विशिष्टता की अवलम्बित स्कीमा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Concept in axiomatic set theory}} | {{short description|Concept in axiomatic set theory}} | ||
{{redirect| | {{redirect|पृथक्करण का स्वयंसिद्ध|टोपोलॉजी में पृथक्करण स्वयंसिद्ध|पृथक्करण स्वयंसिद्ध}}[[स्वयंसिद्ध सेट सिद्धांत|स्वयंसिद्ध समुच्चय सिद्धांत]] के कई लोकप्रिय संस्करणों में, विनिर्देश की स्वयंसिद्ध योजना, जिसे पृथक्करण की स्वयंसिद्ध योजना, सबसमुच्चय [[स्वयंसिद्ध योजना]] या प्रतिबंधित समझ की स्वयंसिद्ध योजना के रूप में भी जाना जाता है, जो एक स्वयंसिद्ध योजना है। अनिवार्य रूप से, यह कहता है कि किसी समुच्चय का कोई निश्चित [[उपवर्ग (सेट सिद्धांत)|उपवर्ग (समुच्चय सिद्धांत)]] समुच्चय है। | ||
कुछ गणितज्ञ इसे समझ की स्वयंसिद्ध योजना कहते हैं, चूंकि अन्य उस शब्द का उपयोग ''अप्रतिबंधित'' समझ के लिए करते हैं, जिसकी चर्चा नीचे की गई है। | कुछ गणितज्ञ इसे समझ की स्वयंसिद्ध योजना कहते हैं, चूंकि अन्य उस शब्द का उपयोग ''अप्रतिबंधित'' समझ के लिए करते हैं, जिसकी चर्चा नीचे की गई है। | ||
क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, [[ज़र्मेलो]], [[अब्राहम फ्रेंकेल]] और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना | क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, [[ज़र्मेलो]], [[अब्राहम फ्रेंकेल]] और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना जाता है।<ref name="Ebbinghaus2007">{{cite book|author=Heinz-Dieter Ebbinghaus|title=Ernst Zermelo: An Approach to His Life and Work|year=2007|publisher=Springer Science & Business Media|isbn=978-3-540-49553-6|page=88}}</ref> '''कुछ गणितज्ञ इसे समझ की स्वयंसिद्ध योजना कहते हैं, चूंकि अन्य उस शब्द का उपयोग ''अप्रतिबंधित'' समझ के लिए करते हैं, जिसकी चर्चा नीचे की गई है।''' | ||
'''क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, [[ज़र्मेलो]], [[अब्राहम फ्रेंकेल]] और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना | '''क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, [[ज़र्मेलो]], [[अब्राहम फ्रेंकेल]] और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना जाता है।<ref name="Ebbinghaus2007" />''' | ||
== कथन == | == कथन == | ||
योजना का एक उदाहरण x, w के B च [[मुक्त चर]] के साथ समुच्चय सिद्धांत की भाषा में प्रत्येक [[अच्छी तरह से गठित सूत्र]] φ के लिए सम्मिलित | योजना का एक उदाहरण x, w के B च [[मुक्त चर]] के साथ समुच्चय सिद्धांत की भाषा में प्रत्येक [[अच्छी तरह से गठित सूत्र]] φ के लिए सम्मिलित है । x, w1, ..., wn, A के B चर। इसलिए B φ में मुक्त नहीं होता है। समुच्चय सिद्धांत की औपचारिक भाषा में, स्वयंसिद्ध योजना है: | ||
:<math>\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x \, ( x \in B \Leftrightarrow [ x \in A \land \varphi(x, w_1, \ldots, w_n , A) ] )</math> | :<math>\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x \, ( x \in B \Leftrightarrow [ x \in A \land \varphi(x, w_1, \ldots, w_n , A) ] )</math> | ||
