भागफल (सार्वभौमिक बीजगणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
एक वलय पर भागफल साहचर्य बीजगणित के लिए, भागफल वलय देखें।
एक वलय पर भागफल साहचर्य बीजगणित के लिए, भागफल वलय देखें।


गणित में, एक भागफल बीजगणित एक सर्वांगसम संबंध का उपयोग करते हुए एक [[बीजगणितीय संरचना]] के तत्वों के विभाजन का परिणाम है। भागफल बीजगणित को कारक बीजगणित भी कहा जाता है। यहाँ, [[सर्वांगसमता संबंध]] एक [[तुल्यता संबंध]] होना चाहिए जो नीचे वर्णित औपचारिक अर्थों में बीजगणित के सभी संक्रियाओं (गणित) के साथ अतिरिक्त रूप से ''संगत'' हो। इसके [[तुल्यता वर्ग|समानता वर्ग]] दी गई बीजगणितीय संरचना के तत्वों को विभाजित करते हैं। भागफल बीजगणित में ये वर्ग इसके तत्व के रूप मे होते हैं, और वर्गों को बीजगणितीय संरचना देने के लिए संगतता स्थितियों का उपयोग किया जाता है, जो बीजीय संरचना देने के लिए किया जाता है।<ref>A. G. Kurosh, Lectures on General Algebra, Translated from the Russian edition (Moscow, 1960), Chelsea, New York, 1963.</ref>  
गणित में, '''भागफल बीजगणित''' एक सर्वांगसम संबंध का उपयोग करते हुए एक [[बीजगणितीय संरचना]] के तत्वों के विभाजन का परिणाम है। भागफल बीजगणित को कारक बीजगणित भी कहा जाता है। यहाँ, [[सर्वांगसमता संबंध]] एक [[तुल्यता संबंध]] होना चाहिए जो नीचे वर्णित औपचारिक अर्थों में बीजगणित के सभी संक्रियाओं (गणित) के साथ अतिरिक्त रूप से समान हो। इसके [[तुल्यता वर्ग|समानता वर्ग]] दी गई बीजगणितीय संरचना के तत्वों को विभाजित करते हैं। भागफल बीजगणित में ये वर्ग इसके तत्व के रूप मे होते हैं, और वर्गों को बीजगणितीय संरचना देने के लिए संगतता स्थितियों का उपयोग किया जाता है, जो बीजीय संरचना देने के लिए किया जाता है।<ref>A. G. Kurosh, Lectures on General Algebra, Translated from the Russian edition (Moscow, 1960), Chelsea, New York, 1963.</ref>  


भागफल बीजगणित अमूर्त का विचार एक सामान्य धारणा में [[ अंगूठी सिद्धांत | वलय सिद्धांत]] के भागफल के वलय की भागफल संरचना, [[समूह सिद्धांत]] के [[भागफल समूह]], रैखिक बीजगणित के [[भागफल स्थान (रैखिक बीजगणित)]] और एक सामान्य रूप में [[प्रतिनिधित्व सिद्धांत]] के [[भागफल मॉड्यूल|भागफल इकाई]] का विचार है।
भागफल बीजगणित अमूर्त का विचार सामान्य धारणा में [[ अंगूठी सिद्धांत |वलय सिद्धांत]] के भागफल के वलय की भागफल संरचना, [[समूह सिद्धांत]] के [[भागफल समूह]], रैखिक बीजगणित के [[भागफल स्थान (रैखिक बीजगणित)]] और सामान्य रूप में [[प्रतिनिधित्व सिद्धांत]] के [[भागफल मॉड्यूल|भागफल इकाई]] का विचार है।


== संयोज्य संबंध ==
== संयोज्य संबंध ==
माना A बीजगणित के अवयवों का समुच्चय <math>\mathcal{A}</math> है, और मान लीजिए E समुच्चय A पर एक तुल्यता संबंध है,संबंध E को n-ary संक्रिया f के साथ संगत (या उसके संबंध में प्रतिस्थापन गुण है) कहा जाता है, यदि <math>(a_i,\; b_i) \in E</math> के लिए <math>1 \le i \le n</math> तात्पर्य <math>(f (a_1, a_2, \ldots, a_n), f (b_1, b_2, \ldots, b_n)) \in E</math> के लिए <math>a_i,\; b_i \in A</math> साथ <math>1 \le i \le n</math> है। बीजगणित के सभी फलनों के साथ संगत एक तुल्यता संबंध को इस बीजगणित के संबंध में सर्वांगसमता कहा जाता है।
माना A बीजगणित के अवयवों का समुच्चय <math>\mathcal{A}</math> है, और मान लीजिए E समुच्चय A पर एक तुल्यता संबंध है,संबंध E को n-ary संक्रिया f के साथ संगत (या उसके संबंध में प्रतिस्थापन गुण है) कहा जाता है, यदि <math>(a_i,\; b_i) \in E</math> के लिए <math>1 \le i \le n</math> तात्पर्य <math>(f (a_1, a_2, \ldots, a_n), f (b_1, b_2, \ldots, b_n)) \in E</math> के लिए <math>a_i,\; b_i \in A</math> साथ <math>1 \le i \le n</math> है। बीजगणित के सभी फलनों के साथ संगत एक तुल्यता संबंध को इस बीजगणित के संबंध में सर्वांगसमता कहा जाता है।


