This is a good article. Click here for more information.

प्रोटोटाइप फ़िल्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Template for electronic filter design}}
{{Short description|Template for electronic filter design}}
'''प्रोटोटाइप फ़िल्टर''' विद्युत फ़िल्टर डिज़ाइन है जिनका उपयोग किसी विशेष एप्लिकेशन के लिए संशोधित फ़िल्टर डिज़ाइन बनाने के लिए टेम्पलेट के रूप में किया जाता है। वे एक [[गैर-विमीयकरण|गैर-आयामी]] डिज़ाइन का एक उदाहरण है जिससे वांछित फ़िल्टर को [[पैमाने का कारक|स्केल]] या रूपांतरित किया जा सकता है। वे अधिकांशतः विद्युत फिल्टर और विशेष रूप से रैखिक एनालॉग निष्क्रिय फिल्टर के संबंध में देखे जाते है। चूंकि, सिद्धांत रूप में, विधि यांत्रिक, ध्वनिक और ऑप्टिकल फिल्टर सहित किसी भी प्रकार के रैखिक फिल्टर या सिग्नल [[ संकेत आगे बढ़ाना |प्रोसेसिंग]] पर लागू की जा सकती है।
'''प्रोटोटाइप फ़िल्टर''' विद्युत फ़िल्टर डिज़ाइन है जिनका उपयोग किसी विशेष एप्लिकेशन के लिए संशोधित फ़िल्टर डिज़ाइन बनाने के लिए टेम्पलेट के रूप में किया जाता है। वे एक [[गैर-विमीयकरण|गैर-आयामी]] डिज़ाइन का एक उदाहरण है जिससे वांछित फ़िल्टर को [[पैमाने का कारक|स्केल]] या रूपांतरित किया जा सकता है। वे अधिकांशतः विद्युत फिल्टर और विशेष रूप से रैखिक अनुरूप निष्क्रिय फिल्टर के संबंध में देखे जाते है। चूंकि, सिद्धांत रूप में, विधि यांत्रिक, ध्वनिक और ऑप्टिकल फिल्टर सहित किसी भी प्रकार के रैखिक फिल्टर या सिग्नल [[ संकेत आगे बढ़ाना |प्रोसेसिंग]] पर लागू की जा सकती है।


कई अलग-अलग [[ आवृत्ति |आवृत्तियों]], [[ विद्युत प्रतिबाधा |प्रतिबाधाओं]] और [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ]] पर काम करने के लिए [[रैखिक फ़िल्टर|फिल्टर]] की आवश्यकता होती है। एक प्रोटोटाइप फ़िल्टर की उपयोगिता इस संपत्ति से आती है कि ये सभी अन्य फ़िल्टर प्रोटोटाइप के घटकों के लिए स्केलिंग कारक लागू करके इससे प्राप्त किए जा सकते है। फ़िल्टर डिज़ाइन की आवश्यकता केवल एक बार पूर्ण रूप से की जाती है, अन्य फ़िल्टर केवल स्केलिंग कारक को लागू करके प्राप्त किए जाते है।
कई अलग-अलग [[ आवृत्ति |आवृत्तियों]], [[ विद्युत प्रतिबाधा |प्रतिबाधाओं]] और [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ]] पर काम करने के लिए [[रैखिक फ़िल्टर|फिल्टर]] की आवश्यकता होती है। एक प्रोटोटाइप फ़िल्टर की उपयोगिता इस संपत्ति से आती है कि ये सभी अन्य फ़िल्टर प्रोटोटाइप के घटकों के लिए स्केलिंग कारक लागू करके इससे प्राप्त किए जा सकते है। फ़िल्टर डिज़ाइन की आवश्यकता केवल एक बार पूर्ण रूप से की जाती है, अन्य फ़िल्टर केवल स्केलिंग कारक को लागू करके प्राप्त किए जाते है।


विशेष रूप से उपयोगी एक बैंडफॉर्म से दूसरे बैंडफॉर्म में बदलने की क्षमता है। इस स्थिति में, परिवर्तन एक साधारण पैमाने के कारक से अधिक है। यहां बैंडफॉर्म का मतलब [[पासबैंड]] की श्रेणी को इंगित करना है जो फिल्टर के पास है। सामान्य बैंडफॉर्म [[कम उत्तीर्ण|लोपास]], [[ उच्च मार्ग |हाईपास]], [[बैंडपास]] और [[बैंडस्टॉप]] है, लेकिन अन्य संभव है। विशेष रूप से, फ़िल्टर के लिए एकाधिक पासबैंड होना संभव है। वास्तव में, कुछ उपचारों में, बैंडस्टॉप फ़िल्टर को एक प्रकार का एकाधिक पासबैंड फ़िल्टर माना जाता है जिसमें दो पासबैंड होते है। सामान्यतः, प्रोटोटाइप फ़िल्टर को लोपास फ़िल्टर के रूप में व्यक्त किया जाता है, लेकिन अन्य तकनीकें संभव है।
विशेष रूप से उपयोगी एक बैंडफॉर्म से दूसरे बैंडफॉर्म में बदलने की क्षमता होती है। इस स्थिति में, परिवर्तन एक साधारण पैमाने के कारक से अधिक होता है। यहां बैंडफॉर्म का मतलब [[पासबैंड]] की श्रेणी को इंगित करना है जो फिल्टर के पास होता है। सामान्य बैंडफॉर्म [[कम उत्तीर्ण|लोपास]], [[ उच्च मार्ग |हाईपास]], [[बैंडपास]] और [[बैंडस्टॉप]] है, लेकिन अन्य संभव है। विशेष रूप से, फ़िल्टर के लिए एकाधिक पासबैंड होना संभव है। वास्तव में, कुछ उपचारों में, बैंडस्टॉप फ़िल्टर को एक प्रकार का एकाधिक पासबैंड फ़िल्टर माना जाता है जिसमें दो पासबैंड होते है। सामान्यतः, प्रोटोटाइप फ़िल्टर को लोपास फ़िल्टर के रूप में व्यक्त किया जाता है, लेकिन अन्य तकनीकें संभव होती है।


