वेक्टर ऑटोरिग्रेशन: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
== विशिष्टता == | == विशिष्टता == | ||
=== परिभाषा === | === परिभाषा === | ||
एक वेक्टर ऑटोरेगेशन (VAR) k चर के एक सेट के विकास का वर्णन करता है, जिसे अर्थमिति चर कहा जाता है, समय के साथ। समय की प्रत्येक अवधि को क्रमांकित किया जाता है, t = 1, ..., T. चर एक सदिश स्थान में एकत्र किए जाते हैं, y<sub>t</sub>, जिसकी लंबाई k है। (समतुल्य रूप से, इस वेक्टर को (k × 1)-मैट्रिक्स (गणित)| मैट्रिक्स के रूप में वर्णित किया जा सकता है।) वेक्टर को इसके पिछले मान के रैखिक फ़ंक्शन के रूप में मॉडल किया गया है। वेक्टर के घटकों को y | एक वेक्टर ऑटोरेगेशन (VAR) k चर के एक सेट के विकास का वर्णन करता है, जिसे अर्थमिति चर कहा जाता है, समय के साथ। समय की प्रत्येक अवधि को क्रमांकित किया जाता है, t = 1, ..., T. चर एक सदिश स्थान में एकत्र किए जाते हैं, y<sub>t</sub>, जिसकी लंबाई k है। (समतुल्य रूप से, इस वेक्टर को (k × 1)-मैट्रिक्स (गणित)| मैट्रिक्स के रूप में वर्णित किया जा सकता है।) वेक्टर को इसके पिछले मान के रैखिक फ़ंक्शन के रूप में मॉडल किया गया है। वेक्टर के घटकों को y<sub>''i''</sub> कहा जाता है<sub>,''t''</sub>, i वें चर के समय ''t'' पर अवलोकन का अर्थ है। उदाहरण के लिए, यदि मॉडल में पहला चर समय के साथ गेहूं की कीमत को मापता है, तो y<sub>1,1998</sub> वर्ष 1998 में गेहूं की कीमत का संकेत होगा। | ||
वेक्टर ऑटोरेगेशन (VAR) मॉडल को उनके आदेश द्वारा चित्रित किया जाता है, जो मॉडल द्वारा उपयोग किए जाने वाले पूर्ववर्ती समय अवधि की संख्या को संदर्भित करता है। उपरोक्त उदाहरण को जारी रखते हुए, 5वें क्रम का वेक्टर ऑटोरेगेशन (VAR) प्रत्येक वर्ष के गेहूं की कीमत को पिछले पांच वर्षों के गेहूं की कीमतों के रैखिक संयोजन के रूप में मॉडल करेगा। एक अंतराल पिछली समय अवधि में एक चर का मान है। तो सामान्य तौर पर एक pth-order वेक्टर ऑटोरेगेशन (VAR) मॉडल को संदर्भित करता है जिसमें अंतिम p समय अवधि के अंतराल शामिल होते हैं। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) को वेक्टर ऑटोरेगेशन (VAR) (p) के रूप में दर्शाया जाता है और कभी-कभी इसे p lags वाला वेक्टर ऑटोरेगेशन (VAR) कहा जाता है। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) मॉडल को इस प्रकार लिखा जाता है | वेक्टर ऑटोरेगेशन (VAR) मॉडल को उनके आदेश द्वारा चित्रित किया जाता है, जो मॉडल द्वारा उपयोग किए जाने वाले पूर्ववर्ती समय अवधि की संख्या को संदर्भित करता है। उपरोक्त उदाहरण को जारी रखते हुए, 5वें क्रम का वेक्टर ऑटोरेगेशन (VAR) प्रत्येक वर्ष के गेहूं की कीमत को पिछले पांच वर्षों के गेहूं की कीमतों के रैखिक संयोजन के रूप में मॉडल करेगा। एक अंतराल पिछली समय अवधि में एक चर का मान है। तो सामान्य तौर पर एक pth-order वेक्टर ऑटोरेगेशन (VAR) मॉडल को संदर्भित करता है जिसमें अंतिम p समय अवधि के अंतराल शामिल होते हैं। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) को वेक्टर ऑटोरेगेशन (VAR) (p) के रूप में दर्शाया जाता है और कभी-कभी इसे p lags वाला वेक्टर ऑटोरेगेशन (VAR) कहा जाता है। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) मॉडल को इस प्रकार लिखा जाता है | ||
Line 15: | Line 15: | ||
#<math>\mathrm{E}(e_t) = 0\,</math>. प्रत्येक त्रुटि शब्द का अपेक्षित मान शून्य होता है। | #<math>\mathrm{E}(e_t) = 0\,</math>. प्रत्येक त्रुटि शब्द का अपेक्षित मान शून्य होता है। | ||
#<math>\mathrm{E}(e_t e_t') = \Omega\,</math>. त्रुटि शर्तों का समकालीन सहप्रसरण मैट्रिक्स एक k × k धनात्मक-निश्चित मैट्रिक्स है | | #<math>\mathrm{E}(e_t e_t') = \Omega\,</math>. त्रुटि शर्तों का समकालीन सहप्रसरण मैट्रिक्स एक k × k धनात्मक-निश्चित मैट्रिक्स Ω है | | ||
#<math>\mathrm{E}(e_t e_{t-k}') = 0\,</math> किसी भी गैर-शून्य k के लिए। समय के पार कोई संबंध नहीं है। विशेष रूप से, व्यक्तिगत त्रुटि शब्दों में कोई क्रमिक संबंध नहीं है।<ref>For multivariate tests for autocorrelation in the VAR models, see {{cite journal |last=Hatemi-J |first=A. |year=2004 |title=Multivariate tests for autocorrelation in the stable and unstable VAR models |journal=Economic Modelling |volume=21 |issue=4 |pages=661–683 |url=https://ideas.repec.org/a/eee/ecmode/v21y2004i4p661-683.html |doi=10.1016/j.econmod.2003.09.005}}</ref> | #<math>\mathrm{E}(e_t e_{t-k}') = 0\,</math> किसी भी गैर-शून्य k के लिए। समय के पार कोई संबंध नहीं है। विशेष रूप से, व्यक्तिगत त्रुटि शब्दों में कोई क्रमिक संबंध नहीं है।<ref>For multivariate tests for autocorrelation in the VAR models, see {{cite journal |last=Hatemi-J |first=A. |year=2004 |title=Multivariate tests for autocorrelation in the stable and unstable VAR models |journal=Economic Modelling |volume=21 |issue=4 |pages=661–683 |url=https://ideas.repec.org/a/eee/ecmode/v21y2004i4p661-683.html |doi=10.1016/j.econmod.2003.09.005}}</ref> | ||
