जॉनसन-निक्विस्ट रव: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (10 revisions imported from alpha:जॉनसन-निक्विस्ट_शोर) |
(No difference)
|
Revision as of 07:18, 28 March 2023
जॉनसन-निक्विस्ट रव (थर्मल रव, जॉनसन रव, या निक्विस्ट रव) विद्युत कंडक्टर के भीतर आवेश वाहक (सामान्यतः इलेक्ट्रॉनों) के थर्मल ऊर्जा द्वारा उत्पन्न इलेक्ट्रॉनिक रव है, जो किसी भी लागू वोल्टेज की परवाह किए बिना होता है। थर्मल रव सभी विद्युत परिपथों में मौजूद होता है, और संवेदनशील इलेक्ट्रॉनिक उपकरण (जैसे रेडियो रिसीवर) कमजोर संकेतों को नष्ट कर सकते हैं, और विद्युत मापन उपकरणों की संवेदनशीलता पर सीमित कारक हो सकते हैं। तापमान के साथ तापीय रव बढ़ता है। कुछ संवेदनशील इलेक्ट्रॉनिक उपकरण जैसे रेडियो दूरबीन रिसीवर को उनके सर्किट में थर्मल रव को कम करने के लिए क्रायोजेनिक तापमान के लिए ठंडा किया जाता है। इस रव के सामान्य, सांख्यिकीय भौतिक व्युत्पत्ति को उतार-चढ़ाव-अपव्यय प्रमेय कहा जाता है, जहां सामान्यीकृत विद्युत प्रतिबाधा या सामान्यीकृत विद्युत संवेदनशीलता का उपयोग माध्यम को विशेषता देने के लिए किया जाता है।
एक आदर्श प्रतिरोध में थर्मल रव लगभग सफेद होता है, जिसका अर्थ है कि विद्युत वर्णक्रमीय घनत्व लगभग आवृत्ति स्पेक्ट्रम के दौरान लगभग स्थिर होता है, लेकिन अत्यधिक उच्च आवृत्तियों पर शून्य तक क्षय होता है (कमरे के तापमान के लिए टेराहर्ट्ज़ (इकाई) जब परिमित बैंडविड्थ तक सीमित होता है, तापीय रव में लगभग सामान्य वितरण होता है।[1]
इतिहास
इस प्रकार के रव का पता चला और सबसे पहले 1926 में बेल लैब्स में जॉन बी जॉनसन द्वारा मापा गया थाl [2][3] उन्होंने अपने निष्कर्षों को हैरी निक्विस्ट, बेल लैब्स में भी वर्णित किया, जो परिणामों को समझाने में सक्षम थे।[4]
व्युत्पत्ति
जैसा कि एनयक्विस्ट ने अपने 1928 के पत्र में कहा है, विद्युत दोलन के सामान्य तरीकों में ऊर्जा की मात्रा रव के आयाम को निर्धारित करेगी। एनयक्विस्ट ने बोल्टज़मान और मैक्सवेल के समविभाजन प्रमेय का उपयोग किया था। सक्षम ऊर्जा और हथियार कानून के हार्मोनिक दोलक की अवधारणा का उपयोग करते है।[5]
कहाँ (W/Hz) में रव शक्ति घनत्व है, बोल्ट्जमैन स्थिरांक है और तापमान है। बैंडविड्थ द्वारा समीकरण को गुणा करने पर परिणाम रव शक्ति के रूप में मिलता है।
जहाँ N रव शक्ति है और Δf बैंडविड्थ (सिग्नल प्रोसेसिंग) है।
रव वोल्टेज और शक्ति
थर्मल रव शॉट रव से अलग होता है, जिसमें अतिरिक्त वर्तमान उतार-चढ़ाव होते हैं जो एक वोल्टेज के लागू होने पर होते हैं और एक मैक्रोस्कोपिक धारा प्रवाहित होने लगती है। सामान्य मामले के लिए, उपरोक्त परिभाषा किसी भी प्रकार के संचालन संचरण माध्यम (जैसे इलेक्ट्रोलाइट में आयन) में आवेश वाहकों पर लागू होती है, न कि केवल प्रतिरोधों पर है। इसे एक वोल्टेज स्रोत द्वारा मॉडल किया जा सकता है जो एक आदर्श रव मुक्त प्रतिरोध के साथ श्रृंखला में गैर-आइडियल प्रतिरोध के रव का प्रतिनिधित्व करता है।
एक तरफा शक्ति स्पेक्ट्रल घनत्व, या वोल्टेज भिन्नता (औसत वर्ग) प्रति हेटर्स बैंडविड्थ, द्वारा दिया जाता है
जहां kB जौल्स प्रति केल्विन में बोल्ट्जमैन का स्थिरांक है, T केल्विन में प्रतिरोधक का निरपेक्ष तापमान है, और R ओम (Ω) में प्रतिरोधक मान है। त्वरित गणना के लिए कमरे के तापमान पर इस समीकरण का उपयोग करना:
उदाहरण के लिए, 300 K के तापमान पर 1 kΩ प्रतिरोध होता है
किसी दिए गए बैंडविड्थ के लिए, वोल्टेज का मूल माध्य वर्ग (RMS), , द्वारा दिया गया है
जहां Δf हर्ट्ज़ में बैंडविड्थ है जिस पर रव मापा जाता है। कमरे के तापमान और 10 kHz बैंडविड्थ पर एक 1 kΩ के लिए, आरएमएस रव वोल्टेज 400 nV है।[6] याद रखने के लिए अंगूठे का एक उपयोगी नियम यह है कि 1 हर्ट्ज बैंडविड्थ पर 50 Ω कमरे के तापमान पर 1 nV रव के अनुरूप है।
शॉर्ट सर्किट में एक प्रतिरोधक रव की शक्ति का क्षय करता है
प्रतिरोध पर उत्पन्न रव शेष सर्किट में स्थानांतरित हो सकता है; अधिकतम रव शक्ति हस्तांतरण प्रतिबाधा मिलान के साथ होता है जब शेष सर्किट का थवेनिन समतुल्य प्रतिरोध रव उत्पन्न करने वाले प्रतिरोध के बराबर होता है। इस मामले में, दोनों में से प्रत्येक प्रतियोगी अपने आप में और दूसरे प्रतिरोध में रव को अलग करता है। चूंकि स्रोत वोल्टेज का केवल आधा हिस्सा इन प्रतिरोधों में से किसी एक में गिरता है, परिणामी रव शक्ति द्वारा दिया जाता है।
जहाँ P वाट में तापीय रव शक्ति है। ध्यान दें कि यह रव पैदा करने वाले प्रतिरोध से स्वतंत्र है।
रव वर्तमान
रव स्रोत को एक वर्तमान स्रोत द्वारा समानांतर में नॉर्टन समतुल्य लेकर भी तैयार किया जा सकता है जो केवल आर द्वारा विभाजित करने के लिए मेल खाता है। यह वर्तमान स्रोत का मूल माध्य वर्ग मान देता है:
डेसीबल में रव की शक्ति
सिग्नल की शक्ति को अधिकांशतः dBm (1 मिलीवाट के सापेक्ष डेसिबल) में मापा जाता है। उपरोक्त समीकरण से, dBm में, कमरे के तापमान पर एक प्रतिरोधक में रव की शक्ति तब होती है:
कमरे के तापमान (300 K) पर यह लगभग है
इस समीकरण का उपयोग करते हुए, विभिन्न बैंडविड्थ के लिए रव की शक्ति की गणना करना सरल है:
आवेष्ट विशदताh | थर्मल नॉइस पोवे में 300 K (dBm) |
टिप्पणी |
---|---|---|
1 Hz | −174 | |
10 Hz | −164 | |
100 Hz | −154 | |
1 kHz | −144 | |
10 kHz | −134 | 2-वे रेडियो का एफएम चैनल |
100 kHz | −124 | |
180 kHz | −121.45 | LTE संसाधन ब्लॉक |
200 kHz | −121 | GSM चैनल |
1 MHz | −114 | ब्लूटूथ चैनल |
2 MHz | −111 | व्यावसायिक GPS चैनल |
3.84 MHz | −108 | UMTS चैनल |
6 MHz | −106 | एनालॉग टेलीविजन चैनल |
20 MHz | −101 | WLAN 802.11 चैनल |
40 MHz | −98 | WLAN 802.11n 40 MHz चैनल |
80 MHz | −95 | WLAN 802.11ac 80 MHz चैनल |
160 MHz | −92 | WLAN 802.11ac 160 MHz चैनल |
1 GHz | −84 | UWB चैनल |
कैपेसिटर पर थर्मल रव
आदर्श संधारित्र, हानिरहित उपकरणों के रूप में, थर्मल रव नहीं होता है, लेकिन सामान्यतः आरसी सर्किट में प्रतिरोधकों के साथ प्रयोग किया जाता है, संयोजन में केटीसी रव कहा जाता है। आरसी सर्किट का रव बैंडविड्थ Δf = 1/(4RC) है।[9] जब इसे थर्मल रव समीकरण में प्रतिस्थापित किया जाता है, तो परिणाम का असामान्य रूप से सरल रूप होता है क्योंकि विद्युत प्रतिरोध (R) का मान समीकरण से बाहर हो जाता है। ऐसा इसलिए है क्योंकि उच्च R बैंडविड्थ को उतना ही कम करता है जितना रव को बढ़ाता है।
इस तरह के फिल्टर में उत्पन्न माध्य-वर्ग और आरएमएस रव वोल्टेज हैं:[10]
रव चार्ज कैपेसिटेंस गुना वोल्टेज है:
यह आवेश रव "kTC रव" शब्द की उत्पत्ति है।
