हाइजेनबर्ग चित्र: Difference between revisions
(Created page with "{{Short description|Formulation of quantum mechanics}} {{Use dmy dates|date=December 2019}} {{Quantum mechanics|cTopic=Formulations}} भौतिकी में, हाइ...") |
(TEXT) |
||
Line 3: | Line 3: | ||
{{Quantum mechanics|cTopic=Formulations}} | {{Quantum mechanics|cTopic=Formulations}} | ||
भौतिकी में, हाइजेनबर्ग चित्र या हाइजेनबर्ग प्रतिनिधित्व<ref>{{cite web|title=हाइजेनबर्ग प्रतिनिधित्व|url=http://www.encyclopediaofmath.org/index.php/Heisenberg_representation|publisher=Encyclopedia of Mathematics| access-date=3 September 2013}}</ref> [[क्वांटम यांत्रिकी]] का एक [[गतिशील चित्र]] (1925 में [[वर्नर हाइजेनबर्ग]] के कारण) है जिसमें [[ऑपरेटर (भौतिकी)]] (अवलोकन | भौतिकी में, हाइजेनबर्ग चित्र या हाइजेनबर्ग प्रतिनिधित्व<ref>{{cite web|title=हाइजेनबर्ग प्रतिनिधित्व|url=http://www.encyclopediaofmath.org/index.php/Heisenberg_representation|publisher=Encyclopedia of Mathematics| access-date=3 September 2013}}</ref> [[क्वांटम यांत्रिकी]] का एक [[गतिशील चित्र|सूत्रीकरण]] (1925 में [[वर्नर हाइजेनबर्ग]] के कारण) है जिसमें [[ऑपरेटर (भौतिकी)|प्रचालक]] (अवलोकन और अन्य) समय पर निर्भरता सम्मिलित करते हैं, लेकिन सदिश स्थिति समय-निरपेक्ष हैं, एक स्वेच्छाचारी निश्चित [[आधार (रैखिक बीजगणित)|आधार]] सिद्धांत को दृढ़ता से अंतर्निहित करता है। | ||
यह श्रोडिंगर | यह श्रोडिंगर चित्र के विपरीत है जिसमें प्रचालक स्थिर हैं, इसके बदले, और स्थिति समय के साथ विकसित होती हैं। समय-निर्भरता के संबंध में दो चित्र केवल एक आधार परिवर्तन से भिन्न होते हैं, जो [[सक्रिय और निष्क्रिय परिवर्तन|सक्रिय और निष्क्रिय परिवर्तनों]] के बीच के अंतर के सामान होता है। हाइजेनबर्ग चित्र एक स्वेच्छाचारी आधार पर [[मैट्रिक्स यांत्रिकी]] का सूत्रीकरण है, जिसमें हैमिल्टन आवश्यक रूप से विकर्ण नहीं है। | ||
यह आगे एक तीसरे, | यह आगे एक तीसरे, मिश्रण, चित्र, अंतःक्रियात्मक चित्र को परिभाषित करने का कार्य करता है। | ||
== गणितीय विवरण == | == गणितीय विवरण == | ||
क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में | क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में अवस्था सदिश |ψ⟩ समय के साथ नहीं बदलते हैं, जबकि वेधशालाएँ {{mvar|A}} संतुष्ट करते हैं | ||
{{Equation box 1 | {{Equation box 1 | ||
|indent =: | |indent =: | ||
Line 19: | Line 19: | ||
|border colour = #0073CF | |border colour = #0073CF | ||
|background colour=#F9FFF7}} | |background colour=#F9FFF7}} | ||
जहां | जहां हाइजेनबर्ग और श्रोडिंगर चित्र में क्रमशः "H" और "S" लेबल देखे जा सकते हैं, {{mvar|H}} [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन]] है और {{math|[·,·]}} दो प्रचालकों (इस मामले में {{mvar|H}} और {{mvar|A}}) के [[कम्यूटेटर|दिक्परिवर्तक]] को दर्शाता है। अपेक्षा मान लेने से स्वचालित रूप से [[एरेनफेस्ट प्रमेय]] उत्पन्न होता है, जो [[पत्राचार सिद्धांत|संगति नियम]] में चित्रित किया गया है। | ||
