अलॉय स्टील: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
मिश्र धातु स्टील्स को दो समूहों में बांटा गया है: कम मिश्र धातु स्टील्स और उच्च मिश्र धातु स्टील्स। दोनों के बीच का अंतर विवादित है। स्मिथ और हाशमी अंतर को 4.0% पर परिभाषित करते हैं। जबकि डीगार्मो, एट अल इसे 8.0% पर परिभाषित करते हैं।<ref>Smith, p. 393.</ref><ref name="degarmo112">Degarmo, p. 112.</ref> सामान्यतः एलॉय स्टील वाक्यांश कम-मिश्र धातु स्टील्स को संदर्भित करता है।
मिश्र धातु स्टील्स को दो समूहों में बांटा गया है: कम मिश्र धातु स्टील्स और उच्च मिश्र धातु स्टील्स। दोनों के बीच का अंतर विवादित है। स्मिथ और हाशमी अंतर को 4.0% पर परिभाषित करते हैं। जबकि डीगार्मो, एट अल इसे 8.0% पर परिभाषित करते हैं।<ref>Smith, p. 393.</ref><ref name="degarmo112">Degarmo, p. 112.</ref> सामान्यतः एलॉय स्टील वाक्यांश कम-मिश्र धातु स्टील्स को संदर्भित करता है।


प्रत्येक स्टील मिश्र धातु है। किन्तु सभी स्टील्स को मिश्र धातु स्टील्स नहीं कहा जाता है। सबसे सरल स्टील [[लोहा]] (Fe) [[कार्बन]] (C) (लगभग 0.1% से 1%, प्रकार के आधार पर) के साथ मिश्रित होता है और कुछ नहीं (सामान्य अशुद्धियों के माध्यम से नगण्य निशान को छोड़कर)। इन्हें [[कार्बन स्टील|कार्बन स्टील्स]] कहा जाता है। चूंकि अलॉय स्टील शब्द मानक शब्द है। जिसमें कार्बन के अतिरिक्त अन्य मिश्र धातु तत्वों को इसके अतिरिक्त जोड़ा गया है। सामान्य मिश्र धातुओं में [[मैंगनीज]] (सबसे सामान्य), [[निकल]], [[क्रोमियम]], [[मोलिब्डेनम]], [[वैनेडियम]], [[सिलिकॉन]] और बोरॉन सम्मिलित हैं। कम आम मिश्र धातुओं में [[अल्युमीनियम|एल्युमीनियम]], [[कोबाल्ट]], तांबा, [[मोम]], [[नाइओबियम]], [[टाइटेनियम]], [[टंगस्टन]], [[ विश्वास करना ]], [[जस्ता]], सीसा और [[zirconium|जिक्रोनियम]] सम्मिलित हैं।
प्रत्येक स्टील मिश्र धातु है। किन्तु सभी स्टील्स को मिश्र धातु स्टील्स नहीं कहा जाता है। सबसे सरल स्टील [[लोहा]] (Fe) [[कार्बन]] (C) (लगभग 0.1% से 1%, प्रकार के आधार पर) के साथ मिश्रित होता है और कुछ नहीं (सामान्य अशुद्धियों के माध्यम से नगण्य निशान को छोड़कर)। इन्हें [[कार्बन स्टील|कार्बन स्टील्स]] कहा जाता है। चूंकि अलॉय स्टील शब्द मानक शब्द है। जिसमें कार्बन के अतिरिक्त अन्य मिश्र धातु तत्वों को इसके अतिरिक्त जोड़ा गया है। सामान्य मिश्र धातुओं में [[मैंगनीज]] (सबसे सामान्य), [[निकल]], [[क्रोमियम]], [[मोलिब्डेनम]], [[वैनेडियम]], [[सिलिकॉन]] और बोरॉन सम्मिलित हैं। कम आम मिश्र धातुओं में [[अल्युमीनियम|एल्युमीनियम]], [[कोबाल्ट]], तांबा, [[मोम]], [[नाइओबियम]], [[टाइटेनियम]], [[टंगस्टन]], [[ विश्वास करना |विश्वास करना]] , [[जस्ता]], सीसा और [[zirconium|जिक्रोनियम]] सम्मिलित हैं।