या शब्दों में: | या शब्दों में: | ||
: किसी भी [[सेट (गणित)|समुच्चय (गणित)]] | : किसी भी [[सेट (गणित)|समुच्चय (गणित)]] A को देखते हुए, [[अस्तित्वगत परिमाणीकरण]] समुच्चय B (A का उपसमुच्चय) ऐसा है कि, किसी भी समुच्चय X को दिया गया है, X, B का सदस्य है [[अगर और केवल अगर]] X एक [[तार्किक संयोजन]] का सदस्य है, जो X के लिए धारण करता है . | ||
ध्यान दें कि ऐसे प्रत्येक [[विधेय (गणित)]] के लिए | ध्यान दें कि ऐसे प्रत्येक [[विधेय (गणित)]] के लिए अभिगृहीत है φ; इस प्रकार, यह स्वयंसिद्ध योजना है। | ||
इस स्वयंसिद्ध योजना को समझने के लिए, ध्यान दें कि समुच्चय B | इस स्वयंसिद्ध योजना को समझने के लिए, ध्यान दें कि समुच्चय B को A का [[सबसेट|सबसमुच्चय]] होना चाहिए। इस प्रकार, स्वयंसिद्ध योजना वास्तव में क्या कह रहा है,समुच्चय A और विधेय P दिया गया है, हम A का एक सबसमुच्चय B पा सकते हैं जिसके सदस्य हैं ठीक A के सदस्य जो P को संतुष्ट करते हैं। विस्तार के स्वयंसिद्ध द्वारा यह समुच्चय अद्वितीय है। हम सामान्यतः इस समुच्चय को [[सेट-बिल्डर नोटेशन|समुच्चय-बिल्डर नोटेशन]] का उपयोग करके {C ∈ A : P (C )} के रूप में निरूपित करते हैं। इस प्रकार स्वयंसिद्ध का सार है: | ||
: समुच्चय का प्रत्येक उपवर्ग (समुच्चय सिद्धांत) जो | : समुच्चय का प्रत्येक उपवर्ग (समुच्चय सिद्धांत) जो विधेय द्वारा परिभाषित होता है, स्वयं एक समुच्चय होता है। | ||
विनिर्देश की स्वयंसिद्ध योजना सामान्य समुच्चय सिद्धांत [[ZFC | विनिर्देश की स्वयंसिद्ध योजना सामान्य समुच्चय सिद्धांत [[ZFC]] से संबंधित स्वयंसिद्ध समुच्चय सिद्धांत की प्रणालियों की विशेषता है, लेकिन सामान्यतः [<nowiki/>[[वैकल्पिक सेट सिद्धांत|वैकल्पिक समुच्चय सिद्धांत]]] की मौलिक रूप से भिन्न प्रणालियों में प्रकट नहीं होती है। उदाहरण के लिए, [[नई नींव]] और [[सकारात्मक सेट सिद्धांत|सकारात्मक समुच्चय सिद्धांत]] भोले समुच्चय सिद्धांत की अप्रतिबंधित समझ के विभिन्न प्रतिबंधों का उपयोग करते हैं। वोपेनका का वैकल्पिक समुच्चय सिद्धांत समुच्चय के उचित उपवर्गों की अनुमति देने का विशिष्ट बिंदु बनाता है, जिसे [[semiset|अर्द्धसमुच्चय]] कहा जाता है। [[ZFC]] से संबंधित प्रणालियों में भी, यह योजना कभी-कभी बंधे हुए क्वांटिफायर वाले सूत्रों तक सीमित होती है, जैसा कि क्रिपके-प्लेटक समुच्चय थ्योरी विथ यूरेलेमेंट्स में होता है। | ||
== प्रतिस्थापन के स्वयंसिद्ध योजना से संबंध == | == प्रतिस्थापन के स्वयंसिद्ध योजना से संबंध == | ||
Line 28: | Line 28: | ||
:<math>\forall A \, \exists B \, \forall C \, ( C \in B \iff \exists D \, [ D \in A \land C = F(D) ] )</math> | :<math>\forall A \, \exists B \, \forall C \, ( C \in B \iff \exists D \, [ D \in A \land C = F(D) ] )</math> | ||
किसी भी [[कार्यात्मक विधेय]] के लिए f | किसी भी [[कार्यात्मक विधेय]] के लिए f एक [[चर (गणित)]] में है जो प्रतीकों ए , B , सी या d का उपयोग नहीं करता है। | ||