स्टोन-वॉन न्यूमैन प्रमेय द्वारा, हाइजेनबर्ग चित्र और श्रोडिंगर चित्र एकात्मक रूप से समतुल्य हैं, [[हिल्बर्ट अंतरिक्ष]] में केवल एक [[परिवर्तन सिद्धांत (क्वांटम यांत्रिकी)]]। कुछ अर्थों में, वर्नर हाइजेनबर्ग चित्र समतुल्य श्रोडिंगर चित्र की तुलना में अधिक स्वाभाविक और सुविधाजनक है, विशेष रूप से | स्टोन-वॉन न्यूमैन प्रमेय द्वारा, हाइजेनबर्ग चित्र और श्रोडिंगर चित्र एकात्मक रूप से समतुल्य हैं, [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] में केवल एक [[परिवर्तन सिद्धांत (क्वांटम यांत्रिकी)|परिवर्तन सिद्धांत]]। कुछ अर्थों में, वर्नर हाइजेनबर्ग चित्र समतुल्य श्रोडिंगर चित्र की तुलना में अधिक स्वाभाविक और सुविधाजनक है, विशेष रूप से सापेक्षतावादी सिद्धांतों के लिए है। हाइजेनबर्ग चित्र में [[लोरेंट्ज़ इनवेरिएंस]] प्रकट होता है, क्योंकि अवस्था सदिश समय या स्थान को अलग नहीं करते हैं। | ||
इस दृष्टिकोण में [[शास्त्रीय भौतिकी]] के साथ अधिक प्रत्यक्ष समानता भी है: [[पॉइसन ब्रैकेट]] द्वारा उपरोक्त | इस दृष्टिकोण में [[शास्त्रीय भौतिकी]] के साथ अधिक प्रत्यक्ष समानता भी है: [[पॉइसन ब्रैकेट|प्वासों ब्रेकेट]] द्वारा उपरोक्त दिक्परिवर्तक को सरलता से बदलकर, हाइजेनबर्ग समीकरण [[हैमिल्टनियन यांत्रिकी]] में एक समीकरण को कम कर देता है। | ||
== श्रोडिंगर समीकरण के लिए हाइजेनबर्ग | == श्रोडिंगर समीकरण के लिए हाइजेनबर्ग समीकरण की समानता == | ||
शिक्षाशास्त्र के लिए, हाइजेनबर्ग चित्र को बाद के, लेकिन अधिक परिचित, श्रोडिंगर चित्र से यहाँ प्रस्तुत किया गया है। | शिक्षाशास्त्र के लिए, हाइजेनबर्ग चित्र को बाद के, लेकिन अधिक परिचित, श्रोडिंगर चित्र से यहाँ प्रस्तुत किया गया है। | ||
दिए गए श्रोडिंगर राज्य |ψ(t)⟩ के लिए, एक प्रेक्षण योग्य ए का उम्मीद मूल्य, जो एक [[हर्मिटियन]] [[रैखिक ऑपरेटर]] है, द्वारा दिया गया है | दिए गए श्रोडिंगर राज्य |ψ(t)⟩ के लिए, एक प्रेक्षण योग्य ए का उम्मीद मूल्य, जो एक [[हर्मिटियन]] [[रैखिक ऑपरेटर|रैखिक प्रचालक]] है, द्वारा दिया गया है | ||
<math display="block"> \lang A \rang _t = \lang \psi (t) | A | \psi(t) \rang.</math> | <math display="block"> \lang A \rang _t = \lang \psi (t) | A | \psi(t) \rang.</math> | ||
श्रोडिंगर | श्रोडिंगर चित्र में, राज्य |ψ(t)⟩ समय पर {{math|''t''}} राज्य से संबंधित है |ψ(0)⟩ समय 0 पर एकात्मक समय-विकास प्रचालक द्वारा, {{math|''U''(''t'')}}, | ||
<math display="block"> |\psi(t)\rangle = U(t) |\psi(0)\rangle.</math> | <math display="block"> |\psi(t)\rangle = U(t) |\psi(0)\rangle.</math> | ||
हाइजेनबर्ग | हाइजेनबर्ग चित्र में, सभी अवस्था सदिश को उनके प्रारंभिक मूल्यों पर स्थिर माना जाता है |ψ(0)⟩, जबकि प्रचालक समय के अनुसार विकसित होते हैं | ||
<math display="block"> A(t) := U^{\dagger}(t) A U(t) \, .</math> | |||
टाइम-इवोल्यूशन | टाइम-इवोल्यूशन प्रचालक के लिए श्रोडिंगर समीकरण है | ||