वेक्टर ऑटोरेगेशन (VAR) मॉडल में अधिकतम अंतराल p चुनने की प्रक्रिया पर विशेष ध्यान देने की आवश्यकता है क्योंकि [[अनुमान]] चयनित अंतराल क्रम की शुद्धता पर निर्भर है।<ref>{{cite journal |last1=Hacker |first1=R. S. |last2=Hatemi-J |first2=A. |year=2008 |title=Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH |journal=[[Journal of Applied Statistics]] |volume=35 |issue=6 |pages=601–615 |url=https://ideas.repec.org/a/taf/japsta/v35y2008i6p601-615.html |doi=10.1080/02664760801920473}}</ref><ref>{{cite journal |last1=Hatemi-J |first1=A. |first2=R. S. |last2=Hacker |year=2009 |title=Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders? |journal=[[Applied Economics (journal)|Applied Economics]] |volume=41 |issue=9 |pages=1489–1500 |url=https://ideas.repec.org/a/taf/applec/v41y2009i9p1121-1125.html }}</ref> | वेक्टर ऑटोरेगेशन (VAR) मॉडल में अधिकतम अंतराल p चुनने की प्रक्रिया पर विशेष ध्यान देने की आवश्यकता है क्योंकि [[अनुमान]] चयनित अंतराल क्रम की शुद्धता पर निर्भर है।<ref>{{cite journal |last1=Hacker |first1=R. S. |last2=Hatemi-J |first2=A. |year=2008 |title=Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH |journal=[[Journal of Applied Statistics]] |volume=35 |issue=6 |pages=601–615 |url=https://ideas.repec.org/a/taf/japsta/v35y2008i6p601-615.html |doi=10.1080/02664760801920473}}</ref><ref>{{cite journal |last1=Hatemi-J |first1=A. |first2=R. S. |last2=Hacker |year=2009 |title=Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders? |journal=[[Applied Economics (journal)|Applied Economics]] |volume=41 |issue=9 |pages=1489–1500 |url=https://ideas.repec.org/a/taf/applec/v41y2009i9p1121-1125.html }}</ref> | ||
Line 46: | Line 46: | ||
मॉडल में प्रत्येक चर का एक समीकरण होता है। प्रत्येक चर का वर्तमान (समय ''t'') अवलोकन अपने स्वयं के पिछड़े मूल्यों के साथ-साथ वेक्टर ऑटोरेगेशन (VAR) में एक दूसरे चर के पिछड़े मूल्यों पर निर्भर करता है। | मॉडल में प्रत्येक चर का एक समीकरण होता है। प्रत्येक चर का वर्तमान (समय ''t'') अवलोकन अपने स्वयं के पिछड़े मूल्यों के साथ-साथ वेक्टर ऑटोरेगेशन (VAR) में एक दूसरे चर के पिछड़े मूल्यों पर निर्भर करता है। | ||
===वेक्टर ऑटोरेगेशन (VAR)(p) को वेक्टर ऑटोरेगेशन (VAR)(1) | ==== वेक्टर ऑटोरेगेशन (VAR)(p) को वेक्टर ऑटोरेगेशन (VAR)(1)के रूप में लिखना ==== | ||
p लैग के साथ एक वेक्टर ऑटोरेगेशन (VAR) को हमेशा एक वेक्टर ऑटोरेगेशन (VAR) के रूप में फिर से लिखा जा सकता है जिसमें आश्रित चर को उचित रूप से पुनर्परिभाषित करके केवल एक अंतराल हो। नए वेक्टर ऑटोरेगेशन (VAR)(1) निर्भर चर में वेक्टर ऑटोरेगेशन (VAR)(p) चर के अंतराल को ढेर करने और समीकरणों की संख्या को पूरा करने के लिए पहचान जोड़ने के लिए रूपांतरण राशि। | p लैग के साथ एक वेक्टर ऑटोरेगेशन (VAR) को हमेशा एक वेक्टर ऑटोरेगेशन (VAR) के रूप में फिर से लिखा जा सकता है जिसमें आश्रित चर को उचित रूप से पुनर्परिभाषित करके केवल एक अंतराल हो। नए वेक्टर ऑटोरेगेशन (VAR)(1) निर्भर चर में वेक्टर ऑटोरेगेशन (VAR)(p) चर के अंतराल को ढेर करने और समीकरणों की संख्या को पूरा करने के लिए पहचान जोड़ने के लिए रूपांतरण राशि। | ||
Line 55: | Line 55: | ||
::<math>\begin{bmatrix}y_{t} \\ y_{t-1}\end{bmatrix} = \begin{bmatrix}c \\ 0\end{bmatrix} + \begin{bmatrix}A_{1}&A_{2} \\ I&0\end{bmatrix}\begin{bmatrix}y_{t-1} \\ y_{t-2}\end{bmatrix} + \begin{bmatrix}e_{t} \\ 0\end{bmatrix},</math> | ::<math>\begin{bmatrix}y_{t} \\ y_{t-1}\end{bmatrix} = \begin{bmatrix}c \\ 0\end{bmatrix} + \begin{bmatrix}A_{1}&A_{2} \\ I&0\end{bmatrix}\begin{bmatrix}y_{t-1} \\ y_{t-2}\end{bmatrix} + \begin{bmatrix}e_{t} \\ 0\end{bmatrix},</math> | ||
जहां | जहां ''l'' पहचान मैट्रिक्स है। | ||