[[Image:Constant k  prototype.svg|right|250px|thumb|एक कम पास प्रोटोटाइप कॉन्सटेंट k फ़िल्टर Π (pi) फ़िल्टर]]__TOC__
[[Image:Constant k  prototype.svg|right|250px|thumb|एक कम पास प्रोटोटाइप कॉन्सटेंट k फ़िल्टर Π (pi) फ़िल्टर]]__TOC__
Line 10: Line 10:


== लो-पास प्रोटोटाइप ==
== लो-पास प्रोटोटाइप ==
प्रोटोटाइप अधिकांशतः एक निम्न-पास फ़िल्टर होता है जिसमें कोणीय आवृत्ति ω<sub>c</sub>′ = 1 rad/s की 3 dB [[कोने की आवृत्ति]] होती है। कभी-कभी, आवृत्ति f' = 1 Hz का उपयोग ω<sub>c</sub>' = 1 के बजाय किया जाता है। इसी तरह, फ़िल्टर की नाममात्र या विशेषता प्रतिबाधा R' = 1 Ω पर सेट की जाती है।
प्रोटोटाइप अधिकांशतः एक निम्न-पास फ़िल्टर होता है जिसमें कोणीय आवृत्ति ω<sub>c</sub>′ = 1 rad/s की 3 डीबी [[कोने की आवृत्ति]] होती है। कभी-कभी, आवृत्ति f' = 1 Hz का उपयोग ω<sub>c</sub>' = 1 के अतिरिक्त किया जाता है। इसी तरह, फ़िल्टर की नाममात्र या विशेषता प्रतिबाधा R' = 1 Ω पर सेट की जाती है।


सिद्धांत रूप में, फ़िल्टर प्रतिक्रिया पर किसी भी गैर-शून्य आवृत्ति बिंदु को प्रोटोटाइप डिज़ाइन के संदर्भ के रूप में उपयोग किया जा सकता है। उदाहरण के लिए, पासबैंड में रिपल वाले फिल्टर के लिए, कॉर्नर फ्रीक्वेंसी को सामान्यतः 3 डीबी के बजाय अधिकतम रिपल पर उच्चतम फ्रीक्वेंसी के रूप में परिभाषित किया जाता है। एक अन्य मामला [[ समग्र छवि फ़िल्टर |समग्र छवि फ़िल्टर]] (अधिक आधुनिक [[ नेटवर्क संश्लेषण फिल्टर |नेटवर्क संश्लेषण फिल्टर]] की तुलना में एक पुरानी डिजाइन विधि) में है जो 3 डीबी बिंदु के बजाय कट-ऑफ आवृत्ति का उपयोग करता है क्योंकि कट-ऑफ इस प्रकार के फिल्टर में एक अच्छी तरह से परिभाषित बिंदु है।
सिद्धांत रूप में, फ़िल्टर प्रतिक्रिया पर किसी भी गैर-शून्य आवृत्ति बिंदु को प्रोटोटाइप डिज़ाइन के संदर्भ के रूप में उपयोग किया जा सकता है। उदाहरण के लिए, पासबैंड में रिपल वाले फिल्टर के लिए, कोने की फ्रीक्वेंसी को सामान्यतः 3 डीबी के अतिरिक्त अधिकतम रिपल पर उच्चतम फ्रीक्वेंसी के रूप में परिभाषित किया जाता है। एक अन्य स्थिति [[ समग्र छवि फ़िल्टर |समग्र छवि फ़िल्टर]] (अधिक आधुनिक [[ नेटवर्क संश्लेषण फिल्टर |नेटवर्क संश्लेषण फिल्टर]] की तुलना में एक पुरानी डिजाइन विधि) में है जो 3 डीबी बिंदु के अतिरिक्त कट-ऑफ आवृत्ति का उपयोग करता है क्योंकि कट-ऑफ इस प्रकार के फिल्टर में एक अच्छी तरह से परिभाषित बिंदु होता है।


प्रोटोटाइप फ़िल्टर का उपयोग केवल उसी वर्ग<ref group="n">The class of a filter is the mathematical class of the polynomials in the [[rational function]] that describe its [[transfer function]].  Image parameter filters are not rational and hence do not have a polynomial class.  Such filters are classified by type ([[k-type filter|k-type]], [[m-type filter|m-type]] etc).  ''Type'' serves as the class name for image filters and is based on the filter circuit topology.</ref> और क्रम के अन्य फ़िल्टर बनाने के लिए किया जा सकता है।<ref group="n">The order of a filter is the [[degree of a polynomial|order]] of the filter's rational function.  A rational function is a ratio of two [[polynomial]]s and the order of the function is the order of the highest order polynomial.  Any filter constructed from a finite number of discrete elements will be described by a rational function and in general, the order will be equal to the number of [[electrical reactance|reactive]] elements that are used.</ref> उदाहरण के लिए, पाँचवें क्रम के [[बेसल फिल्टर]] प्रोटोटाइप को किसी अन्य पाँचवें क्रम के बेसेल फ़िल्टर में परिवर्तित किया जा सकता है, लेकिन यह तीसरे क्रम के बेसेल फ़िल्टर या पांचवें क्रम के [[चेबिशेव फिल्टर]] में परिवर्तित नहीं किया जा सकता है।
प्रोटोटाइप फ़िल्टर का उपयोग केवल उसी वर्ग<ref group="n">The class of a filter is the mathematical class of the polynomials in the [[rational function]] that describe its [[transfer function]].  Image parameter filters are not rational and hence do not have a polynomial class.  Such filters are classified by type ([[k-type filter|k-type]], [[m-type filter|m-type]] etc).  ''Type'' serves as the class name for image filters and is based on the filter circuit topology.</ref> और क्रम के अन्य फ़िल्टर बनाने के लिए किया जा सकता है।<ref group="n">The order of a filter is the [[degree of a polynomial|order]] of the filter's rational function.  A rational function is a ratio of two [[polynomial]]s and the order of the function is the order of the highest order polynomial.  Any filter constructed from a finite number of discrete elements will be described by a rational function and in general, the order will be equal to the number of [[electrical reactance|reactive]] elements that are used.</ref> उदाहरण के लिए, पाँचवें क्रम के [[बेसल फिल्टर]] प्रोटोटाइप को किसी अन्य पाँचवें क्रम के बेसेल फ़िल्टर में परिवर्तित किया जा सकता है, लेकिन यह तीसरे क्रम के बेसेल फ़िल्टर या पांचवें क्रम के [[चेबिशेव फिल्टर]] में परिवर्तित नहीं किया जा सकता है।
Line 33: Line 33:
<math>Z \to \frac{R}{R'}\,Z</math>
<math>Z \to \frac{R}{R'}\,Z</math>