विशिष्टता के अभिगृहीत के लिए उपयुक्त विधेय पी | विशिष्टता के अभिगृहीत के लिए उपयुक्त विधेय पी को देखते हुए, मानचित्रण f को f (d ) = d द्वारा परिभाषित करें यदि पी (d ) सत्य है और f (d ) =ई यदि पी (d ) असत्य है, जहाँ ई का कोई सदस्य है। ए ऐसा है कि पी (इ ) सत्य है। | ||
फिर प्रतिस्थापन के स्वयंसिद्ध द्वारा आश्वस्त समुच्चय B | फिर प्रतिस्थापन के स्वयंसिद्ध द्वारा आश्वस्त समुच्चय B विनिर्देश के स्वयंसिद्ध के लिए आवश्यक समुच्चय B है। एकमात्र समस्या यह है कि ऐसा कोई ई उपस्थित नहीं है। लेकिन इस स्थिति में, अलगाव के स्वयंसिद्ध के लिए आवश्यक समुच्चय B [[खाली सेट|खाली समुच्चय]] है, इसलिए अलगाव का स्वयंसिद्ध प्रतिस्थापन के स्वयंसिद्ध से एक साथ खाली समुच्चय के स्वयंसिद्ध के साथ आता है। | ||
इस कारण से, विशिष्टता के स्वयंसिद्ध योजना को अक्सर ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की आधुनिक सूची से बाहर रखा जाता है। चूंकि, यह अभी भी ऐतिहासिक विचारों के लिए महत्वपूर्ण है, और समुच्चय सिद्धांत के वैकल्पिक स्वयंसिद्धों के साथ तुलना के लिए, जैसा कि निम्नलिखित अनुभागों में उदाहरण के लिए देखा जा सकता है। | इस कारण से, विशिष्टता के स्वयंसिद्ध योजना को अक्सर ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की आधुनिक सूची से बाहर रखा जाता है। चूंकि, यह अभी भी ऐतिहासिक विचारों के लिए महत्वपूर्ण है, और समुच्चय सिद्धांत के वैकल्पिक स्वयंसिद्धों के साथ तुलना के लिए, जैसा कि निम्नलिखित अनुभागों में उदाहरण के लिए देखा जा सकता है। | ||
Line 43: | Line 43: | ||
वह है: | वह है: | ||
{{block indent|एक समुच्चय {{mvar|B}} उपस्थित है जिसके सदस्य सटीक रूप से वे वस्तुएँ हैं जो विधेय {{mvar|φ}} को संतुष्ट करती हैं।}} | {{block indent|एक समुच्चय {{mvar|B}} उपस्थित है जिसके सदस्य सटीक रूप से वे वस्तुएँ हैं जो विधेय {{mvar|φ}} को संतुष्ट करती हैं।}} | ||
यह समुच्चय {{mvar|B}} फिर से अनूठा है, और सामान्यतः | यह समुच्चय {{mvar|B}} फिर से अनूठा है, और सामान्यतः पर इसे के रूप में दर्शाया जाता है {{math|{{{var|x}} : {{var|φ}}({{var|x}}, {{mvar|w}}{{sub|1}}, ..., {{var|w}}{{sub|{{mvar|b}}}})}.}} | ||
एक सख्त स्वयंसिद्धता को अपनाने से पहले, इस स्वयंसिद्ध योजना का उपयोग भोले-भाले समुच्चय सिद्धांत के प्रारंभ | एक सख्त स्वयंसिद्धता को अपनाने से पहले, इस स्वयंसिद्ध योजना का उपयोग भोले-भाले समुच्चय सिद्धांत के प्रारंभ दिनों में मौन रूप से किया गया था। दुर्भाग्य से, यह लेने से सीधे रसेल के विरोधाभास की ओर जाता है {{math|{{var|φ}}({{var|x}})}} होना {{math|¬({{var|x}} ∈ {{var|x}})}} (यानी, संपत्ति जो समुच्चय करती है {{mvar|x}} स्वयं का सदस्य नहीं है)। इसलिए, समुच्चय सिद्धांत का कोई उपयोगी स्वसिद्धीकरण अप्रतिबंधित समझ का उपयोग नहीं कर सकता है। [[शास्त्रीय तर्क]] से [[अंतर्ज्ञानवादी तर्क]] में जाने से सहायता नहीं मिलती है, क्योंकि रसेल के विरोधाभास का प्रमाण इंट्यूशनिस्टिक रूप से मान्य है। | ||