समतुल्य वेक्टर ऑटोरेगेशन (VAR)(1) प्रपत्र विश्लेषणात्मक व्युत्पत्तियों के लिए अधिक सुविधाजनक है और अधिक कॉम्पैक्ट कथनों की अनुमति देता है। | समतुल्य वेक्टर ऑटोरेगेशन (VAR)(1) प्रपत्र विश्लेषणात्मक व्युत्पत्तियों के लिए अधिक सुविधाजनक है और अधिक कॉम्पैक्ट कथनों की अनुमति देता है। | ||
Line 62: | Line 62: | ||
===संरचनात्मक वेक्टर ऑटोरेगेशन (VAR)=== | ===संरचनात्मक वेक्टर ऑटोरेगेशन (VAR)=== | ||
एक ''स्ट्रक्चरल वेक्टर ऑटोरेगेशन (VAR) with p lags'' (कभी-कभी संक्षिप्त रूप में | एक ''स्ट्रक्चरल वेक्टर ऑटोरेगेशन (VAR) with p lags'' (कभी-कभी संक्षिप्त रूप में SVAR) होता है | ||
:<math>B_0 y_t = c_0 + B_1 y_{t-1} + B_2 y_{t-2} + \cdots + B_p y_{t-p} + \epsilon_t,</math> | :<math>B_0 y_t = c_0 + B_1 y_{t-1} + B_2 y_{t-2} + \cdots + B_p y_{t-p} + \epsilon_t,</math> | ||
जहां ''c''<sub>0</sub> स्थिरांक k × 1 का वेक्टर है, B<sub>i</sub> एक k × k मैट्रिक्स है (प्रत्येक i = 0, ..., p के लिए) और ε<sub>''t''</sub> त्रुटि शर्तों का एक k × 1 वेक्टर है। B की [[मुख्य विकर्ण]] शर्तें <sub> | जहां ''c''<sub>0</sub> स्थिरांक k × 1 का वेक्टर है, B<sub>i</sub> एक k × k मैट्रिक्स है (प्रत्येक i = 0, ..., p के लिए) और ε<sub>''t''</sub> त्रुटि शर्तों का एक k × 1 वेक्टर है। B की [[मुख्य विकर्ण]] शर्तें ''B<sub>0</sub>'' मैट्रिक्स ( ''i''<sup>th</sup> समीकरण में ''i''<sup>th</sup> चर पर गुणांक ) के मुख्य विकर्ण शब्दों को 1 पर स्केल किया जाता है। | ||
त्रुटि शर्तें ε<sub>t</sub>('संरचनात्मक झटके') ऊपर की परिभाषा में शर्तों (1) - (3) को संतुष्ट करते हैं, इस विशिष्टता के साथ कि सहप्रसरण मैट्रिक्स के विकर्ण के सभी तत्व <math>\mathrm{E}(\epsilon_t\epsilon_t') = \Sigma</math> शून्य हैं। यही है, संरचनात्मक झटके असंबद्ध हैं। | त्रुटि शर्तें ε<sub>t</sub>('संरचनात्मक झटके') ऊपर की परिभाषा में शर्तों (1) - (3) को संतुष्ट करते हैं, इस विशिष्टता के साथ कि सहप्रसरण मैट्रिक्स के विकर्ण के सभी तत्व <math>\mathrm{E}(\epsilon_t\epsilon_t') = \Sigma</math> शून्य हैं। यही है, संरचनात्मक झटके असंबद्ध हैं। | ||
Line 101: | Line 101: | ||
ध्यान दें कि कम किए गए रूप में सभी दाहिने हाथ के चर समय ''t'' पर पूर्व निर्धारित होते हैं। चूंकि दाहिने हाथ की ओर कोई समय ''t'' अंतर्जात चर नहीं हैं, मॉडल में अन्य चर पर किसी भी चर का प्रत्यक्ष समसामयिक प्रभाव नहीं है। | ध्यान दें कि कम किए गए रूप में सभी दाहिने हाथ के चर समय ''t'' पर पूर्व निर्धारित होते हैं। चूंकि दाहिने हाथ की ओर कोई समय ''t'' अंतर्जात चर नहीं हैं, मॉडल में अन्य चर पर किसी भी चर का प्रत्यक्ष समसामयिक प्रभाव नहीं है। | ||
हालांकि, घटे हुए वेक्टर ऑटोरेगेशन (VAR) में त्रुटि शब्द संरचनात्मक झटकों के | हालांकि, घटे हुए वेक्टर ऑटोरेगेशन (VAR) में त्रुटि शब्द संरचनात्मक झटकों के सम्मिश्रण हैं ''e<sub>t</sub>'' = ''B''<sub>0</sub><sup>−1</sup>''ε<sub>t</sub>''. इस प्रकार, एक संरचनात्मक झटके ''ε<sub>i,t</sub>'' की घटना संभावित रूप से सभी त्रुटि शर्तों में झटके की घटना हो सकती है ''e<sub>j,t</sub>'', इस प्रकार सभी अंतर्जात चरों में समसामयिक गति पैदा करता है। नतीजतन, घटे हुए वेक्टर ऑटोरेगेशन (VAR) का सहप्रसरण मैट्रिक्स | ||
:<math>\Omega = \mathrm{E}(e_t e_t') = \mathrm{E} (B_0^{-1} \epsilon_t \epsilon_t' (B_0^{-1})') = B_0^{-1}\Sigma(B_0^{-1})'\,</math> | :<math>\Omega = \mathrm{E}(e_t e_t') = \mathrm{E} (B_0^{-1} \epsilon_t \epsilon_t' (B_0^{-1})') = B_0^{-1}\Sigma(B_0^{-1})'\,</math> | ||
Line 118: | Line 118: | ||
:<math> \operatorname{Vec}(\hat B) = ((ZZ')^{-1} Z \otimes I_{k})\ \operatorname{Vec}(Y), </math> | :<math> \operatorname{Vec}(\hat B) = ((ZZ')^{-1} Z \otimes I_{k})\ \operatorname{Vec}(Y), </math> | ||
जहाँ <math> \otimes </math> संकेतित मैट्रिक्स के [[क्रोनकर उत्पाद]] और Vec द वेक्टराइज़ेशन (गणित) को दर्शाता है। | |||
यह अनुमानक संगति और अनुमानक दक्षता है। इसके अलावा यह सशर्त अधिकतम संभावना के बराबर है।<ref>{{cite book |author-link=James D. Hamilton |last=Hamilton |first=James D. |year=1994 |title=Time Series Analysis |publisher=Princeton University Press |page=293 }}</ref> | यह अनुमानक संगति और अनुमानक दक्षता है। इसके अलावा यह सशर्त अधिकतम संभावना के बराबर है।<ref>{{cite book |author-link=James D. Hamilton |last=Hamilton |first=James D. |year=1994 |title=Time Series Analysis |publisher=Princeton University Press |page=293 }}</ref> | ||