इसके बजाय प्रवेश को मापने के लिए कुछ तत्वों पर यह अधिक सुविधाजनक हो सकता है:
इसके अतिरिक्त प्रवेश को मापने के लिए कुछ तत्वों पर यह अधिक सुविधाजनक हो सकता है:


<math>Y \to \frac{R'}{R} \,Y</math>
<math>Y \to \frac{R'}{R} \,Y</math>
Line 45: Line 45:
<math>L \to \,\frac{\omega_\text{c}'}{\omega_\text{c}}\,\frac{R}{R'} \,L</math>और,<math>C \to \,\frac{\omega_\text{c}'}{\omega_\text{c}}\,\frac{R'}{R} \,C</math>
<math>L \to \,\frac{\omega_\text{c}'}{\omega_\text{c}}\,\frac{R}{R'} \,L</math>और,<math>C \to \,\frac{\omega_\text{c}'}{\omega_\text{c}}\,\frac{R'}{R} \,C</math>
== बैंडफॉर्म परिवर्तन ==
== बैंडफॉर्म परिवर्तन ==
सामान्यतः, फिल्टर का बैंडफॉर्म iω को बदलकर बदल दिया जाता है जहां यह iω के फ़ंक्शन के साथ ट्रांसफर फ़ंक्शन में होता है। यह बदले में फिल्टर के प्रतिबाधा घटकों को किसी अन्य घटक(ओं) में बदलने की ओर ले जाता है। ऊपर की आवृत्ति स्केलिंग बैंडफॉर्म परिवर्तन का एक तुच्छ मामला है, जो लोपास टू लोपास परिवर्तन के अनुरूप है।
सामान्यतः, फिल्टर का बैंडफॉर्म iω को बदलकर बदल दिया जाता है जहां यह iω के फ़ंक्शन के साथ स्थानांतरण फ़ंक्शन में होता है। यह बदले में फिल्टर के प्रतिबाधा घटकों को किसी अन्य घटकों में बदलने की ओर ले जाता है। ऊपर की आवृत्ति स्केलिंग बैंडफॉर्म परिवर्तन की एक तुच्छ स्थिति है, जो लोपास से लोपास परिवर्तन के अनुरूप होती है।


=== लोपास से हाईपास ===
=== लोपास से हाईपास ===
Line 56: Line 56:
<math>A(i\omega) \to A\left( \frac{\omega_\text{c} \, \omega_\text{c}'}{i\omega} \right)</math>
<math>A(i\omega) \to A\left( \frac{\omega_\text{c} \, \omega_\text{c}'}{i\omega} \right)</math>


इंडक्टर्स के अनुसार संधारित्र में परिवर्तित हो जाते है,
कुचालक के अनुसार संधारित्र में परिवर्तित हो जाते है,


<math>L' \to C= \frac{1}{\omega_\text{c} \,\omega_\text{c}'\,L'}</math>
<math>L' \to C= \frac{1}{\omega_\text{c} \,\omega_\text{c}'\,L'}</math>


और संधारित्र इंडक्टर्स में तब्दील हो जाते है,
और संधारित्र कुचालक में तब्दील हो जाते है,


<math>C' \to L = \frac{1}{\omega_\text{c} \,\omega_\text{c}'\,C'}</math>
<math>C' \to L = \frac{1}{\omega_\text{c} \,\omega_\text{c}'\,C'}</math>
Line 79: Line 79:
<math>\Delta\omega=\omega_2-\omega_1\,</math>और <math>\omega_0=\sqrt{\omega_1\omega_2}</math>
<math>\Delta\omega=\omega_2-\omega_1\,</math>और <math>\omega_0=\sqrt{\omega_1\omega_2}</math>


Δω निरपेक्ष बैंडविड्थ है, और ω<sub>0</sub> फिल्टर में गुंजयमान यंत्रों की गुंजयमान आवृत्ति है। ध्यान दें कि लोपास से बैंडपास परिवर्तन से पहले प्रोटोटाइप को स्केल करने वाली आवृत्ति गुंजयमान आवृत्ति को प्रभावित नहीं करती है, बल्कि फ़िल्टर की अंतिम बैंडविड्थ को प्रभावित करती है।
Δω निरपेक्ष बैंडविड्थ है, और ω<sub>0</sub> फिल्टर में गुंजयमान यंत्रों की गुंजयमान आवृत्ति है। ध्यान दें कि लोपास से बैंडपास परिवर्तन से पहले प्रोटोटाइप को स्केल करने वाली आवृत्ति गुंजयमान आवृत्ति को प्रभावित नहीं करती है, जबकि फ़िल्टर की अंतिम बैंडविड्थ को प्रभावित करती है।