<math display="block"> \frac{d}{dt} U(t) = -\frac{i H}{\hbar } U(t) </math> जहां H हैमिल्टनियन है और ħ [[घटी हुई प्लैंक स्थिरांक]] है और i के बराबर है <math>\sqrt{-1}</math>. | <math display="block"> \frac{d}{dt} U(t) = -\frac{i H}{\hbar } U(t) </math> जहां H हैमिल्टनियन है और ħ [[घटी हुई प्लैंक स्थिरांक]] है और i के बराबर है <math>\sqrt{-1}</math>. | ||
Line 57: | Line 57: | ||
& = \frac{i}{\hbar} \left( H A(t) - A(t) H \right) + e^{+i H t / \hbar} \left(\frac{\partial A}{\partial t}\right) e^{-i H t / \hbar} . | & = \frac{i}{\hbar} \left( H A(t) - A(t) H \right) + e^{+i H t / \hbar} \left(\frac{\partial A}{\partial t}\right) e^{-i H t / \hbar} . | ||
\end{align}</math> | \end{align}</math> | ||
यहाँ {{math|∂''A''/∂''t''}} प्रारंभिक ए का समय व्युत्पन्न है, परिभाषित ए (टी) | यहाँ {{math|∂''A''/∂''t''}} प्रारंभिक ए का समय व्युत्पन्न है, परिभाषित ए (टी) प्रचालक नहीं। अंतिम समीकरण तब से है {{math|exp(−''i H t/ħ'')}} के साथ यात्रा करता है {{math|''H''}}. | ||
समीकरण ऊपर परिभाषित ए (टी) द्वारा हल किया गया है, जैसा कि उपयोग से स्पष्ट है | समीकरण ऊपर परिभाषित ए (टी) द्वारा हल किया गया है, जैसा कि उपयोग से स्पष्ट है | ||
Line 71: | Line 71: | ||
वास्तव में, मनमाने ढंग से कठोर हिल्बर्ट अंतरिक्ष आधार |ψ(0)⟩ दृश्य से पीछे हट गया है, और केवल विशिष्ट अपेक्षाओं के मूल्यों या वेधशालाओं के मैट्रिक्स तत्वों को लेने के अंतिम चरण पर विचार किया जाता है। | वास्तव में, मनमाने ढंग से कठोर हिल्बर्ट अंतरिक्ष आधार |ψ(0)⟩ दृश्य से पीछे हट गया है, और केवल विशिष्ट अपेक्षाओं के मूल्यों या वेधशालाओं के मैट्रिक्स तत्वों को लेने के अंतिम चरण पर विचार किया जाता है। | ||
== | == दिक्परिवर्तक संबंध == | ||
प्रचालकों की समय पर निर्भरता के कारण दिक्परिवर्तक संबंध श्रोडिंगर चित्र से भिन्न दिख सकते हैं। उदाहरण के लिए, प्रचालकों पर विचार करें {{math|''x''(''t''<sub>1</sub>), ''x''(''t''<sub>2</sub>), ''p''(''t''<sub>1</sub>)}} और {{math|''p''(''t''<sub>2</sub>)}}. उन प्रचालकों का समय विकास प्रणाली के हैमिल्टनियन पर निर्भर करता है। एक आयामी हार्मोनिक ऑसीलेटर को ध्यान में रखते हुए, | |||
<math display="block">H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} ,</math> | <math display="block">H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} ,</math> | ||
स्थिति और संवेग संचालकों का विकास इसके द्वारा दिया गया है: | स्थिति और संवेग संचालकों का विकास इसके द्वारा दिया गया है: | ||
Line 82: | Line 82: | ||
<math display="block">x(t) = x_0 \cos(\omega t) + \frac{p_0}{\omega m}\sin(\omega t) ,</math> | <math display="block">x(t) = x_0 \cos(\omega t) + \frac{p_0}{\omega m}\sin(\omega t) ,</math> | ||
<math display="block">p(t) = p_0 \cos(\omega t) - m \omega x_0 \sin(\omega t) .</math> | <math display="block">p(t) = p_0 \cos(\omega t) - m \omega x_0 \sin(\omega t) .</math> | ||