== भागफल बीजगणित और समरूपता ==
== भागफल बीजगणित और समरूपता ==
समुच्चय A में कोई तुल्यता संबंध E समुच्चय को तुल्यता वर्ग में विभाजित करता है। इन तुल्यता वर्गों के समुच्चय को सामान्य रूप से भागफल समुच्चय कहा जाता है, और इसे A/E द्वारा निरूपित किया जाता है। एक बीजगणित <math>\mathcal{A}</math> के लिए, A/E के तत्वों पर प्रेरित संक्रिया को परिभाषित करना स्पष्ट है यदि E एक सर्वांगसमता है। विशेष रूप से, किसी भी संक्रिया के लिए <math>f^{\mathcal{A}}_i</math> एरीटी  <math>n_i</math> में <math>\mathcal{A}</math> (जहां अधिलेख केवल यह दर्शाता है कि यह एक संक्रिया है <math>\mathcal{A}</math>, और सबस्क्रिप्ट <math>i \in I</math> में फलनों की गणना करता है <math>\mathcal{A}</math> और उनकी arities) परिभाषित <math>f^{\mathcal{A}/E}_i : (A/E)^{n_i} \to A/E</math> करते हैं, <math>f^{\mathcal{A}/E}_i ([a_1]_E, \ldots, [a_{n_i}]_E) = [f^{\mathcal{A}}_i(a_1,\ldots, a_{n_i})]_E</math>,जहां <math>[x]_E \in A/E</math> के के समतुल्य वर्ग को दर्शाता है और <math>x \in A</math> E (x मापांक e) द्वारा उत्पन्न किया गया है।
समुच्चय A में कोई तुल्यता संबंध E समुच्चय को तुल्यता वर्ग में विभाजित करता है। इन तुल्यता वर्गों के समुच्चय को सामान्य रूप से भागफल समुच्चय कहा जाता है, और इसे A/E द्वारा निरूपित किया जाता है। एक बीजगणित <math>\mathcal{A}</math> के लिए, A/E के तत्वों पर प्रेरित संक्रिया को परिभाषित करना स्पष्ट है यदि E एक सर्वांगसमता है। विशेष रूप से, किसी भी संक्रिया के लिए <math>f^{\mathcal{A}}_i</math> <math>n_i</math> में <math>\mathcal{A}</math> (जहां अधिलेख केवल यह दर्शाता है कि यह एक संक्रिया है <math>\mathcal{A}</math>, और सबस्क्रिप्ट <math>i \in I</math> में फलनों और <math>\mathcal{A}</math> की संक्रिया की गणना करता है) परिभाषित <math>f^{\mathcal{A}/E}_i : (A/E)^{n_i} \to A/E</math> करते हैं, और <math>f^{\mathcal{A}/E}_i ([a_1]_E, \ldots, [a_{n_i}]_E) = [f^{\mathcal{A}}_i(a_1,\ldots, a_{n_i})]_E</math>,जहां <math>[x]_E \in A/E</math> के समतुल्य वर्ग को दर्शाता है और <math>x \in A</math> E (x मापांक e) द्वारा उत्पन्न किया गया है।