विनिर्देश के केवल स्वयंसिद्ध योजना को स्वीकार करना स्वयंसिद्ध समुच्चय सिद्धांत की शुरुआत थी। ज़र्मेलो-फ्रेंकेल के अधिकांश अन्य अभिगृहीत (लेकिन विस्तार का अभिगृहीत नहीं, नियमितता का अभिगृहीत, या पसंद का अभिगृहीत नहीं) तब समझ के अभिगृहीत योजना को अभिगृहीत योजना में बदलकर जो कुछ खो गया था उसकी भरपाई करना आवश्यक हो गया। विशिष्टताओं का - इनमें से प्रत्येक अभिगृहीत बताता है कि एक निश्चित समुच्चय उपस्थित | विनिर्देश के केवल स्वयंसिद्ध योजना को स्वीकार करना स्वयंसिद्ध समुच्चय सिद्धांत की शुरुआत थी। ज़र्मेलो-फ्रेंकेल के अधिकांश अन्य अभिगृहीत (लेकिन विस्तार का अभिगृहीत नहीं, नियमितता का अभिगृहीत, या पसंद का अभिगृहीत नहीं) तब समझ के अभिगृहीत योजना को अभिगृहीत योजना में बदलकर जो कुछ खो गया था उसकी भरपाई करना आवश्यक हो गया। विशिष्टताओं का - इनमें से प्रत्येक अभिगृहीत बताता है कि एक निश्चित समुच्चय उपस्थित है, और उस समुच्चय को उसके सदस्यों को संतुष्ट करने के लिए एक विधेय देकर परिभाषित करता है, अर्थात यह समझ के स्वयंसिद्ध योजना का एक विशेष स्थिति है। | ||
योजना को असंगत होने से रोकने के लिए यह भी संभव है कि इसे किन सूत्रों पर प्रयुक्त | योजना को असंगत होने से रोकने के लिए यह भी संभव है कि इसे किन सूत्रों पर प्रयुक्त किया जा सकता है, जैसे कि न्यू फ़ाउंडेशन में केवल [[स्तरीकरण (गणित)]] सूत्रों (नीचे देखें) या केवल सकारात्मक सूत्रों (केवल संयोजन, संयोजन, मात्रा और मात्रा के साथ सूत्र) परमाणु सूत्र) सकारात्मक समुच्चय सिद्धांत में। चूंकि, सकारात्मक सूत्र सामान्यतः पर कुछ ऐसी चीजों को व्यक्त करने में असमर्थ होते हैं जो अधिकांश सिद्धांत कर सकते हैं; उदाहरण के लिए, सकारात्मक समुच्चय सिद्धांत में कोई [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] या सापेक्ष पूरक नहीं है। | ||
== NBG जी वर्ग सिद्धांत में == | == NBG जी वर्ग सिद्धांत में == | ||
Line 73: | Line 73: | ||
एक प्रकार की सिद्धांत भाषा में जहां हम विधेय पर मात्रा निर्धारित कर सकते हैं, विनिर्देशन का स्वयंसिद्ध योजना एक सरल स्वयंसिद्ध बन जाता है। यह काफी हद तक वैसी ही चाल है जैसा कि पिछले खंड के NB जिसे स्वयंसिद्धों में प्रयोग किया गया था, जहां विधेय को एक वर्ग द्वारा प्रतिस्थापित किया गया था जिसे बाद में परिमाणित किया गया था। | एक प्रकार की सिद्धांत भाषा में जहां हम विधेय पर मात्रा निर्धारित कर सकते हैं, विनिर्देशन का स्वयंसिद्ध योजना एक सरल स्वयंसिद्ध बन जाता है। यह काफी हद तक वैसी ही चाल है जैसा कि पिछले खंड के NB जिसे स्वयंसिद्धों में प्रयोग किया गया था, जहां विधेय को एक वर्ग द्वारा प्रतिस्थापित किया गया था जिसे बाद में परिमाणित किया गया था। | ||
दूसरे क्रम के तर्क और उच्च क्रम के तर्क में उच्च क्रम के शब्दार्थ के साथ, विनिर्देश का स्वयंसिद्ध एक तार्किक वैधता है और इसे सिद्धांत में स्पष्ट रूप से सम्मिलित | दूसरे क्रम के तर्क और उच्च क्रम के तर्क में उच्च क्रम के शब्दार्थ के साथ, विनिर्देश का स्वयंसिद्ध एक तार्किक वैधता है और इसे सिद्धांत में स्पष्ट रूप से सम्मिलित करने की आवश्यकता नहीं है। | ||
== क्वीन की नई नींव में == | == क्वीन की नई नींव में == |
Revision as of 15:09, 22 February 2023