प्रत्यक्ष संगणना अधिक सामान्य | प्रत्यक्ष संगणना अधिक सामान्य दिक्परिवर्तक संबंध उत्पन्न करती है, | ||
<math display="block">[x(t_1), x(t_2)] = \frac{i\hbar}{m\omega} \sin\left(\omega t_2 - \omega t_1\right) ,</math> | <math display="block">[x(t_1), x(t_2)] = \frac{i\hbar}{m\omega} \sin\left(\omega t_2 - \omega t_1\right) ,</math> | ||
<math display="block">[p(t_1), p(t_2)] = i\hbar m\omega \sin\left(\omega t_2 - \omega t_1\right) ,</math> | <math display="block">[p(t_1), p(t_2)] = i\hbar m\omega \sin\left(\omega t_2 - \omega t_1\right) ,</math> |
Revision as of 18:22, 6 March 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
भौतिकी में, हाइजेनबर्ग चित्र या हाइजेनबर्ग प्रतिनिधित्व[1] क्वांटम यांत्रिकी का एक सूत्रीकरण (1925 में वर्नर हाइजेनबर्ग के कारण) है जिसमें प्रचालक (अवलोकन और अन्य) समय पर निर्भरता सम्मिलित करते हैं, लेकिन सदिश स्थिति समय-निरपेक्ष हैं, एक स्वेच्छाचारी निश्चित आधार सिद्धांत को दृढ़ता से अंतर्निहित करता है।
यह श्रोडिंगर चित्र के विपरीत है जिसमें प्रचालक स्थिर हैं, इसके बदले, और स्थिति समय के साथ विकसित होती हैं। समय-निर्भरता के संबंध में दो चित्र केवल एक आधार परिवर्तन से भिन्न होते हैं, जो सक्रिय और निष्क्रिय परिवर्तनों के बीच के अंतर के सामान होता है। हाइजेनबर्ग चित्र एक स्वेच्छाचारी आधार पर मैट्रिक्स यांत्रिकी का सूत्रीकरण है, जिसमें हैमिल्टन आवश्यक रूप से विकर्ण नहीं है।
यह आगे एक तीसरे, मिश्रण, चित्र, अंतःक्रियात्मक चित्र को परिभाषित करने का कार्य करता है।
गणितीय विवरण
क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में अवस्था सदिश |ψ⟩ समय के साथ नहीं बदलते हैं, जबकि वेधशालाएँ A संतुष्ट करते हैं
जहां हाइजेनबर्ग और श्रोडिंगर चित्र में क्रमशः "H" और "S" लेबल देखे जा सकते हैं, H हैमिल्टनियन है और [·,·] दो प्रचालकों (इस मामले में H और A) के दिक्परिवर्तक को दर्शाता है। अपेक्षा मान लेने से स्वचालित रूप से एरेनफेस्ट प्रमेय उत्पन्न होता है, जो संगति नियम में चित्रित किया गया है।
स्टोन-वॉन न्यूमैन प्रमेय द्वारा, हाइजेनबर्ग चित्र और श्रोडिंगर चित्र एकात्मक रूप से समतुल्य हैं, हिल्बर्ट स्थान में केवल एक परिवर्तन सिद्धांत। कुछ अर्थों में, वर्नर हाइजेनबर्ग चित्र समतुल्य श्रोडिंगर चित्र की तुलना में अधिक स्वाभाविक और सुविधाजनक है, विशेष रूप से सापेक्षतावादी सिद्धांतों के लिए है। हाइजेनबर्ग चित्र में लोरेंट्ज़ इनवेरिएंस प्रकट होता है, क्योंकि अवस्था सदिश समय या स्थान को अलग नहीं करते हैं।
इस दृष्टिकोण में शास्त्रीय भौतिकी के साथ अधिक प्रत्यक्ष समानता भी है: प्वासों ब्रेकेट द्वारा उपरोक्त दिक्परिवर्तक को सरलता से बदलकर, हाइजेनबर्ग समीकरण हैमिल्टनियन यांत्रिकी में एक समीकरण को कम कर देता है।
श्रोडिंगर समीकरण के लिए हाइजेनबर्ग समीकरण की समानता
शिक्षाशास्त्र के लिए, हाइजेनबर्ग चित्र को बाद के, लेकिन अधिक परिचित, श्रोडिंगर चित्र से यहाँ प्रस्तुत किया गया है।
