण (यानी, स्पेक और प्रोज) के माध्यम से देखा जा सकता है।
आक्रमणकारियों की अंगूठी
शास्त्रीय अपरिवर्तनीय सिद्धांत में एक बुनियादी (और शायद सबसे मौलिक) प्रश्न बहुपद अंगूठी में बहुपदों को खोजना और उनका अध्ययन करना है जो V पर एक परिमित समूह (या अधिक सामान्यतः रिडक्टिव) G की कार्रवाई के तहत अपरिवर्तनीय हैं। मुख्य उदाहरण सममित कार्यों की अंगूठी है: सममित बहुपद बहुपद हैं जो चर के क्रमपरिवर्तन के तहत अपरिवर्तनीय हैं। सममित बहुपदों का मूलभूत प्रमेय बताता है कि यह वलय है कहाँ प्राथमिक सममित बहुपद हैं।
इतिहास
क्रमविनिमेय वलय सिद्धांत बीजगणितीय संख्या सिद्धांत, बीजगणितीय ज्यामिति और अपरिवर्तनीय सिद्धांत में उत्पन्न हुआ। इन विषयों के विकास के केंद्र बीजगणितीय संख्या क्षेत्रों और बीजगणितीय कार्य क्षेत्रों में पूर्णांकों के छल्ले और दो या दो से अधिक चरों में बहुपदों के छल्ले थे। अअनुक्रमणीय वलय सिद्धांत जटिल संख्याओं को विभिन्न हाइपरकॉम्प्लेक्स संख्या प्रणालियों में विस्तारित करने के प्रयासों के साथ शुरू हुआ। कम्यूटेटिव और नॉनकम्यूटेटिव रिंग्स के सिद्धांतों की उत्पत्ति 19वीं शताब्दी की शुरुआत में हुई थी, जबकि उनकी परिपक्वता 20वीं शताब्दी के तीसरे दशक में ही प्राप्त हुई थी।
अधिक सटीक रूप से, विलियम रोवन हैमिल्टन ने चतुष्कोणों और द्विभाजकों को सामने रखा; जेम्स कॉकल (वकील) ने tessarine और [[biquaternion]] प्रस्तुत किए; और विलियम किंग्डन क्लिफोर्ड विभाजन-द्विभाजित के उत्साही थे, जिसे उन्होंने बीजगणितीय मोटर्स कहा था। विषय विशेष गणितीय संरचना प्रकारों में विभाजित होने से पहले इन गैर-अनुसूचित बीजगणित, और गैर-सहयोगी झूठ बीजगणित का सार्वभौमिक बीजगणित के भीतर अध्ययन किया गया था। पुनर्संगठन का एक संकेत मॉड्यूल के प्रत्यक्ष योग # बीजीय संरचना का वर्णन करने के लिए बीजगणित के प्रत्यक्ष योग का उपयोग था।
जोसेफ वेडरबर्न (1908) और एमिल आर्टिन (1928) द्वारा मैट्रिक्स रिंग के साथ विभिन्न हाइपरकॉम्प्लेक्स नंबरों की पहचान की गई थी। वेडरबर्न की संरचना प्रमेयों को एक क्षेत्र पर परिमित-आयामी बीजगणित के लिए तैयार किया गया था जबकि आर्टिन ने उन्हें आर्टिनियन रिंगों के लिए सामान्यीकृत किया था।
1920 में, एमी नोथेर ने डब्ल्यू शमीडलर के सहयोग से आदर्श सिद्धांत के बारे में एक पेपर प्रकाशित किया जिसमें उन्होंने आदर्श (रिंग थ्योरी) को रिंग (गणित) में परिभाषित किया। अगले वर्ष उसने (गणितीय) आदर्शों के संबंध में आरोही श्रृंखला स्थितियों का विश्लेषण करते हुए, रिंगबेरेइचेन में आइडियलथोरी नामक एक ऐतिहासिक पत्र प्रकाशित किया। विख्यात बीजगणित इरविंग कपलान्स्की ने इस कार्य को क्रांतिकारी कहा;[9] प्रकाशन ने नोथेरियन रिंग शब्द को जन्म दिया, और कई अन्य गणितीय वस्तुओं को नोएदरियन (बहुविकल्पी) कहा जाता है।[9][10]
टिप्पणियाँ
- ↑ Ring theory may include also the study of rngs.