== गुण ==
== गुण ==
मिश्र धातु स्टील्स (कार्बन स्टील्स की तुलना में) में उत्तम गुणों की एक श्रृंखला निम्नलिखित है: [[सामग्री की ताकत|सामग्री की शक्ति]], [[कठोरता]], पहनने के प्रतिरोध, संक्षारण प्रतिरोध, कठोरता और [[गर्म कठोरता]]। इनमें से कुछ उत्तम गुणों को प्राप्त करने के लिए धातु को ताप उपचार की आवश्यकता हो सकती है।
मिश्र धातु स्टील्स (कार्बन स्टील्स की तुलना में) में उत्तम गुणों की एक श्रृंखला निम्नलिखित है: [[सामग्री की ताकत|सामग्री की शक्ति]], [[कठोरता]], पहनने के प्रतिरोध, संक्षारण प्रतिरोध, कठोरता और [[गर्म कठोरता]]। इनमें से कुछ उत्तम गुणों को प्राप्त करने के लिए धातु को ताप उपचार की आवश्यकता हो सकती है।


चूंकि मिश्र धातु इस्पात पुराने समय से बनाए जाते रहे हैं। किन्तु जब तक रसायन शास्त्र के इतिहास ने उनकी रचनाओं का उजागर नहीं किया। तब तक उनकी धातु विज्ञान को अच्छी प्रकार से नहीं समझा गया था। पहले के समय से मिश्र धातु स्टील गुप्त व्यंजनों के मॉडल पर बनाई गई महंगी विलासिता थी और चाकू और तलवार जैसे औजारों में जाली थी। [[मशीन युग]] के आधुनिक मिश्र धातु स्टील्स को उन्नत [[ औजारों का स्टील | औजारों का स्टील्स]] और नए उपलब्ध [[स्टेनलेस स्टील|स्टेनलेस स्टील्स]] के रूप में विकसित किया गया था। आज अलॉय स्टील्स का प्रयोग दैनिक जीवन के औजारों और फ्लैटवेयर से लेकर अत्यधिक मांग वाले अनुप्रयोगों जैसे कि जेट इंजन के टरबाइन ब्लेड और परमाणु रिएक्टरों में अनुप्रयोगों की एक विस्तृत श्रृंखला में होता है।
चूंकि मिश्र धातु इस्पात पुराने समय से बनाए जाते रहे हैं। किन्तु जब तक रसायन शास्त्र के इतिहास ने उनकी रचनाओं का उजागर नहीं किया। तब तक उनकी धातु विज्ञान को अच्छी प्रकार से नहीं समझा गया था। पहले के समय से मिश्र धातु स्टील गुप्त व्यंजनों के मॉडल पर बनाई गई महंगी विलासिता थी और चाकू और तलवार जैसे औजारों में जाली थी। [[मशीन युग]] के आधुनिक मिश्र धातु स्टील्स को उन्नत [[ औजारों का स्टील |औजारों का स्टील्स]] और नए उपलब्ध [[स्टेनलेस स्टील|स्टेनलेस स्टील्स]] के रूप में विकसित किया गया था। आज अलॉय स्टील्स का प्रयोग दैनिक जीवन के औजारों और फ्लैटवेयर से लेकर अत्यधिक मांग वाले अनुप्रयोगों जैसे कि जेट इंजन के टरबाइन ब्लेड और परमाणु रिएक्टरों में अनुप्रयोगों की एक विस्तृत श्रृंखला में होता है।


लोहे के फेरोमैग्नेटिक गुणों के कारण कुछ स्टील मिश्र धातुओं को महत्वपूर्ण अनुप्रयोग मिलते हैं। जहां पर चुंबकत्व के प्रति उनकी प्रतिक्रिया बहुत महत्वपूर्ण होती है। जिसमें इलेक्ट्रिक मोटर्स और ट्रांसफार्मर सम्मिलित हैं।