हालांकि प्रतिरोध के मूल्य से स्वतंत्र, केटीसी रव का 100% प्रतिरोधकर्ता में उत्पन्न होता है। इसलिए, यदि प्रतिरोधकर्ता और संधारित्र अलग-अलग तापमान पर हैं, तो ऊपर की गणना में केवल प्रतिरोधकर्ता के तापमान का उपयोग किया जाना चाहिए।
चरम मामला शून्य बैंडविड्थ सीमा है जिसे एक आदर्श स्विच खोलकर कैपेसिटर पर छोड़ा गया 'रीसेट रव' कहा जाता है। प्रतिरोध अनंत है, फिर भी सूत्र लागू होता है; हालाँकि, अब RMS की व्याख्या समय के औसत के रूप में नहीं की जानी चाहिए, बल्कि ऐसी कई रीसेट घटनाओं के औसत के रूप में की जानी चाहिए, क्योंकि बैंडविड्थ शून्य होने पर वोल्टेज स्थिर रहता है। इस अर्थ में, आरसी सर्किट के जॉनसन रव को अंतर्निहित देखा जा सकता है, संधारित्र पर इलेक्ट्रॉनों की संख्या के थर्मोडायनामिक वितरण का प्रभाव, यहां तक कि प्रतिरोधी की भागीदारी के बिना भी।
रव संधारित्र के कारण नहीं होता, बल्कि संधारित्र पर प्रभार की मात्रा के ऊष्मागतिक उतार-चढ़ाव के कारण होता है। एक बार संधारित्र एक संवाहक सर्किट से डिसकनेक्ट हो जाता है, तो थर्मोडायनामिक उतार-चढ़ाव को ऊपर दिए गए मानक विचलन के साथ यादृच्छिक मान पर जम जाता है। संधारित्र संवेदकों का रीसेट रव अधिकांशतः एक सीमित रव स्रोत होता है, उदाहरण के लिए छवि संवेदक में।
थर्मल संतुलन में किसी भी प्रणाली में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की प्रति डिग्री केटी / 2 की औसत ऊर्जा के साथ राज्य चर होते हैं। एक संधारित्र पर ऊर्जा के सूत्र का उपयोग करना (E = ½CV2), संधारित्र पर माध्य रव ऊर्जा को ½C(kT/C) = kT/2 भी देखा जा सकता है। प्रतिरोध पर विचार किए बिना, संधारित्र पर थर्मल रव इस संबंध से प्राप्त किया जा सकता है।
धारिता | अतिसूक्ष्म परमाणु | ||
---|---|---|---|
1 fF | 2 mV | 2 aC | 12.5 e− |
10 fF | 640 µV | 6.4 aC | 40 e− |
100 fF | 200 µV | 20 aC | 125 e− |
1 pF | 64 µV | 64 aC | 400 e− |
10 pF | 20 µV | 200 aC | 1250 e− |
100 pF | 6.4 µV | 640 aC | 4000 e− |
1 nF | 2 µV | 2 fC | 12500 e− |
सामान्यीकृत रूप
एच> ऊपर वर्णित वोल्टेज रव कम आवृत्तियों के लिए पूरी तरह प्रतिरोधी घटक के लिए एक विशेष मामला है। उतार-चढ़ाव-अपव्यय प्रमेय के परिणामस्वरूप, सामान्य तौर पर, थर्मल विद्युत रव कई सामान्यीकृत विद्युत मामलों में प्रतिरोधी प्रतिक्रिया से संबंधित होता है। नीचे विभिन्न प्रकार के सामान्यीकरण दिए गए हैं। ये सभी सामान्यीकरण एक सामान्य सीमा साझा करते हैं, कि वे केवल उन मामलों में लागू होते हैं जहां विचाराधीन विद्युत घटक विशुद्ध रूप से निष्क्रियता (इंजीनियरिंग) और रैखिक है।
प्रतिक्रियाशील प्रतिबाधा
एनयक्विस्ट के मूल पेपर ने आंशिक रूप से विद्युत प्रतिक्रिया प्रतिक्रिया वाले घटकों के लिए सामान्यीकृत रव भी प्रदान किया, उदाहरण के लिए, ऐसे स्रोत जिनमें कैपेसिटर या इंडक्टर्स होते हैं।[4]इस तरह के एक घटक को आवृत्ति-निर्भर जटिल विद्युत प्रतिबाधा द्वारा वर्णित किया जा सकता है . श्रृंखला रव वोल्टेज की शक्ति वर्णक्रमीय घनत्व के लिए सूत्र है
कार्यक्रम बहुत उच्च आवृत्तियों को छोड़कर, या लगभग पूर्ण शून्य (नीचे देखें) को छोड़कर केवल 1 के बराबर है।
प्रतिबाधा का वास्तविक हिस्सा, , सामान्य आवृत्ति पर निर्भर है और इसलिए जॉनसन-निक्विस्ट रव सफेद रव नहीं है।आवृत्तियों की एक अवधि में आरएमएस रव वोल्टेज को शक्ति वर्णक्रमीय घनत्व के एकीकरण द्वारा पाया जा सकता है:
- .