एक बीजगणित के लिए <math>\mathcal{A} = (A, (f^{\mathcal{A}}_i)_{i \in I})</math>पर सर्वांगसमता दी है <math>\mathcal{A}</math>, बीजगणित <math>\mathcal{A}/E = (A/E, (f^{\mathcal{A}/E}_i)_{i \in I})</math> का भागफल बीजगणित (या कारक बीजगणित) कहा जाता है <math>\mathcal{A}</math> मोडुलो ई। से एक प्राकृतिक [[समरूपता]] है <math>\mathcal{A}</math> को <math>\mathcal{A}/E</math> प्रत्येक तत्व को उसके तुल्यता वर्ग में मैप करना। वास्तव में, प्रत्येक समरूपता h समरूपता के कर्नेल (बीजगणित) #अमूर्त्वभौमिक बीजगणित के माध्यम से एक सर्वांगसमता संबंध निर्धारित करता है, <math> \mathop{\mathrm{ker}}\,h = \{(a,a') \in A^2\, |\, h(a) = h(a')\}\subseteq A^2</math>.
एक बीजगणित के लिए <math>\mathcal{A} = (A, (f^{\mathcal{A}}_i)_{i \in I})</math> <math>\mathcal{A}</math> पर सर्वांगसमता दी है, बीजगणित <math>\mathcal{A}/E = (A/E, (f^{\mathcal{A}/E}_i)_{i \in I})</math> का भागफल बीजगणित (या कारक बीजगणित) कहा जाता है <math>\mathcal{A}</math> से एक प्राकृतिक समरूपता है। <math>\mathcal{A}</math> से <math>\mathcal{A}/E</math> प्रत्येक तत्व को उसके तुल्यता वर्ग में प्रतिचित्रण करना। वास्तव में, प्रत्येक समरूपता h समरूपता के कर्नेल (बीजगणित) सार्वभौमिक बीजगणित के माध्यम से एक सर्वांगसमता संबंध<math> \mathop{\mathrm{ker}}\,h = \{(a,a') \in A^2\, |\, h(a) = h(a')\}\subseteq A^2</math> निर्धारित करता है।


एक बीजगणित दिया <math>\mathcal{A}</math>, एक समरूपता h इस प्रकार दो बीजगणित समरूपता को परिभाषित करता है <math>\mathcal{A}</math>, [[छवि (गणित)]] h(<math>\mathcal{A}</math>) और <math>\mathcal{A}/\mathop{\mathrm{ker}}\,h</math> दोनों [[समरूपी]] हैं, एक परिणाम जिसे समरूपी छवि प्रमेय के रूप में जाना जाता है या अमूर्त्वभौम बीजगणित के लिए समरूपता प्रमेय#प्रथम समाकृतिकता प्रमेय 4 के रूप में जाना जाता है। औपचारिक रूप से, चलो <math> h : \mathcal{A} \to \mathcal{B} </math> एक [[विशेषण]] समरूपता हो। फिर, वहाँ से एक अद्वितीय समरूपता जी सम्मिलित है <math>\mathcal{A}/\mathop{\mathrm{ker}}\,h</math> पर <math>\mathcal{B} </math> ऐसा है कि जी कार्य संरचना के साथ प्रेरित प्राकृतिक समरूपता के साथ <math>\mathop{\mathrm{ker}}\,h</math> एच के बराबर
बीजगणित <math>\mathcal{A}</math>,को देखते हुए, एक समरूपता h इस प्रकार दो बीजगणित समरूपता को परिभाषित करता है <math>\mathcal{A}</math>, [[छवि (गणित)]] h(<math>\mathcal{A}</math>) और <math>\mathcal{A}/\mathop{\mathrm{ker}}\,h</math> दोनों [[समरूपी]] हैं, एक परिणाम जिसे समरूपी छवि प्रमेय के रूप में जाना जाता है या सार्वभौमिक बीजगणित के लिए समरूपता प्रमेय प्रथम समाकृतिकता प्रमेय 4 के रूप में जाना जाता है। औपचारिक रूप से, मान लीजिए <math> h : \mathcal{A} \to \mathcal{B} </math> एक [[विशेषण]] समाकारिता हो। फिर, वहाँ <math>\mathcal{A}/\mathop{\mathrm{ker}}\,h</math> पर <math>\mathcal{B} </math> से एक अद्वितीय समरूपता g सम्मिलित है जैसे <math>\mathop{\mathrm{ker}}\,h</math> द्वारा प्रेरित प्राकृतिक समरूपता से बना g, h के बराबर है।


== सर्वांगसम जाली ==
== सर्वांगसम लैटिस ==
प्रत्येक बीजगणित के लिए <math>\mathcal{A}</math> समुच्चय ए पर, पर [[पहचान संबंध]], और <math>A \times A</math> तुच्छ संगति हैं। जिस बीजगणित में कोई अन्य सर्वांगसमता न हो, उसे सरल कहा जाता है।
समुच्चय A पर प्रत्येक बीजगणित <math>\mathcal{A}</math> के लिए, A पर तत्समक संबंध, और <math>A \times A</math> सामान्य सर्वांगसमताएं हैं। जिस बीजगणित में कोई अन्य सर्वांगसमता न हो, उसे सरल कहा जाता है।