स्वयंसिद्ध समुच्चय सिद्धांत के कई लोकप्रिय संस्करणों में, विनिर्देश की स्वयंसिद्ध योजना, जिसे पृथक्करण की स्वयंसिद्ध योजना, सबसमुच्चय स्वयंसिद्ध योजना या प्रतिबंधित समझ की स्वयंसिद्ध योजना के रूप में भी जाना जाता है, जो एक स्वयंसिद्ध योजना है। अनिवार्य रूप से, यह कहता है कि किसी समुच्चय का कोई निश्चित उपवर्ग (समुच्चय सिद्धांत) समुच्चय है।
कुछ गणितज्ञ इसे समझ की स्वयंसिद्ध योजना कहते हैं, चूंकि अन्य उस शब्द का उपयोग अप्रतिबंधित समझ के लिए करते हैं, जिसकी चर्चा नीचे की गई है।
क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, ज़र्मेलो, अब्राहम फ्रेंकेल और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना जाता है।[1] कुछ गणितज्ञ इसे समझ की स्वयंसिद्ध योजना कहते हैं, चूंकि अन्य उस शब्द का उपयोग अप्रतिबंधित समझ के लिए करते हैं, जिसकी चर्चा नीचे की गई है।
क्योंकि समझ को सीमित करने से रसेल के विरोधाभास से बचा गया, ज़र्मेलो, अब्राहम फ्रेंकेल और गोडेल समेत कई गणितज्ञों ने इसे समुच्चय सिद्धांत का सबसे महत्वपूर्ण स्वयंसिद्ध माना जाता है।[1]
कथन
योजना का एक उदाहरण x, w के B च मुक्त चर के साथ समुच्चय सिद्धांत की भाषा में प्रत्येक अच्छी तरह से गठित सूत्र φ के लिए सम्मिलित है । x, w1, ..., wn, A के B चर। इसलिए B φ में मुक्त नहीं होता है। समुच्चय सिद्धांत की औपचारिक भाषा में, स्वयंसिद्ध योजना है:
या शब्दों में:
- किसी भी समुच्चय (गणित) A को देखते हुए, अस्तित्वगत परिमाणीकरण समुच्चय B (A का उपसमुच्चय) ऐसा है कि, किसी भी समुच्चय X को दिया गया है, X, B का सदस्य है अगर और केवल अगर X एक तार्किक संयोजन का सदस्य है, जो X के लिए धारण करता है .
ध्यान दें कि ऐसे प्रत्येक विधेय (गणित) के लिए अभिगृहीत है φ; इस प्रकार, यह स्वयंसिद्ध योजना है।
इस स्वयंसिद्ध योजना को समझने के लिए, ध्यान दें कि समुच्चय B को A का सबसमुच्चय होना चाहिए। इस प्रकार, स्वयंसिद्ध योजना वास्तव में क्या कह रहा है,समुच्चय A और विधेय P दिया गया है, हम A का एक सबसमुच्चय B पा सकते हैं जिसके सदस्य हैं ठीक A के सदस्य जो P को संतुष्ट करते हैं। विस्तार के स्वयंसिद्ध द्वारा यह समुच्चय अद्वितीय है। हम सामान्यतः इस समुच्चय को समुच्चय-बिल्डर नोटेशन का उपयोग करके {C ∈ A : P (C )} के रूप में निरूपित करते हैं। इस प्रकार स्वयंसिद्ध का सार है:
- समुच्चय का प्रत्येक उपवर्ग (समुच्चय सिद्धांत) जो विधेय द्वारा परिभाषित होता है, स्वयं एक समुच्चय होता है।
विनिर्देश की स्वयंसिद्ध योजना सामान्य समुच्चय सिद्धांत ZFC से संबंधित स्वयंसिद्ध समुच्चय सिद्धांत की प्रणालियों की विशेषता है, लेकिन सामान्यतः [वैकल्पिक समुच्चय सिद्धांत] की मौलिक रूप से भिन्न प्रणालियों में प्रकट नहीं होती है। उदाहरण के लिए, नई नींव और सकारात्मक समुच्चय सिद्धांत भोले समुच्चय सिद्धांत की अप्रतिबंधित समझ के विभिन्न प्रतिबंधों का उपयोग करते हैं। वोपेनका का वैकल्पिक समुच्चय सिद्धांत समुच्चय के उचित उपवर्गों की अनुमति देने का विशिष्ट बिंदु बनाता है, जिसे अर्द्धसमुच्चय कहा जाता है। ZFC से संबंधित प्रणालियों में भी, यह योजना कभी-कभी बंधे हुए क्वांटिफायर वाले सूत्रों तक सीमित होती है, जैसा कि क्रिपके-प्लेटक समुच्चय थ्योरी विथ यूरेलेमेंट्स में होता है।