* चूँकि व्याख्यात्मक चर प्रत्येक समीकरण में समान होते हैं, | * चूँकि व्याख्यात्मक चर प्रत्येक समीकरण में समान होते हैं, बहुभिन्नरूप न्यूनतम वर्ग अनुमानक प्रत्येक समीकरण पर अलग से लागू किए गए सामान्य न्यूनतम वर्ग अनुमानक के बराबर होता है।<ref>{{cite journal | last1 = Zellner | first1 = Arnold | author-link = Arnold Zellner | year = 1962 | title = An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias | journal = [[Journal of the American Statistical Association]] | volume = 57 | issue = 298| pages = 348–368 | doi=10.1080/01621459.1962.10480664}}</ref> | ||
=== त्रुटियों के सहप्रसरण मैट्रिक्स का अनुमान === | === त्रुटियों के सहप्रसरण मैट्रिक्स का अनुमान === | ||
Line 133: | Line 133: | ||
: <math> \hat \Sigma = \frac{1}{T-kp-1} (Y-\hat{B}Z)(Y-\hat{B}Z)'.</math> | : <math> \hat \Sigma = \frac{1}{T-kp-1} (Y-\hat{B}Z)(Y-\hat{B}Z)'.</math> | ||
: | |||
=== अनुमानक के सहप्रसरण मैट्रिक्स का अनुमान === | === अनुमानक के सहप्रसरण मैट्रिक्स का अनुमान === | ||
Line 138: | Line 139: | ||
मापदंडों के सहप्रसरण मैट्रिक्स का अनुमान लगाया जा सकता है | मापदंडों के सहप्रसरण मैट्रिक्स का अनुमान लगाया जा सकता है | ||
: <math> \widehat \mbox{Cov} (\mbox{Vec}(\hat B)) =({ZZ'})^{-1} \otimes\hat \Sigma.\, </math> | : <math> \widehat \mbox{Cov} (\mbox{Vec}(\hat B)) =({ZZ'})^{-1} \otimes\hat \Sigma.\, </math> | ||
: | |||
=== स्वतंत्रता की डिग्री === | === स्वतंत्रता की डिग्री === | ||
Line 147: | Line 149: | ||
===आवेग प्रतिक्रिया=== | ===आवेग प्रतिक्रिया=== | ||
विकास के समीकरण के साथ पहले क्रम केस्थिति पर विचार करें | विकास के समीकरण के साथ पहले क्रम केस्थिति पर विचार करें (यानी, के एक अंतराल के साथ) <math>y_t=Ay_{t-1}+e_t,</math> | ||
विकसित (राज्य) वेक्टर के लिए <math>y</math> और वेक्टर झटके का <math>e</math> अवधियों के ''j''-th तत्व पर झटकों के 2 वेक्टर के ''i''-th तत्व के प्रभाव को खोजने के लिए, जो एक विशेष आवेग प्रतिक्रिया है, जो एक विशेष आवेग प्रतिक्रिया है, पहले विकास के उपरोक्त समीकरण को एक अवधि के अंतराल में लिखें: | |||
विकसित (राज्य) वेक्टर के लिए <math>y</math> और वेक्टर झटके का <math>e</math> | |||
:<math>y_{t-1}=Ay_{t-2}+e_{t-1}.</math> | :<math>y_{t-1}=Ay_{t-2}+e_{t-1}.</math> | ||
Line 160: | Line 160: | ||
:<math>y_t=A^3y_{t-3}+A^2e_{t-2}+Ae_{t-1}+e_t.</math> | :<math>y_t=A^3y_{t-3}+A^2e_{t-2}+Ae_{t-1}+e_t.</math> | ||
इससे | इससे ''j''-th घटक का प्रभाव <math>e_{t-2}</math> के i-वें घटक पर <math>y_t</math> मैट्रिक्स का i, j तत्व है <math>A^2.</math> | ||
इस [[गणितीय प्रेरण]] प्रक्रिया से यह देखा जा सकता है कि किसी भी झटके का y के तत्वों पर समय के साथ असीम रूप से बहुत आगे प्रभाव पड़ेगा, हालांकि प्रभाव समय के साथ छोटा और छोटा होता जाएगा, यह मानते हुए कि AR प्रक्रिया स्थिर है - अर्थात, यह सब मैट्रिक्स A के मैट्रिसेस के eigenvalue#Eigenvalues और eigenvectors निरपेक्ष मान में 1 से कम हैं। | इस [[गणितीय प्रेरण]] प्रक्रिया से यह देखा जा सकता है कि किसी भी झटके का y के तत्वों पर समय के साथ असीम रूप से बहुत आगे प्रभाव पड़ेगा, हालांकि प्रभाव समय के साथ छोटा और छोटा होता जाएगा, यह मानते हुए कि AR प्रक्रिया स्थिर है - अर्थात, यह सब मैट्रिक्स A के मैट्रिसेस के eigenvalue#Eigenvalues और eigenvectors निरपेक्ष मान में 1 से कम हैं। | ||
Line 170: | Line 170: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
क्रिस्टोफर ए. सिम्स ने [[व्यापक आर्थिक]] [[अर्थमिति]] में पूर्व की मॉडलिंग के दावों और प्रदर्शन की आलोचना करते हुए वेक्टर ऑटोरेगेशन (VAR) मॉडल की वकालत की है।<ref name=Sims/> उन्होंने वेक्टर ऑटोरेगेशन (VAR) मॉडल की सिफारिश की, जो पहले समय श्रृंखला सांख्यिकी और [https://alpha.indicwiki.in/Index.php?title=%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%A3%E0%A4%BE%E0%A4%B2%E0%A5%80%20%E0%A4%AA%E0%A4%B9%E0%A4%9A%E0%A4%BE%E0%A4%A8 प्रणाली पहचान] में दिखाई दिया था, [[नियंत्रण सिद्धांत]] में एक सांख्यिकीय | क्रिस्टोफर ए. सिम्स ने [[व्यापक आर्थिक]] [[अर्थमिति]] में पूर्व की मॉडलिंग के दावों और प्रदर्शन की आलोचना करते हुए वेक्टर ऑटोरेगेशन (VAR) मॉडल की वकालत की है।