लोहे के फेरोमैग्नेटिक गुणों के कारण कुछ स्टील मिश्र धातुओं को महत्वपूर्ण अनुप्रयोग मिलते हैं। जहां पर चुंबकत्व के प्रति उनकी प्रतिक्रिया बहुत महत्वपूर्ण होती है। जिसमें इलेक्ट्रिक मोटर्स और ट्रांसफार्मर सम्मिलित हैं।
Line 75: Line 75:


== भौतिक विज्ञान ==
== भौतिक विज्ञान ==
सामग्री में कुछ गुण प्राप्त करने के लिए मिश्र धातु तत्व जोड़े जाते हैं। मिश्र धातु तत्व गुणों को बदल सकते हैं और वैयक्तिकृत कर सकते हैं। जैसे- उनका लचीलापन, शक्ति, स्वरूपण और कठोरता।<ref>{{Cite web|date=2020-08-18|title=What Are the Different Types of Steel? {{!}} Metal Exponents Blog|url=https://metalexponents.com/blog/different-types-steel/|access-date=2021-01-29|website=Metal Exponents|language=en-US}}</ref> एक दिशानिर्देश के रूप में मिश्र धातु तत्वों को शक्ति या कठोरता बढ़ाने के लिए कम प्रतिशत (5% से कम) में जोड़ा जाता है या बड़े प्रतिशत (5% से अधिक) में संक्षारण प्रतिरोध या अत्यधिक तापमान स्थिरता जैसे विशेष गुणों को प्राप्त करने के लिए जोड़ा जाता है।<ref name="degarmo112"/>मेल्ट (निर्माण) से घुलित [[ऑक्सीजन]], [[ गंधक |गंधक]] और [[ फास्फोरस |फास्फोरस]] को हटाने के लिए [[ इस्पात निर्माण ]] प्रक्रिया के समय मैंगनीज, सिलिकॉन या एल्यूमीनियम मिलाया जाता है। फेराइट में ठोस घोल बनाकर शक्ति बढ़ाने के लिए मैंगनीज, सिलिकॉन, निकल और तांबा मिलाया जाता है। क्रोमियम, वैनेडियम, मोलिब्डेनम और टंगस्टन दूसरे चरण के [[ करबैड ]] बनाकर शक्ति बढ़ाते हैं। निकेल और कॉपर कम मात्रा में संक्षारण प्रतिरोध में सुधार करते हैं। मोलिब्डेनम भंगुरता का विरोध करने में सहायता करता है। ज़िरकोनियम, सेरियम और कैल्शियम समावेशन के आकार को नियंत्रित करके कठोरता को बढ़ाते हैं। सल्फर ([[मैंगनीज सल्फाइड]] के रूप में), सीसा, बिस्मथ, सेलेनियम और टेल्यूरियम मशीनीकरण को बढ़ाते हैं।<ref>Degarmo, p. 113.</ref> मिश्रित तत्व या तो ठोस समाधान या यौगिक या कार्बाइड बनाते हैं। निकल फेराइट में बहुत घुलनशील है। इसलिए यह यौगिक बनाता है। सामान्यतः Ni<sub>3</sub>Al एल्युमीनियम फेराइट में घुल जाता है और यौगिक Al<sub>2</sub>O<sub>3</sub> बनाता है और AlN। सिलिकॉन भी बहुत घुलनशील है और सामान्यतः यौगिक SiO<sub>2</sub>•M<sub>x</sub>O<sub>y</sub>.