- ↑ Goodearl & Warfield (1989).
- ↑ Matsumura 1989, Theorem 13.4
- ↑ Matsumura 1989, Theorem 31.4
- ↑ Weibel 2013, Ch I, Definition 2.2.3
- ↑ Weibel 2013, Definition preceding Proposition 3.2 in Ch I
- ↑ Weibel 2013, Ch I, Proposition 3.5
- ↑ Weibel 2013, Ch I, Corollary 3.8.1
- ↑ 9.0 9.1 Kimberling 1981, p. 18.
- ↑ Dick, Auguste (1981), Emmy Noether: 1882–1935, translated by Blocher, H. I., Birkhäuser, ISBN 3-7643-3019-8, p. 44–45.
संदर्भ
- Allenby, R. B. J. T. (1991), Rings, Fields and Groups (Second ed.), Edward Arnold, London, p. xxvi+383, ISBN 0-7131-3476-3, MR 1144518
- Blyth, T.S.; Robertson, E.F. (1985), Groups, Rings and Fields: Algebra through practice, Book 3, Cambridge: Cambridge University Press, ISBN 0-521-27288-2
- Faith, Carl (1999), Rings and Things and a Fine Array of Twentieth Century Associative Algebra, Mathematical Surveys and Monographs, vol. 65, Providence, RI: American Mathematical Society, ISBN 0-8218-0993-8, MR 1657671
- Goodearl, K. R.; Warfield, R. B., Jr. (1989), An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, vol. 16, Cambridge: Cambridge University Press, ISBN 0-521-36086-2, MR 1020298
{{citation}}
: CS1 maint: multiple names: authors list (link) - Judson, Thomas W. (1997), Abstract Algebra: Theory and Applications
- Kimberling, Clark (1981), "Emmy Noether and Her Influence", in Brewer, James W; Smith, Martha K (eds.), Emmy Noether: A Tribute to Her Life and Work, Marcel Dekker, pp. 3–61
- Lam, T. Y. (1999), Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, New York: Springer-Verlag, doi:10.1007/978-1-4612-0525-8, ISBN 0-387-98428-3, MR 1653294
- Lam, T. Y. (2001), A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131 (Second ed.), New York: Springer-Verlag, doi:10.1007/978-1-4419-8616-0, ISBN 0-387-95183-0, MR 1838439
- Lam, T. Y. (2003), Exercises in Classical Ring Theory, Problem Books in Mathematics (Second ed.), New York: Springer-Verlag, ISBN 0-387-00500-5, MR 2003255
- Matsumura, Hideyuki (1989), Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8 (Second ed.), Cambridge, UK.: Cambridge University Press, ISBN 0-521-36764-6, MR 1011461
- McConnell, J. C.; Robson, J. C. (2001), Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, Providence, RI: American Mathematical Society, doi:10.1090/gsm/030, ISBN 0-8218-2169-5, MR 1811901
- O'Connor, J. J.; Robertson, E. F. (September 2004), "The development of ring theory", MacTutor History of Mathematics Archive
- Pierce, Richard S. (1982), Associative Algebras, Graduate Texts in Mathematics, vol. 88, New York: Springer-Verlag, ISBN 0-387-90693-2, MR 0674652
- Rowen, Louis H. (1988), Ring Theory, Vol. I, Pure and Applied Mathematics, vol. 127, Boston, MA: Academic Press, ISBN 0-12-599841-4, MR 0940245. Vol. II, Pure and Applied Mathematics 128, ISBN 0-12-599842-2.
- Weibel, Charles A. (2013), The K-book: An introduction to algebraic K-theory, Graduate Studies in Mathematics, vol. 145, Providence, RI: American Mathematical Society, ISBN 978-0-8218-9132-2, MR 3076731