होने देना <math>\mathrm{Con}(\mathcal{A})</math> बीजगणित पर सर्वांगसमताओं का समुच्चय हो <math>\mathcal{A}</math>. क्योंकि सर्वांगसमता चौराहे के नीचे बंद हैं, हम एक मीट (गणित) को परिभाषित कर सकते हैं: <math> \wedge : \mathrm{Con}(\mathcal{A}) \times \mathrm{Con}(\mathcal{A}) \to \mathrm{Con}(\mathcal{A})</math> केवल सर्वांगसमताओं के प्रतिच्छेदन को लेकर <math>E_1 \wedge E_2 = E_1\cap E_2</math>.
मान लीजिए <math>\mathrm{Con}(\mathcal{A})</math> बीजगणित <math>\mathcal{A}</math> पर सर्वांगसमताओं का समुच्चय हो। चूँकि सर्वांगसमताएँ प्रतिच्छेदन के नीचे संवृत्त हैं, इसलिए हम एक उपस्थित संक्रिया : <math> \wedge : \mathrm{Con}(\mathcal{A}) \times \mathrm{Con}(\mathcal{A}) \to \mathrm{Con}(\mathcal{A})</math> केवल सर्वांगसमताओं के प्रतिच्छेदन को लेकर <math>E_1 \wedge E_2 = E_1\cap E_2</math> को परिभाषित कर सकते हैं।


दूसरी ओर, संघ के तहत बधाई बंद नहीं होती है। हालांकि, हम निश्चित बीजगणित के संबंध में किसी भी [[द्विआधारी संबंध]] ई के [[क्लोजर ऑपरेटर]] को परिभाषित कर सकते हैं <math>\mathcal{A}</math>, जैसे कि यह एक सर्वांगसमता है, निम्नलिखित तरीके से: <math> \langle E \rangle_{\mathcal{A}} = \bigcap \{ F \in \mathrm{Con}(\mathcal{A}) \mid E \subseteq F \}</math>. ध्यान दें कि एक द्विआधारी संबंध का समापन एक सर्वांगसमता है और इस प्रकार इसमें संचालन पर निर्भर करता है <math>\mathcal{A}</math>, न केवल कैरियर समुच्चय पर। अब परिभाषित करें <math> \vee: \mathrm{Con}(\mathcal{A}) \times \mathrm{Con}(\mathcal{A}) \to \mathrm{Con}(\mathcal{A})</math> जैसा <math>E_1 \vee E_2 = \langle E_1\cup E_2 \rangle_{\mathcal{A}} </math>.
दूसरी ओर, सर्वांगसमताएँ समूह के अंतर्गत संवृत नहीं होती हैं।हालांकि, हम एक निश्चित बीजगणित <math>\mathcal{A}</math> के संबंध में किसी भी द्विआधारी संबंध E के संवृत होने को परिभाषित कर सकते हैं , जैसे कि यह एक सर्वांगसमता है, निम्नलिखित तरीके से <math> \langle E \rangle_{\mathcal{A}} = \bigcap \{ F \in \mathrm{Con}(\mathcal{A}) \mid E \subseteq F \}</math> है। ध्यान दें कि एक द्विआधारी संबंध का समापन एक सर्वांगसमता है और इस प्रकार केवल वाहक समुच्चय पर ही नहीं <math>\mathcal{A}</math>, में संक्रिया पर निर्भर करता है। अब <math> \vee: \mathrm{Con}(\mathcal{A}) \times \mathrm{Con}(\mathcal{A}) \to \mathrm{Con}(\mathcal{A})</math> और <math>E_1 \vee E_2 = \langle E_1\cup E_2 \rangle_{\mathcal{A}} </math> को परिभाषित करें।


प्रत्येक बीजगणित के लिए <math>\mathcal{A}</math>, <math>(\mathrm{Con}(\mathcal{A}), \wedge, \vee)</math> ऊपर परिभाषित दो संक्रियाओं के साथ एक जालक (क्रम) बनता है, जिसे सर्वांगसमता जालक कहते हैं <math>\mathcal{A}</math>.
प्रत्येक बीजगणित के लिए <math>\mathcal{A}</math>, <math>(\mathrm{Con}(\mathcal{A}), \wedge, \vee)</math> ऊपर परिभाषित दो संक्रियाओं के साथ एक लैटिस (क्रम) बनता है, जिसे <math>\mathcal{A}</math> सर्वांगसमता लैटिस कहते हैं।