प्रतिस्थापन के स्वयंसिद्ध योजना से संबंध
अलग होने की स्वयंसिद्ध योजना लगभग प्रतिस्थापन की स्वयंसिद्ध योजना से प्राप्त की जा सकती है।
सबसे पहले, इस स्वयंसिद्ध योजना को याद करें:
किसी भी कार्यात्मक विधेय के लिए f एक चर (गणित) में है जो प्रतीकों ए , B , सी या d का उपयोग नहीं करता है।
विशिष्टता के अभिगृहीत के लिए उपयुक्त विधेय पी को देखते हुए, मानचित्रण f को f (d ) = d द्वारा परिभाषित करें यदि पी (d ) सत्य है और f (d ) =ई यदि पी (d ) असत्य है, जहाँ ई का कोई सदस्य है। ए ऐसा है कि पी (इ ) सत्य है।
फिर प्रतिस्थापन के स्वयंसिद्ध द्वारा आश्वस्त समुच्चय B विनिर्देश के स्वयंसिद्ध के लिए आवश्यक समुच्चय B है। एकमात्र समस्या यह है कि ऐसा कोई ई उपस्थित नहीं है। लेकिन इस स्थिति में, अलगाव के स्वयंसिद्ध के लिए आवश्यक समुच्चय B खाली समुच्चय है, इसलिए अलगाव का स्वयंसिद्ध प्रतिस्थापन के स्वयंसिद्ध से एक साथ खाली समुच्चय के स्वयंसिद्ध के साथ आता है।
इस कारण से, विशिष्टता के स्वयंसिद्ध योजना को अक्सर ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की आधुनिक सूची से बाहर रखा जाता है। चूंकि, यह अभी भी ऐतिहासिक विचारों के लिए महत्वपूर्ण है, और समुच्चय सिद्धांत के वैकल्पिक स्वयंसिद्धों के साथ तुलना के लिए, जैसा कि निम्नलिखित अनुभागों में उदाहरण के लिए देखा जा सकता है।
अप्रतिबंधित समझ
अप्रतिबंधित समझ की स्वयंसिद्ध योजना पढ़ता है:
यह समुच्चय B फिर से अनूठा है, और सामान्यतः पर इसे के रूप में दर्शाया जाता है {x : φ(x, w1, ..., wb)}.
एक सख्त स्वयंसिद्धता को अपनाने से पहले, इस स्वयंसिद्ध योजना का उपयोग भोले-भाले समुच्चय सिद्धांत के प्रारंभ दिनों में मौन रूप से किया गया था। दुर्भाग्य से, यह लेने से सीधे रसेल के विरोधाभास की ओर जाता है φ(x) होना ¬(x ∈ x) (यानी, संपत्ति जो समुच्चय करती है x स्वयं का सदस्य नहीं है)। इसलिए, समुच्चय सिद्धांत का कोई उपयोगी स्वसिद्धीकरण अप्रतिबंधित समझ का उपयोग नहीं कर सकता है। शास्त्रीय तर्क से अंतर्ज्ञानवादी तर्क में जाने से सहायता नहीं मिलती है, क्योंकि रसेल के विरोधाभास का प्रमाण इंट्यूशनिस्टिक रूप से मान्य है।
विनिर्देश के केवल स्वयंसिद्ध योजना को स्वीकार करना स्वयंसिद्ध समुच्चय सिद्धांत की शुरुआत थी। ज़र्मेलो-फ्रेंकेल के अधिकांश अन्य अभिगृहीत (लेकिन विस्तार का अभिगृहीत नहीं, नियमितता का अभिगृहीत, या पसंद का अभिगृहीत नहीं) तब समझ के अभिगृहीत योजना को अभिगृहीत योजना में बदलकर जो कुछ खो गया था उसकी भरपाई करना आवश्यक हो गया। विशिष्टताओं का - इनमें से प्रत्येक अभिगृहीत बताता है कि एक निश्चित समुच्चय उपस्थित है, और उस समुच्चय को उसके सदस्यों को संतुष्ट करने के लिए एक विधेय देकर परिभाषित करता है, अर्थात यह समझ के स्वयंसिद्ध योजना का एक विशेष स्थिति है।