फ़िल्टर का स्थानांतरण कार्य इसके अनुसार रूपांतरित होता है:
फ़िल्टर का स्थानांतरण कार्य इसके अनुसार रूपांतरित होता है:
Line 85: Line 85:
<math>A(i\omega) \to A\left( \omega_\text{c}' Q \left[ \frac {i\omega}{\omega_0}+\frac {\omega_0}{i\omega} \right] \right)</math>
<math>A(i\omega) \to A\left( \omega_\text{c}' Q \left[ \frac {i\omega}{\omega_0}+\frac {\omega_0}{i\omega} \right] \right)</math>


[[Image:Pi filter 50 ohm 6MHz 100kHz.svg|right|thumb|250px|ऊपर दिया गया प्रोटोटाइप फ़िल्टर, 100 kHz बैंडविड्थ के साथ 50 Ω, 6 मेगाहर्ट्ज़ बैंडपास फ़िल्टर में बदला गया]]इंडक्टर्स श्रृंखला अनुनादकों में परिवर्तित हो जाते है,
[[Image:Pi filter 50 ohm 6MHz 100kHz.svg|right|thumb|250px|ऊपर दिया गया प्रोटोटाइप फ़िल्टर, 100 kHz बैंडविड्थ के साथ 50 Ω, 6 मेगाहर्ट्ज़ बैंडपास फ़िल्टर में बदला गया]]कुचालक श्रृंखला अनुनादकों में परिवर्तित हो जाते है,


<math>L' \to L= \frac{\omega_\text{c}' Q}{\omega_0}L' \,,\,C= \frac{1}{\omega_0 \omega_\text{c}' Q}\frac{1}{L'}</math>
<math>L' \to L= \frac{\omega_\text{c}' Q}{\omega_0}L' \,,\,C= \frac{1}{\omega_0 \omega_\text{c}' Q}\frac{1}{L'}</math>
Line 98: Line 98:
Q \left( \frac {i\omega}{\omega_0}+\dfrac {\omega_0}{i\omega} \right)</math>
Q \left( \frac {i\omega}{\omega_0}+\dfrac {\omega_0}{i\omega} \right)</math>


इंडक्टर्स समानांतर अनुनादकों में परिवर्तित हो जाते है,
कुचालक समानांतर अनुनादकों में परिवर्तित हो जाते है,


<math>L' \to L= \frac{\omega_\text{c}'}{\omega_0 Q}L' \,\lVert \,C= \frac{Q}{\omega_0 \omega_\text{c}'}\frac{1}{L'}</math>
<math>L' \to L= \frac{\omega_\text{c}'}{\omega_0 Q}L' \,\lVert \,C= \frac{Q}{\omega_0 \omega_\text{c}'}\frac{1}{L'}</math>
Line 114: Line 114:
\cdots</math>
\cdots</math>


अभिव्यक्ति में गुंजयमान यंत्रों की संख्या आवश्यक पासबैंडों की संख्या से मेल खाती है। लोपास और हाईपास फिल्टर को गुंजयमान यंत्र अभिव्यक्ति के विशेष स्थितियों के रूप में देखा जा सकता है, जिसमें से एक या दूसरे शब्द शून्य हो जाते है। बैंडस्टॉप फिल्टर को लोपास और हाईपास फिल्टर के संयोजन के रूप में माना जा सकता है। एकाधिक बैंडस्टॉप फ़िल्टर हमेशा एकाधिक बैंडपास फ़िल्टर के संदर्भ में व्यक्त किए जा सकते है। इस तरह, यह देखा जा सकता है कि यह परिवर्तन किसी भी बैंडफॉर्म के लिए सामान्य स्थिति का प्रतिनिधित्व करता है, और अन्य सभी परिवर्तनों को इसके विशेष स्थितियों के रूप में देखा जाना चाहिए।
अभिव्यक्ति में गुंजयमान यंत्रों की संख्या आवश्यक पासबैंडों की संख्या से मेल खाती है। लोपास और हाईपास फिल्टर को गुंजयमान यंत्र अभिव्यक्ति के विशेष स्थितियों के रूप में देखा जा सकता है, जिसमें से एक या दूसरे शब्द शून्य हो जाते है। बैंडस्टॉप फिल्टर को लोपास और हाईपास फिल्टर के संयोजन के रूप में माना जा सकता है। एकाधिक बैंडस्टॉप फ़िल्टर हमेशा एकाधिक बैंडपास फ़िल्टर के संदर्भ में व्यक्त किए जा सकते है। इस तरह, यह देखा जा सकता है कि यह परिवर्तन किसी भी बैंडफॉर्म के लिए सामान्य स्थिति का प्रतिनिधित्व करता है, और अन्य सभी परिवर्तनों को इसके विशेष स्थितियों के रूप में देखा जाता है।


एक ही प्रतिक्रिया को समान रूप से प्राप्त किया जा सकता है, कभी-कभी अधिक सुविधाजनक घटक टोपोलॉजी के साथ, कई पासबैंडों के बजाय कई स्टॉपबैंड्स में परिवर्तित करके। उन स्थितियों में आवश्यक परिवर्तन है:
एक ही प्रतिक्रिया को समान रूप से प्राप्त किया जा सकता है, कभी-कभी अधिक सुविधाजनक घटक टोपोलॉजी के साथ, कई पासबैंडों के अतिरिक्त कई स्टॉपबैंड्स में परिवर्तित करके प्राप्त किया जा सकता है। उन स्थितियों में आवश्यक परिवर्तन है:


<math> \frac{i\omega}{\omega_c'} \to
<math> \frac{i\omega}{\omega_c'} \to
Line 123: Line 123:
\cdots</math>
\cdots</math>
== वैकल्पिक प्रोटोटाइप ==
== वैकल्पिक प्रोटोटाइप ==
समग्र छवि फिल्टर के अपने उपचार में, [[ओटो ज़ोबेल]] ने एक प्रोटोटाइप के निर्माण के लिए एक वैकल्पिक आधार प्रदान किया जो [[आवृत्ति डोमेन]] में आधारित नहीं है।<ref>Zobel, 1930, p. 3.</ref> Zobel प्रोटोटाइप, इसलिए, किसी विशेष बैंडफॉर्म के अनुरूप नहीं है, लेकिन उनमें से किसी में भी रूपांतरित किया जा सकता है। किसी एक बैंडफॉर्म को विशेष महत्व न देना इस पद्धति को गणितीय रूप से अधिक सुखद बनाता है, चूँकि, यह सामान्य उपयोग में नहीं है।
समग्र छवि फिल्टर के अपने उपचार में, [[ओटो ज़ोबेल]] ने एक प्रोटोटाइप के निर्माण के लिए एक वैकल्पिक आधार प्रदान किया जो [[आवृत्ति डोमेन]] में आधारित नहीं होता है।<ref>Zobel, 1930, p. 3.</ref> जोबेल प्रोटोटाइप, इसलिए, किसी विशेष बैंडफॉर्म के अनुरूप नहीं होता है, लेकिन उनमें से किसी में भी रूपांतरित किया जा सकता है। किसी एक बैंडफॉर्म को विशेष महत्व न देना इस पद्धति को गणितीय रूप से अधिक सुखद बनाता है, चूँकि, यह सामान्य उपयोग में नहीं होता है।


ज़ोबेल प्रोटोटाइप घटकों के बजाय फ़िल्टर अनुभागों पर विचार करता है। अर्थात्, परिवर्तन दो-टर्मिनल प्रारंभ करनेवाला या संधारित्र के बजाय [[दो-पोर्ट नेटवर्क]] पर किया जाता है। ट्रांसफर फ़ंक्शन श्रृंखला विद्युत प्रतिबाधा, जेड, और फ़िल्टर आधे-सेक्शन के शंट [[प्रवेश]] वाई के उत्पाद के संदर्भ में व्यक्त किया जाता है।। अर्ध-वर्गों के विवरण के लिए आलेख [[छवि प्रतिबाधा]] देखें। प्रोटोटाइप की व्यापकता को जोड़ते हुए, यह मात्रा गैर-विमीयकरण है। सामान्यतः, ZY एक जटिल मात्रा है,
ज़ोबेल प्रोटोटाइप घटकों के अतिरिक्त फ़िल्टर अनुभागों पर विचार करता है। अर्थात्, परिवर्तन दो-टर्मिनल प्रारंभ करनेवाला या संधारित्र के अतिरिक्त [[दो-पोर्ट नेटवर्क]] पर किया जाता है। स्थानांतरण फ़ंक्शन श्रृंखला विद्युत प्रतिबाधा, जेड, और फ़िल्टर आधे-सेक्शन के शंट [[प्रवेश]] वाई के उत्पाद के संदर्भ में व्यक्त किया जाता है। प्रोटोटाइप की व्यापकता को जोड़ते हुए, यह मात्रा गैर-विमीयकरण है। सामान्यतः, जेडवाई एक जटिल मात्रा है,


<math>ZY = U + iV\,\!</math> और चूंकि यू और वी दोनों सामान्य रूप से ω के कार्य है, इसलिए हमें ठीक से लिखना चाहिए,
<math>ZY = U + iV\,\!</math> और चूंकि यू और वी दोनों सामान्य रूप से ω के कार्य है, इसलिए हमें ठीक से लिखना चाहिए,
Line 131: Line 131:
<math>ZY = U(\omega) + iV(\omega)</math>
<math>ZY = U(\omega) + iV(\omega)</math>


छवि फ़िल्टर के साथ, एक अलग प्रकार के परिवर्तन (समग्र छवि फ़िल्टर देखें) के माध्यम से [[निरंतर k फ़िल्टर]] प्रोटोटाइप से विभिन्न वर्गों के फ़िल्टर प्राप्त करना संभव है, निरंतर k वे फ़िल्टर है जिनके लिए Z/Y स्थिर है। इस कारण से, सभी वर्गों के फ़िल्टर एक स्थिर k के लिए U(ω) के संदर्भ में दिए गए है, जिसे इस प्रकार नोट किया गया है,
छवि फ़िल्टर के साथ, एक अलग प्रकार के परिवर्तन के माध्यम से [[निरंतर k फ़िल्टर]] प्रोटोटाइप से विभिन्न वर्गों के फ़िल्टर प्राप्त करना संभव होता है, निरंतर k वे फ़िल्टर है जिनके लिए जेड/वाई स्थिर होते है। इस कारण से, सभी वर्गों के फ़िल्टर एक स्थिर k के लिए U(ω) के संदर्भ में दिए गए है, जिसे इस प्रकार नोट किया गया है,


<math>ZY = U_k(\omega) + iV_k(\omega)</math>
<math>ZY = U_k(\omega) + iV_k(\omega)</math>


अपव्यय रहित नेटवर्क के स्थिति में, अर्थात कोई प्रतिरोध नहीं, मात्रा V(ω) शून्य है और केवल U(ω) पर विचार करने की आवश्यकता है। यू<sub>''k''</sub> (ω) पासबैंड के केंद्र में 0 से कट-ऑफ आवृत्ति पर -1 तक होता है और फिर फ़िल्टर के बैंडफॉर्म के डिजाइन के बावजूद स्टॉपबैंड में नकारात्मक रूप से बढ़ता रहता है। आवश्यक बैंडफॉर्म प्राप्त करने के लिए, निम्नलिखित रूपांतरणों का उपयोग किया जाता है:
अपव्यय रहित नेटवर्क के स्थिति में, अर्थात कोई प्रतिरोध नहीं, मात्रा V(ω) शून्य है और केवल U(ω) पर विचार करने की आवश्यकता है। यू<sub>''k''</sub> (ω) पासबैंड के केंद्र में 0 से कट-ऑफ आवृत्ति पर -1 तक होता है और फिर फ़िल्टर के बैंडफॉर्म के डिजाइन के अतिरिक्त स्टॉपबैंड में नकारात्मक रूप से बढ़ता रहता है। आवश्यक बैंडफॉर्म प्राप्त करने के लिए, निम्नलिखित रूपांतरणों का उपयोग किया जाता है:


स्केल किए गए लोपास निरंतर k प्रोटोटाइप के लिए:
स्केल किए गए लोपास निरंतर k प्रोटोटाइप के लिए:

Revision as of 03:03, 11 March 2023

प्रोटोटाइप फ़िल्टर विद्युत फ़िल्टर डिज़ाइन है जिनका उपयोग किसी विशेष एप्लिकेशन के लिए संशोधित फ़िल्टर डिज़ाइन बनाने के लिए टेम्पलेट के रूप में किया जाता है। वे एक गैर-आयामी डिज़ाइन का एक उदाहरण है जिससे वांछित फ़िल्टर को स्केल या रूपांतरित किया जा सकता है। वे अधिकांशतः विद्युत फिल्टर और विशेष रूप से रैखिक अनुरूप निष्क्रिय फिल्टर के संबंध में देखे जाते है। चूंकि, सिद्धांत रूप में, विधि यांत्रिक, ध्वनिक और ऑप्टिकल फिल्टर सहित किसी भी प्रकार के रैखिक फिल्टर या सिग्नल प्रोसेसिंग पर लागू की जा सकती है।

कई अलग-अलग आवृत्तियों, प्रतिबाधाओं और बैंडविड्थ पर काम करने के लिए फिल्टर की आवश्यकता होती है। एक प्रोटोटाइप फ़िल्टर की उपयोगिता इस संपत्ति से आती है कि ये सभी अन्य फ़िल्टर प्रोटोटाइप के घटकों के लिए स्केलिंग कारक लागू करके इससे प्राप्त किए जा सकते है। फ़िल्टर डिज़ाइन की आवश्यकता केवल एक बार पूर्ण रूप से की जाती है, अन्य फ़िल्टर केवल स्केलिंग कारक को लागू करके प्राप्त किए जाते है।

विशेष रूप से उपयोगी एक बैंडफॉर्म से दूसरे बैंडफॉर्म में बदलने की क्षमता होती है। इस स्थिति में, परिवर्तन एक साधारण पैमाने के कारक से अधिक होता है। यहां बैंडफॉर्म का मतलब पासबैंड की श्रेणी को इंगित करना है जो फिल्टर के पास होता है। सामान्य बैंडफॉर्म लोपास, हाईपास, बैंडपास और बैंडस्टॉप है, लेकिन अन्य संभव है। विशेष रूप से, फ़िल्टर के लिए एकाधिक पासबैंड होना संभव है। वास्तव में, कुछ उपचारों में, बैंडस्टॉप फ़िल्टर को एक प्रकार का एकाधिक पासबैंड फ़िल्टर माना जाता है जिसमें दो पासबैंड होते है। सामान्यतः, प्रोटोटाइप फ़िल्टर को लोपास फ़िल्टर के रूप में व्यक्त किया जाता है, लेकिन अन्य तकनीकें संभव होती है।

एक कम पास प्रोटोटाइप कॉन्सटेंट k फ़िल्टर Π (pi) फ़िल्टर
Parts of this article or section rely on the reader's knowledge of the complex impedance representation of capacitors and inductors and on knowledge of the frequency domain representation of signals.

लो-पास प्रोटोटाइप

प्रोटोटाइप अधिकांशतः एक निम्न-पास फ़िल्टर होता है जिसमें कोणीय आवृत्ति ωc′ = 1 rad/s की 3 डीबी कोने की आवृत्ति होती है। कभी-कभी, आवृत्ति f' = 1 Hz का उपयोग ωc' = 1 के अतिरिक्त किया जाता है। इसी तरह, फ़िल्टर की नाममात्र या विशेषता प्रतिबाधा R' = 1 Ω पर सेट की जाती है।

सिद्धांत रूप में, फ़िल्टर प्रतिक्रिया पर किसी भी गैर-शून्य आवृत्ति बिंदु को प्रोटोटाइप डिज़ाइन के संदर्भ के रूप में उपयोग किया जा सकता है। उदाहरण के लिए, पासबैंड में रिपल वाले फिल्टर के लिए, कोने की फ्रीक्वेंसी को सामान्यतः 3 डीबी के अतिरिक्त अधिकतम रिपल पर उच्चतम फ्रीक्वेंसी के रूप में परिभाषित किया जाता है। एक अन्य स्थिति समग्र छवि फ़िल्टर (अधिक आधुनिक नेटवर्क संश्लेषण फिल्टर की तुलना में एक पुरानी डिजाइन विधि) में है जो 3 डीबी बिंदु के अतिरिक्त कट-ऑफ आवृत्ति का उपयोग करता है क्योंकि कट-ऑफ इस प्रकार के फिल्टर में एक अच्छी तरह से परिभाषित बिंदु होता है।

प्रोटोटाइप फ़िल्टर का उपयोग केवल उसी वर्ग[n 1] और क्रम के अन्य फ़िल्टर बनाने के लिए किया जा सकता है।[n 2] उदाहरण के लिए, पाँचवें क्रम के बेसल फिल्टर प्रोटोटाइप को किसी अन्य पाँचवें क्रम के बेसेल फ़िल्टर में परिवर्तित किया जा सकता है, लेकिन यह तीसरे क्रम के बेसेल फ़िल्टर या पांचवें क्रम के चेबिशेव फिल्टर में परिवर्तित नहीं किया जा सकता है।