<ref name=Sims/> उन्होंने वेक्टर ऑटोरेगेशन (VAR) मॉडल की सिफारिश की, जो पहले समय श्रृंखला सांख्यिकी और [https://alpha.indicwiki.in/Index.php?title=%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%A3%E0%A4%BE%E0%A4%B2%E0%A5%80%20%E0%A4%AA%E0%A4%B9%E0%A4%9A%E0%A4%BE%E0%A4%A8 प्रणाली पहचान] में दिखाई दिया था, [[नियंत्रण सिद्धांत]] में एक सांख्यिकीय विशेषता। सिम्स ने आर्थिक संबंधों का अनुमान लगाने के लिए सिद्धांत-मुक्त विधि प्रदान करने के रूप में वेक्टर ऑटोरेगेशन (VAR) मॉडल की वकालत की, इस प्रकार यह संरचनात्मक मॉडल में अविश्वसनीय पहचान प्रतिबंधों का विकल्प है।<ref name=Sims>{{cite journal|author-link=Christopher A. Sims |last=Sims |first=Christopher |year=1980 |title=Macroeconomics and Reality |journal=[[Econometrica]] |volume=48 |issue=1 |pages=1–48 |jstor=1912017 |doi=10.2307/1912017|citeseerx=10.1.1.163.5425 }}</ref> या सेंसर डेटा के स्वचालित विश्लेषण के लिए स्वास्थ्य अनुसंधान में उपयोग किए जाते हैं।<ref name= "Kr2016">{{cite journal |author= van der Krieke | display-authors=etal | year = 2016 | title = Temporal Dynamics of Health and Well-Being: A Crowdsourcing Approach to Momentary Assessments and Automated Generation of Personalized Feedback (2016) | journal = Psychosomatic Medicine | doi= 10.1097/PSY.0000000000000378 | pmid=27551988 | pages=1}}</ref> | ||
== सॉफ्टवेयर == | == सॉफ्टवेयर == |
Revision as of 11:19, 16 March 2023
वेक्टर ऑटोरेगेशन (VAR) एक सांख्यिकीय मॉडल है जिसका उपयोग कई मात्राओं के बीच संबंधों को प्रग्रहण करने के लिए किया जाता है क्योंकि वे समय के साथ बदलते हैं। वेक्टर ऑटोरेगेशन (VAR) एक प्रकार का अनेक संभावनाओं में से चुनी हूई प्रक्रिया मॉडल है। वेक्टर ऑटोरेगेशन (VAR) मॉडल बहुभिन्नरूप समय श्रृंखला की अनुमति देकर एकल-चर (यूनिवेरिएट) ऑटोरेग्रेसिव मॉडल का सामान्यीकरण करते हैं। वेक्टर ऑटोरेगेशन (VAR) मॉडल अधिकांशतः अर्थशास्त्र और प्राकृतिक विज्ञानों में उपयोग किए जाते हैं।
ऑटोरेग्रेसिव मॉडल की तरह, प्रत्येक चर का समीकरण होता है जो समय के साथ अपने विकास को दर्शाता है। इस समीकरण में वेरिएबल के लैग ऑपरेटर (पिछले) मान, मॉडल में अन्य वेरिएबल्स के लैग्ड मान और आंकड़ों में एक त्रुटि और अवशिष्ट शामिल हैं। वेक्टर ऑटोरेगेशन (VAR) मॉडल को एक चर को प्रभावित करने वाली ताकतों के बारे में अधिक ज्ञान की आवश्यकता नहीं होती है, जैसा कि एक साथ समीकरण मॉडल के साथ संरचनात्मक समीकरण मॉडलिंग में होता है। केवल पूर्व ज्ञान की आवश्यकता चर की एक सूची है जिसे समय के साथ एक दूसरे को प्रभावित करने के लिए परिकल्पित किया जा सकता है।
विशिष्टता
परिभाषा
एक वेक्टर ऑटोरेगेशन (VAR) k चर के एक सेट के विकास का वर्णन करता है, जिसे अर्थमिति चर कहा जाता है, समय के साथ। समय की प्रत्येक अवधि को क्रमांकित किया जाता है, t = 1, ..., T. चर एक सदिश स्थान में एकत्र किए जाते हैं, yt, जिसकी लंबाई k है। (समतुल्य रूप से, इस वेक्टर को (k × 1)-मैट्रिक्स (गणित)| मैट्रिक्स के रूप में वर्णित किया जा सकता है।) वेक्टर को इसके पिछले मान के रैखिक फ़ंक्शन के रूप में मॉडल किया गया है। वेक्टर के घटकों को yi कहा जाता है,t, i वें चर के समय t पर अवलोकन का अर्थ है। उदाहरण के लिए, यदि मॉडल में पहला चर समय के साथ गेहूं की कीमत को मापता है, तो y1,1998 वर्ष 1998 में गेहूं की कीमत का संकेत होगा।
वेक्टर ऑटोरेगेशन (VAR) मॉडल को उनके आदेश द्वारा चित्रित किया जाता है, जो मॉडल द्वारा उपयोग किए जाने वाले पूर्ववर्ती समय अवधि की संख्या को संदर्भित करता है। उपरोक्त उदाहरण को जारी रखते हुए, 5वें क्रम का वेक्टर ऑटोरेगेशन (VAR) प्रत्येक वर्ष के गेहूं की कीमत को पिछले पांच वर्षों के गेहूं की कीमतों के रैखिक संयोजन के रूप में मॉडल करेगा। एक अंतराल पिछली समय अवधि में एक चर का मान है। तो सामान्य तौर पर एक pth-order वेक्टर ऑटोरेगेशन (VAR) मॉडल को संदर्भित करता है जिसमें अंतिम p समय अवधि के अंतराल शामिल होते हैं। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) को वेक्टर ऑटोरेगेशन (VAR) (p) के रूप में दर्शाया जाता है और कभी-कभी इसे p lags वाला वेक्टर ऑटोरेगेशन (VAR) कहा जाता है। एक pth-क्रम वेक्टर ऑटोरेगेशन (VAR) मॉडल को इस प्रकार लिखा जाता है
yt−i के चरt−i इंगित करता है कि वेरिएबल का मान i पहले की समयावधि है और इसे y का iवां लैग कहा जाता हैt. चर c मॉडल के Y-अवरोधन के रूप में कार्य करने वाले स्थिरांक का k-वेक्टर है। एiएक समय-अपरिवर्तनीय (k × k)-मैट्रिक्स और ई हैt आँकड़ों के संदर्भ में त्रुटियों और अवशिष्टों का k-वेक्टर है। त्रुटि शर्तों को तीन शर्तों को पूरा करना चाहिए:
- . प्रत्येक त्रुटि शब्द का अपेक्षित मान शून्य होता है।
- . त्रुटि शर्तों का समकालीन सहप्रसरण मैट्रिक्स एक k × k धनात्मक-निश्चित मैट्रिक्स Ω है |
- किसी भी गैर-शून्य k के लिए। समय के पार कोई संबंध नहीं है। विशेष रूप से, व्यक्तिगत त्रुटि शब्दों में कोई क्रमिक संबंध नहीं है।[1]
वेक्टर ऑटोरेगेशन (VAR) मॉडल में अधिकतम अंतराल p चुनने की प्रक्रिया पर विशेष ध्यान देने की आवश्यकता है क्योंकि अनुमान चयनित अंतराल क्रम की शुद्धता पर निर्भर है।[2][3]
चरों के एकीकरण का क्रम
ध्यान दें कि सभी चरों को एकीकरण के समान क्रम का होना चाहिए। निम्नलिखितस्थिति विशिष्ट हैं:
- सभी चर I(0) (स्थिर) हैं: यह मानकस्थिति में है, यानी स्तर में वेक्टर ऑटोरेगेशन (VAR)
- सभी चर I(d) (गैर-स्थिर) d > 0 के साथ हैं:
- चर सह-एकीकरण हैं: त्रुटि सुधार शब्द को वेक्टर ऑटोरेगेशन (VAR) में शामिल किया जाना है। मॉडल वेक्टर त्रुटि सुधार मॉडल (वीईसीएम) बन जाता है जिसे प्रतिबंधित वेक्टर ऑटोरेगेशन (VAR) के रूप में देखा जा सकता है।
- चर सह-एकीकरण नहीं हैं: सबसे पहले, चरों को d बार अलग करना पड़ता है और एक अंतर में वेक्टर ऑटोरेगेशन (VAR) होता है।
संक्षिप्त मैट्रिक्स संकेतन
एक संक्षिप्त मैट्रिक्स अंकन के साथ एक स्टोकेस्टिक मैट्रिक्स अंतर समीकरण के रूप में वेक्टर ऑटोरेगेशन (VAR)(p) लिखने के लिए कोई भी वैक्टर को ढेर कर सकता है:
मैट्रिसेस का विवरण एक वेक्टर ऑटोरेगेशन (VAR) (p) के सामान्य मैट्रिक्स नोटेशन में है।
उदाहरण
के चर के साथ वेक्टर ऑटोरेगेशन (VAR) (p) के सामान्य उदाहरण के लिए, वेक्टर ऑटोरेगेशन (VAR) (p) का सामान्य मैट्रिक्स नोटेशन देखें।
दो वेरिएबल्स में एक वेक्टर ऑटोरेगेशन (VAR)(1) को मैट्रिक्स फॉर्म (अधिक कॉम्पैक्ट नोटेशन) के रूप में लिखा जा सकता है
(जिसमें केवल एक ए मैट्रिक्स दिखाई देता है क्योंकि इस उदाहरण में अधिकतम अंतराल p1 के बराबर है), या, समकक्ष, दो समीकरणों की निम्नलिखित प्रणाली के रूप में
मॉडल में प्रत्येक चर का एक समीकरण होता है। प्रत्येक चर का वर्तमान (समय t) अवलोकन अपने स्वयं के पिछड़े मूल्यों के साथ-साथ वेक्टर ऑटोरेगेशन (VAR) में एक दूसरे चर के पिछड़े मूल्यों पर निर्भर करता है।
वेक्टर ऑटोरेगेशन (VAR)(p) को वेक्टर ऑटोरेगेशन (VAR)(1)के रूप में लिखना
p लैग के साथ एक वेक्टर ऑटोरेगेशन (VAR) को हमेशा एक वेक्टर ऑटोरेगेशन (VAR) के रूप में फिर से लिखा जा सकता है जिसमें आश्रित चर को उचित रूप से पुनर्परिभाषित करके केवल एक अंतराल हो। नए वेक्टर ऑटोरेगेशन (VAR)(1) निर्भर चर में वेक्टर ऑटोरेगेशन (VAR)(p) चर के अंतराल को ढेर करने और समीकरणों की संख्या को पूरा करने के लिए पहचान जोड़ने के लिए रूपांतरण राशि।
उदाहरण के लिए, वेक्टर ऑटोरेगेशन (VAR)(2) मॉडल
वेक्टर ऑटोरेगेशन (VAR)(1) मॉडल के रूप में फिर से तैयार किया जा सकता है
जहां l पहचान मैट्रिक्स है।
समतुल्य वेक्टर ऑटोरेगेशन (VAR)(1) प्रपत्र विश्लेषणात्मक व्युत्पत्तियों के लिए अधिक सुविधाजनक है और अधिक कॉम्पैक्ट कथनों की अनुमति देता है।
संरचनात्मक बनाम घटा हुआ रूप
संरचनात्मक वेक्टर ऑटोरेगेशन (VAR)
एक स्ट्रक्चरल वेक्टर ऑटोरेगेशन (VAR) with p lags (कभी-कभी संक्षिप्त रूप में SVAR) होता है
जहां c0 स्थिरांक k × 1 का वेक्टर है, Bi एक k × k मैट्रिक्स है (प्रत्येक i = 0, ..., p के लिए) और εt त्रुटि शर्तों का एक k × 1 वेक्टर है। B की मुख्य विकर्ण शर्तें B0 मैट्रिक्स ( ith समीकरण में ith चर पर गुणांक ) के मुख्य विकर्ण शब्दों को 1 पर स्केल किया जाता है।
त्रुटि शर्तें εt('संरचनात्मक झटके') ऊपर की परिभाषा में शर्तों (1) - (3) को संतुष्ट करते हैं, इस विशिष्टता के साथ कि सहप्रसरण मैट्रिक्स के विकर्ण के सभी तत्व शून्य हैं। यही है, संरचनात्मक झटके असंबद्ध हैं।
उदाहरण के लिए, एक दो परिवर्तनशील संरचनात्मक वेक्टर ऑटोरेगेशन (VAR)(1) है:
- जहाँ
अर्थात्, संरचनात्मक झटकों के प्रसरण को निरूपित किया जाता है (i = 1, 2) और सहप्रसरण है .
पहला समीकरण स्पष्ट रूप से लिखना और y पास करना2,tदाहिने हाथ की ओर एक प्राप्त करता है
ध्यान दें कि y2,t का y1 पर समसामयिक प्रभाव हो सकता है1,tअगर B0;1,2 शून्य नहीं है। यह उस स्थिति से अलग है जब B0 पहचान मैट्रिक्स है (सभी ऑफ-विकर्ण तत्व शून्य हैं - प्रारंभिक परिभाषा में मामला), जब y2,t सीधे y को प्रभावित कर सकता है y2,t और y1,t+1 और बाद के भविष्य मूल्यों को प्रभावित कर सकता है, लेकिन y1,t. नहीं.