वैकल्पिक रूप से, जॉनसन रव का वर्णन करने के लिए समानांतर रव प्रवाह का उपयोग किया जा सकता है, इसकी शक्ति वर्णक्रमीय घनत्व है
जहाँ विद्युत प्रवेश है; ध्यान दें कि
उच्च आवृत्तियों या कम तापमान
पर क्वांटम प्रभाव एनयक्विस्ट ने यह भी बताया कि क्वांटम प्रभाव बहुत उच्च आवृत्तियों या पूर्ण शून्य के पास बहुत कम तापमान के लिए होता है।[4]कार्यक्रम सामान्य रूप से दिया गया है
जहाँ प्लैंक नियतांक है और गुणन कारक है।
बहुत उच्च आवृत्तियों पर , कार्यक्रम घातीय रूप से शून्य से घटने लगता है। कमरे के तापमान पर यह संक्रमण टेराहर्ट्ज़ में होता है, पारंपरिक इलेक्ट्रॉनिक्स की क्षमताओं से कहीं अधिक, और इसलिए यह सेट करने के लिए मान्य है पारंपरिक इलेक्ट्रॉनिक्स काम के लिए।
प्लांक के नियम से संबंध
एनयक्विस्ट का सूत्र अनिवार्य रूप से वही है जो प्लैंक द्वारा 1901 में एक ब्लैकबॉडी के इलेक्ट्रोमैग्नेटिक रेडिएशन के लिए एक आयाम में प्राप्त किया गया था - यानी, यह प्लैंक के नियम का एक आयामी संस्करण है। ब्लैकबॉडी रेडिएशन का प्लैंक का नियम।[11] दूसरे शब्दों में, एक गर्म अवरोधक एक संचरण लाइन पर विद्युत चुम्बकीय तरंगें पैदा करेगा जैसे एक गर्म वस्तु मुक्त स्थान में विद्युत चुम्बकीय तरंगों का निर्माण करेगी।
1946 में, रॉबर्ट एच. डिके ने संबंधों पर विस्तार से बताया,[12] और आगे इसे एंटेना के गुणों से जोड़ा, विशेष रूप से यह तथ्य कि सभी अलग-अलग दिशाओं में औसत एंटीना एपर्चर इससे बड़ा नहीं हो सकता , जहां λ तरंग दैर्ध्य है। यह 3D बनाम 1D प्लैंक के नियम की विभिन्न आवृत्ति निर्भरता से आता है।
मल्टीपोर्ट विद्युत नेटवर्क
रिचर्ड क्यू. ट्विस ने एनयक्विस्ट के फॉर्मूले को मल्टी-पोर्ट (सर्किट थ्योरी) पैसिव इलेक्ट्रिकल नेटवर्क तक बढ़ाया, जिसमें गैर-पारस्परिक डिवाइस जैसे कि फैलानेवाला और आइसोलेटर (माइक्रोवेव) सम्मिलित हैं।[13] थर्मल रव हर बंदरगाह पर दिखाई देता है, और प्रत्येक बंदरगाह के साथ श्रृंखला में यादृच्छिक श्रृंखला वोल्टेज स्रोत के रूप में वर्णित किया जा सकता है। विभिन्न बंदरगाहों पर यादृच्छिक वोल्टेज सहसंबद्ध हो सकते हैं, और उनके आयाम और सहसंबंध पूरी तरह से अलग-अलग रव वोल्टेज से संबंधित क्रॉस-स्पेक्ट्रल घनत्व कार्यों के एक सेट द्वारा वर्णित हैं।
जहां प्रतिबाधा मैट्रिक्स के तत्व हैं . फिर से, रव का एक वैकल्पिक विवरण इसके बजाय प्रत्येक पोर्ट पर लागू समानांतर वर्तमान स्रोतों के संदर्भ में है। उनका क्रॉस-स्पेक्ट्रल घनत्व किसके द्वारा दिया जाता है
जहाँ प्रवेश पैरामीटर है।
निरंतर इलेक्ट्रोडायनामिक मीडिया
न्यायवादी रव का पूर्ण सामान्यीकरण उतार-चढ़ाव इलेक्ट्रोडायनामिक्स में पाया जाता है, जो एक निरंतर प्रतिक्रिया फ़ंक्शन जैसे कि ढांकता हुआ पारगम्यता या चुंबकीय पारगम्यता में डिसिप्यूटेटिव प्रतिक्रिया के साथ निरंतर मीडिया के भीतर रव वर्तमान घनत्वका वर्णन करता है। उतार-चढ़ाव इलेक्ट्रोडायनामिक्स के समीकरण जॉनसन-नीक्विस्ट रव और फ्री-स्पेस श्याम पिंडों से उत्पन्न विकिरण दोनों का वर्णन करने के लिए एक आम रूपरेखा प्रदान करते हैं।[14]