== माल्टसेव की स्थिति ==
== माल्टसेव की स्थिति ==
यदि दो सर्वांगसमता संक्रिया के रूप में संबंधों की संरचना के साथ परिणत (कम्यूट) होती है, अर्थात <math>\alpha\circ\beta = \beta\circ\alpha</math>, तो उनका जुड़ाव (सर्वांगसम जाली में) उनकी रचना के बराबर है: <math>\alpha\circ\beta = \alpha\vee\beta</math>. एक बीजगणित को [[सर्वांगसमता क्रमपरिवर्तनीय]] कहा जाता है यदि इसकी सर्वांगसमताओं का प्रत्येक युग्म क्रमपरिवर्तन करता है; इसी तरह एक [[विविधता (सार्वभौमिक बीजगणित)|विविधता (अमूर्त्वभौमिक बीजगणित)]] को सर्वांगसमता-परिवर्तनीय कहा जाता है यदि इसके सभी सदस्य हैं
यदि दो सर्वांगसमता संक्रिया के रूप में संबंधों की संरचना के साथ क्रमपरिवर्तन (लघुकरण) होती है, अर्थात <math>\alpha\circ\beta = \beta\circ\alpha</math>, तो उनका संबंध (सर्वांगसम लैटिस में) उनकी रचना <math>\alpha\circ\beta = \alpha\vee\beta</math> के बराबर है। बीजगणित को [[सर्वांगसमता क्रमपरिवर्तनीय]] कहा जाता है यदि इसकी सर्वांगसमताओं का प्रत्येक युग्म क्रमपरिवर्तन करता है; इसी तरह एक [[विविधता (सार्वभौमिक बीजगणित)|विविधता (सार्वभौमिकिक बीजगणित)]] को सर्वांगसमता-परिवर्तनीय कहा जाता है यदि उसकी सभी इकाई सर्वांगसमता-परिवर्तनीय बीजगणित हों।
सर्वांगसमता-परिवर्तनीय बीजगणित।


1954 में, [[अनातोली माल्टसेव]] ने सर्वांगसमता-परिवर्तनीय किस्मों के निम्नलिखित लक्षण वर्णन की स्थापना की: एक विविधता सर्वांगसमता अनुज्ञेय है यदि और केवल यदि कोई त्रिगुणात्मक शब्द सम्मिलित है {{nowrap|''q''(''x'', ''y'', ''z'')}} ऐसा है कि {{nowrap|''q''(''x'', ''y'', ''y'') ≈ ''x'' ≈ ''q''(''y'', ''y'', ''x'')}}; इसे माल्टसेव शब्द कहा जाता है और इस गुण वाली किस्मों को माल्टसेव किस्में कहा जाता है। माल्टसेव का लक्षण वर्णन बड़ी संख्या में समूहों में समान परिणामों की व्याख्या करता है (ले {{nowrap|1=''q'' = ''xy''<sup>−1</sup>''z''}}), अंगूठियां, अर्धसमूह (ले {{nowrap|1=''q'' =  (x / (y \ y))(y \ z))}}, पूरक जालक, [[हेटिंग बीजगणित]] आदि। इसके अलावा, प्रत्येक सर्वांगसमता-परिवर्तनीय बीजगणित सर्वांगसमता-मॉड्यूलर है, अर्थात इसकी सर्वांगसमता की जाली [[मॉड्यूलर जाली]] भी है; हालांकि इसका विलोम सत्य नहीं है।
1954 में, [[अनातोली माल्टसेव]] ने सर्वांगसमता-परिवर्तनीय भिन्नता के निम्नलिखित विशेषीकरण वर्णन की स्थापना की: एक विविधता सर्वांगसमता क्रमपरिवर्तनीय है यदि और केवल यदि कोई त्रिगुणात्मक पद सम्मिलित है {{nowrap|''q''(''x'', ''y'', ''z'')}} जैसे कि {{nowrap|''q''(''x'', ''y'', ''y'') ≈ ''x'' ≈ ''q''(''y'', ''y'', ''x'')}}; इसे माल्टसेव पद कहा जाता है और इस गुण वाली भिन्नता को माल्टसेव बहुरूपता कहा जाता है। माल्टसेव का विशेषीकरण वर्णन बड़ी संख्या में समूहों में समान परिणामों की व्याख्या करता है (प्राप्त {{nowrap|1=''q'' = ''xy''<sup>−1</sup>''z''}}), वलयों, अर्धसमूह (प्राप्त {{nowrap|1=''q'' =  (x / (y \ y))(y \ z))}}, पूरक लैटिस, [[हेटिंग बीजगणित]] आदि। इसके अतिरिक्त, प्रत्येक सर्वांगसमता-परिवर्तनीय बीजगणित सर्वांगसमता- प्रतिरूपक है, अर्थात इसकी सर्वांगसमता की [[मॉड्यूलर जाली|प्रतिरूपक लैटिस]] भी है; हालांकि इसका उत्क्रम सत्य नहीं है।