योजना को असंगत होने से रोकने के लिए यह भी संभव है कि इसे किन सूत्रों पर प्रयुक्त किया जा सकता है, जैसे कि न्यू फ़ाउंडेशन में केवल स्तरीकरण (गणित) सूत्रों (नीचे देखें) या केवल सकारात्मक सूत्रों (केवल संयोजन, संयोजन, मात्रा और मात्रा के साथ सूत्र) परमाणु सूत्र) सकारात्मक समुच्चय सिद्धांत में। चूंकि, सकारात्मक सूत्र सामान्यतः पर कुछ ऐसी चीजों को व्यक्त करने में असमर्थ होते हैं जो अधिकांश सिद्धांत कर सकते हैं; उदाहरण के लिए, सकारात्मक समुच्चय सिद्धांत में कोई पूरक (समुच्चय सिद्धांत) या सापेक्ष पूरक नहीं है।
NBG जी वर्ग सिद्धांत में
वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत में, समुच्चय और क्लास (समुच्चय सिद्धांत) के B च एक भेद किया जाता है। एक वर्ग C एक समुच्चय है अगर और केवल अगर यह किसी वर्ग से संबंधित है E. इस सिद्धांत में, एक प्रमेय योजना है जो पढ़ता है
बशर्ते कि विधेय में परिमाणक हों P समुच्चय तक ही सीमित हैं।
यह प्रमेय योजना अपने आप में समझ का एक प्रतिबंधित रूप है, जो आवश्यकता के कारण रसेल के विरोधाभास से बचा जाता है C एक समुच्चय हो। फिर समुच्चय के लिए विनिर्देश स्वयं को एक स्वयंसिद्ध के रूप में लिखा जा सकता है
या और भी सरलता से
इस स्वयंसिद्ध में, विधेय P वर्ग द्वारा प्रतिस्थापित किया जाता है D, जिसकी मात्रा निर्धारित की जा सकती है। एक और सरल स्वयंसिद्ध है जो समान प्रभाव प्राप्त करता है
उच्च-क्रम समुच्चयिंग्स में
एक प्रकार की सिद्धांत भाषा में जहां हम विधेय पर मात्रा निर्धारित कर सकते हैं, विनिर्देशन का स्वयंसिद्ध योजना एक सरल स्वयंसिद्ध बन जाता है। यह काफी हद तक वैसी ही चाल है जैसा कि पिछले खंड के NB जिसे स्वयंसिद्धों में प्रयोग किया गया था, जहां विधेय को एक वर्ग द्वारा प्रतिस्थापित किया गया था जिसे बाद में परिमाणित किया गया था।
दूसरे क्रम के तर्क और उच्च क्रम के तर्क में उच्च क्रम के शब्दार्थ के साथ, विनिर्देश का स्वयंसिद्ध एक तार्किक वैधता है और इसे सिद्धांत में स्पष्ट रूप से सम्मिलित करने की आवश्यकता नहीं है।
क्वीन की नई नींव में
डब्ल्यू वी ओ क्वीन, द्वारा प्रतिपादित सिद्धांत समुच्चय करने के लिए नई नींव के दृष्टिकोण में, किसी दिए गए विधेय के लिए समझ का स्वयंसिद्ध अप्रतिबंधित रूप लेता है, लेकिन योजना में उपयोग किए जाने वाले विधेय स्वयं प्रतिबंधित हैं। विधेय (C इसमें नहीं है C) वर्जित है, क्योंकि वही प्रतीक है C सदस्यता प्रतीक के दोनों तरफ दिखाई देता है (और इसलिए विभिन्न सापेक्ष प्रकारों पर); इस प्रकार, रसेल के विरोधाभास से बचा जाता है। चूंकि, लेने से P(C) होना (C = C), जिसकी अनुमति है, हम सभी समुच्चयों का एक समुच्चय बना सकते हैं। विवरण के लिए, स्तरीकरण (गणित) देखें।
संदर्भ
- ↑ 1.0 1.1 Heinz-Dieter Ebbinghaus (2007). Ernst Zermelo: An Approach to His Life and Work. Springer Science & Business Media. p. 88. ISBN 978-3-540-49553-6.
- Crossley, J.bN.; Ash, C. J.; Brickhill, C. J.; Stillwell, J. C.; Williams, N. H. (1972). What is mathematical logic?. London-Oxford-New York: Oxford University Press. ISBN 0-19-888087-1. Zbl 0251.02001.
- Halmos, Paul, Naive Set Theory. Princeton, New Jersey: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.