फ्रीक्वेंसी स्केलिंग

प्रोटोटाइप फ़िल्टर को निम्न परिवर्तन के साथ आवश्यक आवृत्ति तक बढ़ाया गया है:

जहां ωc′ प्रोटोटाइप के लिए आवृत्ति पैरामीटर (जैसे कट-ऑफ आवृत्ति) का मान है और ωc वांछित मान है। तो यदि ωc′ = 1 तो फ़िल्टर का स्थानांतरण फ़ंक्शन इस रूप में परिवर्तित हो जाता है:

यह आसानी से देखा जा सकता है कि इसे प्राप्त करने के लिए, फ़िल्टर के गैर-प्रतिरोधी घटकों को इसके द्वारा रूपांतरित किया जाना चाहिए:

और,

प्रतिबाधा स्केलिंग

प्रतिबाधा स्केलिंग निरपवाद रूप से एक निश्चित प्रतिरोध के लिए स्केलिंग है। ऐसा इसलिए है क्योंकि फ़िल्टर की समाप्ति, कम से कम नाममात्र के लिए, एक निश्चित प्रतिरोध के रूप में ली जाती है। इस स्केलिंग को नाममात्र प्रतिबाधा आर तक ले जाने के लिए, फ़िल्टर के प्रत्येक प्रतिबाधा तत्व को इसके द्वारा रूपांतरित किया जाता है:

इसके अतिरिक्त प्रवेश को मापने के लिए कुछ तत्वों पर यह अधिक सुविधाजनक हो सकता है:

ऊपर दिया गया प्रोटोटाइप फ़िल्टर, 600 Ω, 16 kHz लोपास फ़िल्टर में बदल गया

यह आसानी से देखा जा सकता है कि इसे प्राप्त करने के लिए, फ़िल्टर के गैर-प्रतिरोधक घटकों को इस प्रकार बढ़ाया जाना चाहिए:

और,\

प्रतिबाधा स्केलिंग का स्वयं फ़िल्टर के स्थानांतरण फ़ंक्शन पर कोई प्रभाव नहीं पड़ता है (बशर्ते कि समाप्ति प्रतिबाधाओं पर समान स्केलिंग लागू हो)। चूँकि, आवृत्ति और प्रतिबाधा स्केलिंग को एक ही चरण में संयोजित करना सामान्य है:[1]

और,

बैंडफॉर्म परिवर्तन

सामान्यतः, फिल्टर का बैंडफॉर्म iω को बदलकर बदल दिया जाता है जहां यह iω के फ़ंक्शन के साथ स्थानांतरण फ़ंक्शन में होता है। यह बदले में फिल्टर के प्रतिबाधा घटकों को किसी अन्य घटकों में बदलने की ओर ले जाता है। ऊपर की आवृत्ति स्केलिंग बैंडफॉर्म परिवर्तन की एक तुच्छ स्थिति है, जो लोपास से लोपास परिवर्तन के अनुरूप होती है।

लोपास से हाईपास

इस स्थिति में आवश्यक आवृत्ति परिवर्तन है:[2]

जहां ωc प्रोटोटाइप पर ωc' के अनुरूप हाईपास फ़िल्टर पर बिंदु है। स्थानांतरण समारोह तब इस रूप में बदल जाता है:

कुचालक के अनुसार संधारित्र में परिवर्तित हो जाते है,

और संधारित्र कुचालक में तब्दील हो जाते है,

प्राथमिक मात्राएँ प्रोटोटाइप में घटक मान है।

लोपास से बैंडपास

इस स्थिति में, आवश्यक आवृत्ति परिवर्तन है:[3]

जहां क्यू क्यू कारक है और भिन्नात्मक बैंडविड्थ के व्युत्क्रम के बराबर है:[4]

यदि ω1 और ω2 प्रोटोटाइप के ωc′ के अनुरूप बैंडपास प्रतिक्रिया के निचले और ऊपरी आवृत्ति बिंदु (क्रमशः) है, तो,

और

Δω निरपेक्ष बैंडविड्थ है, और ω0 फिल्टर में गुंजयमान यंत्रों की गुंजयमान आवृत्ति है। ध्यान दें कि लोपास से बैंडपास परिवर्तन से पहले प्रोटोटाइप को स्केल करने वाली आवृत्ति गुंजयमान आवृत्ति को प्रभावित नहीं करती है, जबकि फ़िल्टर की अंतिम बैंडविड्थ को प्रभावित करती है।

फ़िल्टर का स्थानांतरण कार्य इसके अनुसार रूपांतरित होता है:

ऊपर दिया गया प्रोटोटाइप फ़िल्टर, 100 kHz बैंडविड्थ के साथ 50 Ω, 6 मेगाहर्ट्ज़ बैंडपास फ़िल्टर में बदला गया

कुचालक श्रृंखला अनुनादकों में परिवर्तित हो जाते है,

और संधारित्र समानांतर अनुनादकों में परिवर्तित हो जाते है,

बैंडस्टॉप के लिए लोपास

लोपास से बैंडस्टॉप के लिए आवश्यक आवृत्ति रूपांतरण है:[5]

कुचालक समानांतर अनुनादकों में परिवर्तित हो जाते है,

और संधारित्र श्रृंखला अनुनादकों में परिवर्तित हो जाते है,

मल्टी-बैंड के लिए लोपास

सामान्य परिवर्तन लागू करके एकाधिक पासबैंड वाले फ़िल्टर प्राप्त किए जा सकते है:

अभिव्यक्ति में गुंजयमान यंत्रों की संख्या आवश्यक पासबैंडों की संख्या से मेल खाती है। लोपास और हाईपास फिल्टर को गुंजयमान यंत्र अभिव्यक्ति के विशेष स्थितियों के रूप में देखा जा सकता है, जिसमें से एक या दूसरे शब्द शून्य हो जाते है। बैंडस्टॉप फिल्टर को लोपास और हाईपास फिल्टर के संयोजन के रूप में माना जा सकता है। एकाधिक बैंडस्टॉप फ़िल्टर हमेशा एकाधिक बैंडपास फ़िल्टर के संदर्भ में व्यक्त किए जा सकते है। इस तरह, यह देखा जा सकता है कि यह परिवर्तन किसी भी बैंडफॉर्म के लिए सामान्य स्थिति का प्रतिनिधित्व करता है, और अन्य सभी परिवर्तनों को इसके विशेष स्थितियों के रूप में देखा जाता है।

एक ही प्रतिक्रिया को समान रूप से प्राप्त किया जा सकता है, कभी-कभी अधिक सुविधाजनक घटक टोपोलॉजी के साथ, कई पासबैंडों के अतिरिक्त कई स्टॉपबैंड्स में परिवर्तित करके प्राप्त किया जा सकता है। उन स्थितियों में आवश्यक परिवर्तन है:

वैकल्पिक प्रोटोटाइप

समग्र छवि फिल्टर के अपने उपचार में, ओटो ज़ोबेल ने एक प्रोटोटाइप के निर्माण के लिए एक वैकल्पिक आधार प्रदान किया जो आवृत्ति डोमेन में आधारित नहीं होता है।[6] जोबेल प्रोटोटाइप, इसलिए, किसी विशेष बैंडफॉर्म के अनुरूप नहीं होता है, लेकिन उनमें से किसी में भी रूपांतरित किया जा सकता है। किसी एक बैंडफॉर्म को विशेष महत्व न देना इस पद्धति को गणितीय रूप से अधिक सुखद बनाता है, चूँकि, यह सामान्य उपयोग में नहीं होता है।

ज़ोबेल प्रोटोटाइप घटकों के अतिरिक्त फ़िल्टर अनुभागों पर विचार करता है। अर्थात्, परिवर्तन दो-टर्मिनल प्रारंभ करनेवाला या संधारित्र के अतिरिक्त दो-पोर्ट नेटवर्क पर किया जाता है। स्थानांतरण फ़ंक्शन श्रृंखला विद्युत प्रतिबाधा, जेड, और फ़िल्टर आधे-सेक्शन के शंट प्रवेश वाई के उत्पाद के संदर्भ में व्यक्त किया जाता है। प्रोटोटाइप की व्यापकता को जोड़ते हुए, यह मात्रा गैर-विमीयकरण है। सामान्यतः, जेडवाई एक जटिल मात्रा है,

और चूंकि यू और वी दोनों सामान्य रूप से ω के कार्य है, इसलिए हमें ठीक से लिखना चाहिए,

छवि फ़िल्टर के साथ, एक अलग प्रकार के परिवर्तन के माध्यम से निरंतर k फ़िल्टर प्रोटोटाइप से विभिन्न वर्गों के फ़िल्टर प्राप्त करना संभव होता है, निरंतर k वे फ़िल्टर है जिनके लिए जेड/वाई स्थिर होते है। इस कारण से, सभी वर्गों के फ़िल्टर एक स्थिर k के लिए U(ω) के संदर्भ में दिए गए है, जिसे इस प्रकार नोट किया गया है,

अपव्यय रहित नेटवर्क के स्थिति में, अर्थात कोई प्रतिरोध नहीं, मात्रा V(ω) शून्य है और केवल U(ω) पर विचार करने की आवश्यकता है। यूk (ω) पासबैंड के केंद्र में 0 से कट-ऑफ आवृत्ति पर -1 तक होता है और फिर फ़िल्टर के बैंडफॉर्म के डिजाइन के अतिरिक्त स्टॉपबैंड में नकारात्मक रूप से बढ़ता रहता है। आवश्यक बैंडफॉर्म प्राप्त करने के लिए, निम्नलिखित रूपांतरणों का उपयोग किया जाता है:

स्केल किए गए लोपास निरंतर k प्रोटोटाइप के लिए:

प्रतिक्रिया प्लॉट का स्वतंत्र चर है,

इस प्रोटोटाइप से बैंडफॉर्म परिवर्तन है,

लोपास के लिए,

हाईपास के लिए,

और बैंडपास के लिए,

यह भी देखें

फ़िल्टर बैंडफॉर्म: देखें, कम उत्तीर्ण , उच्च मार्ग , बैंड पास, बैंड-स्टॉप

फुटनोट्स

  1. The class of a filter is the mathematical class of the polynomials in the rational function that describe its transfer function. Image parameter filters are not rational and hence do not have a polynomial class. Such filters are classified by type (k-type, m-type etc). Type serves as the class name for image filters and is based on the filter circuit topology.
  2. The order of a filter is the order of the filter's rational function. A rational function is a ratio of two polynomials and the order of the function is the order of the highest order polynomial. Any filter constructed from a finite number of discrete elements will be described by a rational function and in general, the order will be equal to the number of reactive elements that are used.

संदर्भ

  1. Matthaei et al., pp. 96–97.
  2. Matthaei et al., pp. 412–413.
  3. Matthaei et al., pp. 438–440.
  4. Farago, p. 69.
  5. Matthaei et al., pp. 727–729.
  6. Zobel, 1930, p. 3.


ग्रन्थसूची

  • Zobel, O J, "Theory and Design of Uniform and Composite Electric Wave Filters", Bell System Technical Journal, vol.2 (1923), pp. 1–46.
  • Zobel, O J, "Electrical wave filters", US patent 1 850 146, filed 25 Nov 1930, issued 22 Mar 1932. Gives many useful formulae and a non-frequency domain basis for defining prototypes.
  • Matthaei, Young, Jones Microwave Filters, Impedance-Matching Networks, and Coupling Structures McGraw-Hill 1964.
  • Farago, P S, An Introduction to Linear Network Analysis, English Universities Press, 1961.