माल्टसेव के परिणाम के बाद, अन्य शोधकर्ताओं ने माल्टसेव के समान लेकिन अन्य प्रकार के गुणों के लिए समान स्थितियों के आधार पर लक्षण वर्णन पाया। 1967 में बर्जनी जॉनसन ने सर्वांगसम जाली वाली किस्मों के लिए जोन्सन शब्द की खोज की जो कि वितरणात्मक हैं।<ref>{{cite journal | url=https://doi.org/10.7146/math.scand.a-10850 | doi=10.7146/math.scand.a-10850 | title=बीजगणित जिनकी सर्वांगसमता जालक वितरणात्मक होते हैं| year=1967 | last1=Jonnson | first1=Bjarni | journal=Mathematica Scandinavica | volume=21 | page=110 | doi-access=free }}</ref> (इस प्रकार सर्वांगसमता-वितरणात्मक किस्में कहलाती हैं), जबकि 1969 में एलन डे ने समरूप जाली वाली किस्मों के लिए ऐसा ही किया जो मॉड्यूलर हैं।<ref>{{cite journal | url=https://doi.org/10.4153/CMB-1969-016-6 | doi=10.4153/CMB-1969-016-6 | title=बीजगणित के सर्वांगसम जालकों के लिए प्रतिरूपकता का अभिलक्षणन| year=1969 | last1=Day | first1=Alan | journal=Canadian Mathematical Bulletin | volume=12 | issue=2 | pages=167–173 | s2cid=120602601 | doi-access=free }}</ref> सामान्यतया, ऐसी स्थितियों को माल्टसेव स्थितियाँ कहा जाता है।
माल्टसेव के परिणाम के बाद, अन्य शोधकर्ताओं ने माल्टसेव के समान लेकिन अन्य प्रकार के गुणों के लिए समान स्थितियों के आधार पर विशेषीकरण वर्णन पाया। 1967 में बर्जनी जॉनसन ने सर्वांगसम लैटिस वाली भिन्नता के लिए जोन्सन शब्द की खोज की जो कि वितरणात्मक हैं।<ref>{{cite journal | url=https://doi.org/10.7146/math.scand.a-10850 | doi=10.7146/math.scand.a-10850 | title=बीजगणित जिनकी सर्वांगसमता जालक वितरणात्मक होते हैं| year=1967 | last1=Jonnson | first1=Bjarni | journal=Mathematica Scandinavica | volume=21 | page=110 | doi-access=free }}</ref> (इस प्रकार सर्वांगसमता-वितरणात्मक बहुरूपता कहलाती हैं), जबकि 1969 में एलन डे ने समरूप लैटिस वाली भिन्नता के लिए ऐसा ही किया जो प्रतिरूपक हैं।<ref>{{cite journal | url=https://doi.org/10.4153/CMB-1969-016-6 | doi=10.4153/CMB-1969-016-6 | title=बीजगणित के सर्वांगसम जालकों के लिए प्रतिरूपकता का अभिलक्षणन| year=1969 | last1=Day | first1=Alan | journal=Canadian Mathematical Bulletin | volume=12 | issue=2 | pages=167–173 | s2cid=120602601 | doi-access=free }}</ref> सामान्यतया, ऐसी स्थितियों को माल्टसेव स्थितियाँ कहा जाता है।


अनुसंधान की इस पंक्ति ने माल्टसेव से जुड़ी स्थितियों को उत्पन्न करने के लिए पिक्स्ले-विल एल्गोरिथम का नेतृत्व किया
अनुसन्धान की इस पंक्ति ने सर्वांगसमता पहचानों से जुड़ी माल्टसेव स्थितियों को उत्पन्न करने के लिए पिक्स्ली-विल एल्गोरिद्म का नेतृत्व किया।<ref name="KearnesKiss2013">{{cite book|author1=Keith Kearnes|author2=Emil W. Kiss|title=सर्वांगसमता जालिकाओं का आकार|year=2013|publisher=American Mathematical Soc.|isbn=978-0-8218-8323-5|page=4}}</ref>
सर्वांगसम पहचान के साथ।<ref name="KearnesKiss2013">{{cite book|author1=Keith Kearnes|author2=Emil W. Kiss|title=सर्वांगसमता जालिकाओं का आकार|year=2013|publisher=American Mathematical Soc.|isbn=978-0-8218-8323-5|page=4}}</ref>




== यह भी देखें ==
== यह भी देखें ==
* भागफल की वलय
* भागफल की वलय
* सर्वांगसमता जालक समस्या
* सर्वांगसमता लैटिस समस्या
* [[उपसमूहों की जाली|उपसमूहों की लैटिस]]
* [[उपसमूहों की जाली|उपसमूहों की लैटिस]]