दिए गए श्रोडिंगर राज्य |ψ(t)⟩ के लिए, एक प्रेक्षण योग्य ए का उम्मीद मूल्य, जो एक हर्मिटियन रैखिक प्रचालक है, द्वारा दिया गया है
अब यह इस प्रकार है
उपरोक्त समीकरण का एक महत्वपूर्ण विशेष मामला प्राप्त होता है यदि हैमिल्टनियन (क्वांटम यांत्रिकी) समय के साथ भिन्न नहीं होता है। तब समय-विकास संचालक को इस रूप में लिखा जा सकता है
समीकरण ऊपर परिभाषित ए (टी) द्वारा हल किया गया है, जैसा कि उपयोग से स्पष्ट है बीसीएच फॉर्मूला # एक महत्वपूर्ण लेम्मा,
वास्तव में, मनमाने ढंग से कठोर हिल्बर्ट अंतरिक्ष आधार |ψ(0)⟩ दृश्य से पीछे हट गया है, और केवल विशिष्ट अपेक्षाओं के मूल्यों या वेधशालाओं के मैट्रिक्स तत्वों को लेने के अंतिम चरण पर विचार किया जाता है।
दिक्परिवर्तक संबंध
प्रचालकों की समय पर निर्भरता के कारण दिक्परिवर्तक संबंध श्रोडिंगर चित्र से भिन्न दिख सकते हैं। उदाहरण के लिए, प्रचालकों पर विचार करें x(t1), x(t2), p(t1) और p(t2). उन प्रचालकों का समय विकास प्रणाली के हैमिल्टनियन पर निर्भर करता है। एक आयामी हार्मोनिक ऑसीलेटर को ध्यान में रखते हुए,
सभी चित्रों में विकास की सारांश तुलना
एक समय-स्वतंत्र हैमिल्टनियन एचS, जहां एच0,S मुक्त हैमिल्टनियन है,
Evolution | Picture ( ) | ||
of: | Schrödinger (S) | Heisenberg (H) | Interaction (I) |
Ket state | constant | ||
Observable | constant | ||
Density matrix | constant |
यह भी देखें
- ब्रा-केट नोटेशन
- सहभागिता चित्र
- श्रोडिंगर चित्र
- हाइजेनबर्ग-लैंगविन समीकरण
- चरण अंतरिक्ष सूत्रीकरण
संदर्भ
- ↑ "हाइजेनबर्ग प्रतिनिधित्व". Encyclopedia of Mathematics. Retrieved 3 September 2013.
- Cohen-Tannoudji, Claude; Bernard Diu; Frank Laloe (1977). Quantum Mechanics (Volume One). Paris: Wiley. pp. 312–314. ISBN 0-471-16433-X.
- Albert Messiah, 1966. Quantum Mechanics (Vol. I), English translation from French by G. M. Temmer. North Holland, John Wiley & Sons.
- Merzbacher E., Quantum Mechanics (3rd ed., John Wiley 1998) p. 430-1 ISBN 0-471-88702-1
- L.D. Landau, E.M. Lifshitz (1977). Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (3rd ed.). Pergamon Press. ISBN 978-0-08-020940-1. Online copy
- R. Shankar (1994); Principles of Quantum Mechanics, Plenum Press, ISBN 978-0306447907.
- J. J. Sakurai (1993); Modern Quantum Mechanics (Revised Edition), ISBN 978-0201539295.
बाहरी संबंध
- Pedagogic Aides to Quantum Field Theory Click on the link for Chap. 2 to find an extensive, simplified introduction to the Heisenberg picture.
- Some expanded derivations and an example of the harmonic oscillator in the Heisenberg picture [1]
- The original Heisenberg paper translated (although difficult to read, it contains an example for the anharmonic oscillator): Sources of Quantum mechanics B.L. Van Der Waerden [2]
- The computations for the hydrogen atom in the Heisenberg representation originally from a paper of Pauli [3]