पैरामीटर पहचान की समस्या के कारण, संरचनात्मक वेक्टर ऑटोरेगेशन (VAR) के सामान्य न्यूनतम वर्ग अनुमान से अनुमानक # संगति पैरामीटर अनुमान प्राप्त होंगे। वेक्टर ऑटोरेगेशन (VAR) को कम रूप में लिखकर इस समस्या को दूर किया जा सकता है।
आर्थिक दृष्टिकोण से, यदि चर के एक सेट की संयुक्त गतिशीलता को वेक्टर ऑटोरेगेशन (VAR) मॉडल द्वारा दर्शाया जा सकता है, तो संरचनात्मक रूप अंतर्निहित, संरचनात्मक, आर्थिक संबंधों का चित्रण है। संरचनात्मक रूप की दो विशेषताएं इसे अंतर्निहित संबंधों का प्रतिनिधित्व करने के लिए पसंदीदा उम्मीदवार बनाती हैं:
- 1. त्रुटि शब्द सहसंबद्ध नहीं हैं। संरचनात्मक, आर्थिक झटके जो आर्थिक चर की गतिशीलता को चलाते हैं, उन्हें सांख्यिकीय स्वतंत्रता माना जाता है, जिसका अर्थ वांछित संपत्ति के रूप में त्रुटि शर्तों के बीच शून्य सहसंबंध है। यह वेक्टर ऑटोरेगेशन (VAR) में आर्थिक रूप से असंबद्ध प्रभावों के प्रभावों को अलग करने में मददगार है। उदाहरण के लिए, ऐसा कोई कारण नहीं है कि तेल की कीमतों में आघात (आपूर्ति आघात के उदाहरण के रूप में) कपड़ों की शैली के प्रति उपभोक्ताओं की प्राथमिकताओं में बदलाव से जुड़ा हो (मांग आघात के उदाहरण के रूप में); इसलिए किसी को उम्मीद होगी कि ये कारक सांख्यिकीय रूप से स्वतंत्र होंगे।
- 2. चर का अन्य चरों पर समकालीन प्रभाव हो सकता है। यह विशेष रूप से कम आवृत्ति डेटा का उपयोग करते समय एक वांछनीय विशेषता है। उदाहरण के लिए, अप्रत्यक्ष कर की दर में वृद्धि निर्णय की घोषणा के दिन कर राजस्व को प्रभावित नहीं करेगी, लेकिन उस तिमाही के आंकड़ों में एक प्रभाव देखा जा सकता है।
कम-रूप वेक्टर ऑटोरेगेशन (VAR)
B के व्युत्क्रम के साथ संरचनात्मक वेक्टर ऑटोरेगेशन (VAR) का पूर्वगुणन करके0
और निरूपित करना
one p क्रम घटा हुआ वेक्टर ऑटोरेगेशन (VAR) प्राप्त करता है
ध्यान दें कि कम किए गए रूप में सभी दाहिने हाथ के चर समय t पर पूर्व निर्धारित होते हैं। चूंकि दाहिने हाथ की ओर कोई समय t अंतर्जात चर नहीं हैं, मॉडल में अन्य चर पर किसी भी चर का प्रत्यक्ष समसामयिक प्रभाव नहीं है।
हालांकि, घटे हुए वेक्टर ऑटोरेगेशन (VAR) में त्रुटि शब्द संरचनात्मक झटकों के सम्मिश्रण हैं et = B0−1εt. इस प्रकार, एक संरचनात्मक झटके εi,t की घटना संभावित रूप से सभी त्रुटि शर्तों में झटके की घटना हो सकती है ej,t, इस प्रकार सभी अंतर्जात चरों में समसामयिक गति पैदा करता है। नतीजतन, घटे हुए वेक्टर ऑटोरेगेशन (VAR) का सहप्रसरण मैट्रिक्स
गैर-शून्य ऑफ-विकर्ण तत्व हो सकते हैं, इस प्रकार त्रुटि शब्दों के बीच गैर-शून्य सहसंबंध की अनुमति देते हैं।
अनुमान
प्रतिगमन मापदंडों का अनुमान
संक्षिप्त मैट्रिक्स संकेतन से शुरू (विवरण के लिए वेक्टर ऑटोरेगेशन (VAR)(p) का सामान्य मैट्रिक्स संकेतन देखें):
- B पैदावार का अनुमान लगाने के लिए बहुभिन्नरूp प्रतिगमन (एमएलएस) दृष्टिकोण:
इसे वैकल्पिक रूप से इस प्रकार लिखा जा सकता है:
जहाँ संकेतित मैट्रिक्स के क्रोनकर उत्पाद और Vec द वेक्टराइज़ेशन (गणित) को दर्शाता है।
यह अनुमानक संगति और अनुमानक दक्षता है। इसके अलावा यह सशर्त अधिकतम संभावना के बराबर है।[4]
- चूँकि व्याख्यात्मक चर प्रत्येक समीकरण में समान होते हैं, बहुभिन्नरूप न्यूनतम वर्ग अनुमानक प्रत्येक समीकरण पर अलग से लागू किए गए सामान्य न्यूनतम वर्ग अनुमानक के बराबर होता है।[5]
त्रुटियों के सहप्रसरण मैट्रिक्स का अनुमान
जैसा कि मानकस्थिति में, सहप्रसरण मैट्रिक्स का अधिकतम संभावना अनुमानक (एमएलई) साधारण न्यूनतम वर्ग (ओएलएस) अनुमानक से भिन्न होता है।
एमएलई अनुमानक: ओएलएस अनुमानक: स्थिर, k चर और p अंतराल वाले मॉडल के लिए।
एक मैट्रिक्स नोटेशन में, यह देता है:
अनुमानक के सहप्रसरण मैट्रिक्स का अनुमान
मापदंडों के सहप्रसरण मैट्रिक्स का अनुमान लगाया जा सकता है
स्वतंत्रता की डिग्री
वेक्टर स्वप्रतिगमन मॉडल में अधिकांशतः कई मापदंडों का अनुमान शामिल होता है। उदाहरण के लिए, सात चर और चार अंतराल के साथ, दी गई अंतराल लंबाई के लिए गुणांक का प्रत्येक मैट्रिक्स 7 से 7 है, और स्थिरांक के वेक्टर में 7 तत्व हैं, इसलिए कुल 49×4 + 7 = 203 पैरामीटर अनुमानित हैं, काफी कम प्रतिगमन की स्वतंत्रता (सांख्यिकी) की डिग्री (डेटा बिंदुओं की संख्या घटाकर अनुमानित किए जाने वाले मापदंडों की संख्या)। यह पैरामीटर अनुमानों की सटीकता और इसलिए मॉडल द्वारा दिए गए पूर्वानुमानों को नुकसान पहुंचा सकता है।
अनुमानित मॉडल की व्याख्या
वेक्टर ऑटोरेगेशन (VAR) मॉडल के गुणों को सामान्यतः पर संरचनात्मक विश्लेषण का उपयोग करके संक्षेपित किया जाता है, जिसमें ग्रेंजर कारणता बहुभिन्नरूप विश्लेषण, आवेग प्रतिक्रियाएं और पूर्वानुमान त्रुटियों के विचरण अपघटन का उपयोग किया जाता है।
आवेग प्रतिक्रिया
विकास के समीकरण के साथ पहले क्रम केस्थिति पर विचार करें (यानी, के एक अंतराल के साथ)
विकसित (राज्य) वेक्टर के लिए और वेक्टर झटके का अवधियों के j-th तत्व पर झटकों के 2 वेक्टर के i-th तत्व के प्रभाव को खोजने के लिए, जो एक विशेष आवेग प्रतिक्रिया है, जो एक विशेष आवेग प्रतिक्रिया है, पहले विकास के उपरोक्त समीकरण को एक अवधि के अंतराल में लिखें:
प्राप्त करने के लिए विकास के मूल समीकरण में इसका प्रयोग करें