Revision as of 19:37, 5 March 2023

एक वलय पर भागफल साहचर्य बीजगणित के लिए, भागफल वलय देखें।

गणित में, भागफल बीजगणित एक सर्वांगसम संबंध का उपयोग करते हुए एक बीजगणितीय संरचना के तत्वों के विभाजन का परिणाम है। भागफल बीजगणित को कारक बीजगणित भी कहा जाता है। यहाँ, सर्वांगसमता संबंध एक तुल्यता संबंध होना चाहिए जो नीचे वर्णित औपचारिक अर्थों में बीजगणित के सभी संक्रियाओं (गणित) के साथ अतिरिक्त रूप से समान हो। इसके समानता वर्ग दी गई बीजगणितीय संरचना के तत्वों को विभाजित करते हैं। भागफल बीजगणित में ये वर्ग इसके तत्व के रूप मे होते हैं, और वर्गों को बीजगणितीय संरचना देने के लिए संगतता स्थितियों का उपयोग किया जाता है, जो बीजीय संरचना देने के लिए किया जाता है।[1]

भागफल बीजगणित अमूर्त का विचार सामान्य धारणा में वलय सिद्धांत के भागफल के वलय की भागफल संरचना, समूह सिद्धांत के भागफल समूह, रैखिक बीजगणित के भागफल स्थान (रैखिक बीजगणित) और सामान्य रूप में प्रतिनिधित्व सिद्धांत के भागफल इकाई का विचार है।

संयोज्य संबंध

माना A बीजगणित के अवयवों का समुच्चय है, और मान लीजिए E समुच्चय A पर एक तुल्यता संबंध है,संबंध E को n-ary संक्रिया f के साथ संगत (या उसके संबंध में प्रतिस्थापन गुण है) कहा जाता है, यदि के लिए तात्पर्य के लिए साथ है। बीजगणित के सभी फलनों के साथ संगत एक तुल्यता संबंध को इस बीजगणित के संबंध में सर्वांगसमता कहा जाता है।

भागफल बीजगणित और समरूपता

समुच्चय A में कोई तुल्यता संबंध E समुच्चय को तुल्यता वर्ग में विभाजित करता है। इन तुल्यता वर्गों के समुच्चय को सामान्य रूप से भागफल समुच्चय कहा जाता है, और इसे A/E द्वारा निरूपित किया जाता है। एक बीजगणित के लिए, A/E के तत्वों पर प्रेरित संक्रिया को परिभाषित करना स्पष्ट है यदि E एक सर्वांगसमता है। विशेष रूप से, किसी भी संक्रिया के लिए में (जहां अधिलेख केवल यह दर्शाता है कि यह एक संक्रिया है , और सबस्क्रिप्ट में फलनों और की संक्रिया की गणना करता है) परिभाषित करते हैं, और ,जहां के समतुल्य वर्ग को दर्शाता है और E (x मापांक e) द्वारा उत्पन्न किया गया है।

एक बीजगणित के लिए पर सर्वांगसमता दी है, बीजगणित का भागफल बीजगणित (या कारक बीजगणित) कहा जाता है से एक प्राकृतिक समरूपता है। से प्रत्येक तत्व को उसके तुल्यता वर्ग में प्रतिचित्रण करना। वास्तव में, प्रत्येक समरूपता h समरूपता के कर्नेल (बीजगणित) सार्वभौमिक बीजगणित के माध्यम से एक सर्वांगसमता संबंध निर्धारित करता है।

बीजगणित ,को देखते हुए, एक समरूपता h इस प्रकार दो बीजगणित समरूपता को परिभाषित करता है , छवि (गणित) h() और दोनों समरूपी हैं, एक परिणाम जिसे समरूपी छवि प्रमेय के रूप में जाना जाता है या सार्वभौमिक बीजगणित के लिए समरूपता प्रमेय प्रथम समाकृतिकता प्रमेय 4 के रूप में जाना जाता है। औपचारिक रूप से, मान लीजिए एक विशेषण समाकारिता हो। फिर, वहाँ पर से एक अद्वितीय समरूपता g सम्मिलित है जैसे द्वारा प्रेरित प्राकृतिक समरूपता से बना g, h के बराबर है।

सर्वांगसम लैटिस

समुच्चय A पर प्रत्येक बीजगणित के लिए, A पर तत्समक संबंध, और सामान्य सर्वांगसमताएं हैं। जिस बीजगणित में कोई अन्य सर्वांगसमता न हो, उसे सरल कहा जाता है।

मान लीजिए बीजगणित पर सर्वांगसमताओं का समुच्चय हो। चूँकि सर्वांगसमताएँ प्रतिच्छेदन के नीचे संवृत्त हैं, इसलिए हम एक उपस्थित संक्रिया : केवल सर्वांगसमताओं के प्रतिच्छेदन को लेकर को परिभाषित कर सकते हैं।