यह भी देखें
- उतार-चढ़ाव-अपव्यय प्रमेय
- शॉट रव
- 1/च रव
- लैंग्विन समीकरण
- उष्णता से ऊपर उठना
संदर्भ
- ↑ John R. Barry; Edward A. Lee; David G. Messerschmitt (2004). डिजिटल संचार. Sprinter. p. 69. ISBN 9780792375487.
- ↑ Anonymous (1927). "Minutes of the Philadelphia Meeting December 28, 29, 30, 1926". Physical Review. 29 (2): 350–373. Bibcode:1927PhRv...29..350.. doi:10.1103/PhysRev.29.350.
- ↑ Johnson, J. (1928). "कंडक्टरों में बिजली का थर्मल आंदोलन". Physical Review. 32 (97): 97–109. Bibcode:1928PhRv...32...97J. doi:10.1103/physrev.32.97.
- ↑ 4.0 4.1 4.2 Nyquist, H. (1928). "कंडक्टरों में इलेक्ट्रिक चार्ज का थर्मल एजिटेशन". Physical Review. 32 (110): 110–113. Bibcode:1928PhRv...32..110N. doi:10.1103/physrev.32.110.
- ↑ Tomasi, Wayne (1994). इलेक्ट्रॉनिक संचार (in English). Prentice Hall PTR. ISBN 9780132200622.
- ↑ Google Calculator result for 1 kΩ room temperature 10 kHz bandwidth
- ↑ Pierce, J. R. (1956). "शोर के भौतिक स्रोत". Proceedings of the IRE. 44 (5): 601–608. doi:10.1109/JRPROC.1956.275123. S2CID 51667159.
- ↑ Vizmuller, Peter (1995), RF Design Guide, Artech House, ISBN 0-89006-754-6
- ↑ Lundberg, Kent H. "Noise Sources in Bulk CMOS" (PDF). p. 10.
- ↑ Sarpeshkar, R.; Delbruck, T.; Mead, C. A. (November 1993). "White noise in MOS transistors and resistors" (PDF). IEEE Circuits and Devices Magazine. 9 (6): 23–29. doi:10.1109/101.261888. S2CID 11974773.
- ↑ Urick, V. J.; Williams, Keith J.; McKinney, Jason D. (2015-01-30). माइक्रोवेव फोटोनिक्स की बुनियादी बातें. p. 63. ISBN 9781119029786.
- ↑ Dicke, R. H. (1946-07-01). "माइक्रोवेव फ्रीक्वेंसी पर थर्मल रेडिएशन का मापन". Review of Scientific Instruments. 17 (7): 268–275. Bibcode:1946RScI...17..268D. doi:10.1063/1.1770483. PMID 20991753. S2CID 26658623.
- ↑ Twiss, R. Q. (1955). "Nyquist's और Thevenin's Theorems Generalized for Nonreciprocal Linear Networks". Journal of Applied Physics. 26 (5): 599–602. Bibcode:1955JAP....26..599T. doi:10.1063/1.1722048.
- ↑ Pitaevskii, L. P.; Lifshitz, E. M. (1980). "Chapter VIII. Electromagnetic Fluctuations". Statistical Physics, Part 2: Theory of the Condensed State. Vol. 9 (1st ed.). Butterworth-Heinemann. ISBN 978-0-7506-2636-1.
This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).