फिर प्राप्त करने के लिए विकास के दो बार पिछड़े समीकरण का उपयोग करके दोहराएं
इससे j-th घटक का प्रभाव के i-वें घटक पर मैट्रिक्स का i, j तत्व है
इस गणितीय प्रेरण प्रक्रिया से यह देखा जा सकता है कि किसी भी झटके का y के तत्वों पर समय के साथ असीम रूप से बहुत आगे प्रभाव पड़ेगा, हालांकि प्रभाव समय के साथ छोटा और छोटा होता जाएगा, यह मानते हुए कि AR प्रक्रिया स्थिर है - अर्थात, यह सब मैट्रिक्स A के मैट्रिसेस के eigenvalue#Eigenvalues और eigenvectors निरपेक्ष मान में 1 से कम हैं।
अनुमानित वेक्टर ऑटोरेगेशन (VAR) मॉडल का उपयोग करके पूर्वानुमान लगाना
अनुमानित वेक्टर ऑटोरेगेशन (VAR) मॉडल का उपयोग पूर्वानुमान के लिए किया जा सकता है, और पूर्वानुमान की गुणवत्ता का आकलन किया जा सकता है, ऐसे तरीकों से जो कि यूनिवेरिएट ऑटोरेगिव मॉडलिंग में उपयोग किए गए तरीकों के अनुरूप हैं।
अनुप्रयोग
क्रिस्टोफर ए. सिम्स ने व्यापक आर्थिक अर्थमिति में पूर्व की मॉडलिंग के दावों और प्रदर्शन की आलोचना करते हुए वेक्टर ऑटोरेगेशन (VAR) मॉडल की वकालत की है।[6] उन्होंने वेक्टर ऑटोरेगेशन (VAR) मॉडल की सिफारिश की, जो पहले समय श्रृंखला सांख्यिकी और प्रणाली पहचान में दिखाई दिया था, नियंत्रण सिद्धांत में एक सांख्यिकीय विशेषता। सिम्स ने आर्थिक संबंधों का अनुमान लगाने के लिए सिद्धांत-मुक्त विधि प्रदान करने के रूप में वेक्टर ऑटोरेगेशन (VAR) मॉडल की वकालत की, इस प्रकार यह संरचनात्मक मॉडल में अविश्वसनीय पहचान प्रतिबंधों का विकल्प है।[6] या सेंसर डेटा के स्वचालित विश्लेषण के लिए स्वास्थ्य अनुसंधान में उपयोग किए जाते हैं।[7]
सॉफ्टवेयर
- R (प्रोग्रामिंग लैंग्वेज): पैकेज वेक्टर ऑटोरेगेशन (VAR)s में वेक्टर ऑटोरेगेशन (VAR) मॉडल के फंक्शन शामिल हैं।[8][9] अन्य आर पैकेज क्रैन टास्क व्यू: टाइम सीरीज़ एनालिसिस में सूचीबद्ध हैं।
- Python (प्रोग्रामिंग भाषा): आँकड़े पैकेज का tsa (समय श्रृंखला विश्लेषण) मॉड्यूल वेक्टर ऑटोरेगेशन (VAR)s का समर्थन करता है। पायफ्लक्स वेक्टर ऑटोरेगेशन (VAR)s और बायेसियन वेक्टर ऑटोरेगेशन (VAR)s के लिए समर्थन करता है।
- एसएएस भाषा: वर्मैक्स
- था: वर
- समीक्षा: वार
- ग्रेटल: वर
- मतलब: वर्म
- समय श्रृंखला का प्रतिगमन विश्लेषण: प्रणाली
- एलडीटी
यह भी देखें
- बायेसियन वेक्टर ऑटोरिग्रेशन
- अभिसारी क्रॉस मैपिंग
- ग्रेंजर कारणता
- पैनल वेक्टर ऑटोरिग्रेशन, पैनल डेटा के लिए वेक्टर ऑटोरेगेशन (VAR) मॉडल का विस्तार[10]
- विचरण अपघटन
टिप्पणियाँ
- ↑ For multivariate tests for autocorrelation in the VAR models, see Hatemi-J, A. (2004). "Multivariate tests for autocorrelation in the stable and unstable VAR models". Economic Modelling. 21 (4): 661–683. doi:10.1016/j.econmod.2003.09.005.
- ↑ Hacker, R. S.; Hatemi-J, A. (2008). "Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH". Journal of Applied Statistics. 35 (6): 601–615. doi:10.1080/02664760801920473.
- ↑ Hatemi-J, A.; Hacker, R. S. (2009). "Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders?". Applied Economics. 41 (9): 1489–1500.
- ↑ Hamilton, James D. (1994). Time Series Analysis. Princeton University Press. p. 293.
- ↑ Zellner, Arnold (1962). "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias". Journal of the American Statistical Association. 57 (298): 348–368. doi:10.1080/01621459.1962.10480664.
- ↑ 6.0 6.1 Sims, Christopher (1980). "Macroeconomics and Reality". Econometrica. 48 (1): 1–48. CiteSeerX 10.1.1.163.5425. doi:10.2307/1912017. JSTOR 1912017.
- ↑ van der Krieke; et al. (2016). "Temporal Dynamics of Health and Well-Being: A Crowdsourcing Approach to Momentary Assessments and Automated Generation of Personalized Feedback (2016)". Psychosomatic Medicine: 1. doi:10.1097/PSY.0000000000000378. PMID 27551988.
- ↑ Bernhard Pfaff VAR, SVAR and SVEC Models: Implementation Within R Package vars
- ↑ Hyndman, Rob J; Athanasopoulos, George (2018). "11.2: Vector Autoregressions". Forecasting: Principles and Practice. OTexts. pp. 333–335. ISBN 978-0-9875071-1-2.
- ↑ Holtz-Eakin, D., Newey, W., and Rosen, H. S. (1988). Estimating Vector Autoregressions with Panel Data. Econometrica, 56(6):1371–1395.
अग्रिम पठन
- Asteriou, Dimitrios; Hall, Stephen G. (2011). "Vector Autoregressive (VAR) Models and Causality Tests". Applied Econometrics (Second ed.). London: Palgrave MacMillan. pp. 319–333.
- Enders, Walter (2010). Applied Econometric Time Series (Third ed.). New York: John Wiley & Sons. pp. 272–355. ISBN 978-0-470-50539-7.
- Favero, Carlo A. (2001). Applied Macroeconometrics. New York: Oxford University Press. pp. 162–213. ISBN 0-19-829685-1.
- Lütkepohl, Helmut (2005). New Introduction to Multiple Time Series Analysis. Berlin: Springer. ISBN 3-540-40172-5.
- Qin, Duo (2011). "Rise of VAR Modelling Approach". Journal of Economic Surveys. 25 (1): 156–174. doi:10.1111/j.1467-6419.2010.00637.x.