दूसरी ओर, सर्वांगसमताएँ समूह के अंतर्गत संवृत नहीं होती हैं।हालांकि, हम एक निश्चित बीजगणित के संबंध में किसी भी द्विआधारी संबंध E के संवृत होने को परिभाषित कर सकते हैं , जैसे कि यह एक सर्वांगसमता है, निम्नलिखित तरीके से है। ध्यान दें कि एक द्विआधारी संबंध का समापन एक सर्वांगसमता है और इस प्रकार केवल वाहक समुच्चय पर ही नहीं , में संक्रिया पर निर्भर करता है। अब और को परिभाषित करें।

प्रत्येक बीजगणित के लिए , ऊपर परिभाषित दो संक्रियाओं के साथ एक लैटिस (क्रम) बनता है, जिसे सर्वांगसमता लैटिस कहते हैं।

माल्टसेव की स्थिति

यदि दो सर्वांगसमता संक्रिया के रूप में संबंधों की संरचना के साथ क्रमपरिवर्तन (लघुकरण) होती है, अर्थात , तो उनका संबंध (सर्वांगसम लैटिस में) उनकी रचना के बराबर है। बीजगणित को सर्वांगसमता क्रमपरिवर्तनीय कहा जाता है यदि इसकी सर्वांगसमताओं का प्रत्येक युग्म क्रमपरिवर्तन करता है; इसी तरह एक विविधता (सार्वभौमिकिक बीजगणित) को सर्वांगसमता-परिवर्तनीय कहा जाता है यदि उसकी सभी इकाई सर्वांगसमता-परिवर्तनीय बीजगणित हों।

1954 में, अनातोली माल्टसेव ने सर्वांगसमता-परिवर्तनीय भिन्नता के निम्नलिखित विशेषीकरण वर्णन की स्थापना की: एक विविधता सर्वांगसमता क्रमपरिवर्तनीय है यदि और केवल यदि कोई त्रिगुणात्मक पद सम्मिलित है q(x, y, z) जैसे कि q(x, y, y) ≈ xq(y, y, x); इसे माल्टसेव पद कहा जाता है और इस गुण वाली भिन्नता को माल्टसेव बहुरूपता कहा जाता है। माल्टसेव का विशेषीकरण वर्णन बड़ी संख्या में समूहों में समान परिणामों की व्याख्या करता है (प्राप्त q = xy−1z), वलयों, अर्धसमूह (प्राप्त q = (x / (y \ y))(y \ z)), पूरक लैटिस, हेटिंग बीजगणित आदि। इसके अतिरिक्त, प्रत्येक सर्वांगसमता-परिवर्तनीय बीजगणित सर्वांगसमता- प्रतिरूपक है, अर्थात इसकी सर्वांगसमता की प्रतिरूपक लैटिस भी है; हालांकि इसका उत्क्रम सत्य नहीं है।

माल्टसेव के परिणाम के बाद, अन्य शोधकर्ताओं ने माल्टसेव के समान लेकिन अन्य प्रकार के गुणों के लिए समान स्थितियों के आधार पर विशेषीकरण वर्णन पाया। 1967 में बर्जनी जॉनसन ने सर्वांगसम लैटिस वाली भिन्नता के लिए जोन्सन शब्द की खोज की जो कि वितरणात्मक हैं।[2] (इस प्रकार सर्वांगसमता-वितरणात्मक बहुरूपता कहलाती हैं), जबकि 1969 में एलन डे ने समरूप लैटिस वाली भिन्नता के लिए ऐसा ही किया जो प्रतिरूपक हैं।[3] सामान्यतया, ऐसी स्थितियों को माल्टसेव स्थितियाँ कहा जाता है।

अनुसन्धान की इस पंक्ति ने सर्वांगसमता पहचानों से जुड़ी माल्टसेव स्थितियों को उत्पन्न करने के लिए पिक्स्ली-विल एल्गोरिद्म का नेतृत्व किया।[4]


यह भी देखें

टिप्पणियाँ

  1. A. G. Kurosh, Lectures on General Algebra, Translated from the Russian edition (Moscow, 1960), Chelsea, New York, 1963.
  2. Jonnson, Bjarni (1967). "बीजगणित जिनकी सर्वांगसमता जालक वितरणात्मक होते हैं". Mathematica Scandinavica. 21: 110. doi:10.7146/math.scand.a-10850.
  3. Day, Alan (1969). "बीजगणित के सर्वांगसम जालकों के लिए प्रतिरूपकता का अभिलक्षणन". Canadian Mathematical Bulletin. 12 (2): 167–173. doi:10.4153/CMB-1969-016-6. S2CID 120602601.
  4. Keith Kearnes; Emil W. Kiss (2013). सर्वांगसमता जालिकाओं का आकार. American Mathematical Soc. p. 4. ISBN 978-0-8218-8323-5.


संदर्भ