बनाता है। मैंगनीज अधिकतर फेराइट में घुलकर MnS, MnO•SiO<sub>2</sub> यौगिक बनाता है। किन्तु (Fe,Mn)<sub>3</sub>C के रूप में कार्बाइड भी बनाएगा। क्रोमियम स्टील में फेराइट और कार्बाइड चरणों के बीच विभाजन बनाता है, जिससे (Fe,Cr<sub>3</sub>)C, Cr<sub>7</sub>C<sub>3</sub>, और Cr<sub>23</sub>C<sub>6</sub> क्रोमियम बनाने वाले कार्बाइड का प्रकार कार्बन की मात्रा और अन्य प्रकार के मिश्र धातु तत्वों पर निर्भर करता है। टंगस्टन और मोलिब्डेनम कार्बाइड बनाते हैं। यदि पर्याप्त कार्बन और शक्तिशाली कार्बाइड बनाने वाले तत्वों (अर्थात् टाइटेनियम और नाइओबियम) की अनुपस्थिति होती है। तो वे कार्बाइड क्रमशः W<sub>2</sub>C और Mo<sub>2</sub>C बनाते हैं। वैनेडियम, टाइटेनियम और नाइओबियम शक्तिशाली कार्बाइड बनाने वाले तत्व हैं। जो क्रमशः [[वैनेडियम कार्बाइड]], [[टाइटेनियम कार्बाइड]] और [[नाइओबियम कार्बाइड]] बनाते हैं।<ref>Smith, pp. 394–395.</ref> मिश्रधातु तत्वों का स्टील के यूटेक्टॉइड तापमान पर भी प्रभाव पड़ता है। मैंगनीज और निकल यूटेक्टाइड तापमान को कम करते हैं और ऑस्टेनाइट स्थिरीकरण तत्वों के रूप में जाने जाते हैं। इन तत्वों की पर्याप्त मात्रा के साथ ऑस्टेनिटिक संरचना कमरे के तापमान पर प्राप्त की जा सकती है। कार्बाइड बनाने वाले तत्व यूटेक्टॉइड तापमान बढ़ाते हैं। इन तत्वों को फेराइट स्थिरीकरण तत्वों के रूप में जाना जाता है।<ref>Smith, pp. 395–396.</ref>
सामग्री में कुछ गुण प्राप्त करने के लिए मिश्र धातु तत्व जोड़े जाते हैं। मिश्र धातु तत्व गुणों को बदल सकते हैं और वैयक्तिकृत कर सकते हैं। जैसे- उनका लचीलापन, शक्ति, स्वरूपण और कठोरता।<ref>{{Cite web|date=2020-08-18|title=What Are the Different Types of Steel? {{!}} Metal Exponents Blog|url=https://metalexponents.com/blog/different-types-steel/|access-date=2021-01-29|website=Metal Exponents|language=en-US}}</ref> एक दिशानिर्देश के रूप में मिश्र धातु तत्वों को शक्ति या कठोरता बढ़ाने के लिए कम प्रतिशत (5% से कम) में जोड़ा जाता है या बड़े प्रतिशत (5% से अधिक) में संक्षारण प्रतिरोध या अत्यधिक तापमान स्थिरता जैसे विशेष गुणों को प्राप्त करने के लिए जोड़ा जाता है।<ref name="degarmo112"/>मेल्ट (निर्माण) से घुलित [[ऑक्सीजन]], [[ गंधक |गंधक]] और [[ फास्फोरस |फास्फोरस]] को हटाने के लिए [[ इस्पात निर्माण |इस्पात निर्माण]] प्रक्रिया के समय मैंगनीज, सिलिकॉन या एल्यूमीनियम मिलाया जाता है। फेराइट में ठोस घोल बनाकर शक्ति बढ़ाने के लिए मैंगनीज, सिलिकॉन, निकल और तांबा मिलाया जाता है। क्रोमियम, वैनेडियम, मोलिब्डेनम और टंगस्टन दूसरे चरण के [[ करबैड |करबैड]] बनाकर शक्ति बढ़ाते हैं। निकेल और कॉपर कम मात्रा में संक्षारण प्रतिरोध में सुधार करते हैं। मोलिब्डेनम भंगुरता का विरोध करने में सहायता करता है। ज़िरकोनियम, सेरियम और कैल्शियम समावेशन के आकार को नियंत्रित करके कठोरता को बढ़ाते हैं। सल्फर ([[मैंगनीज सल्फाइड]] के रूप में), सीसा, बिस्मथ, सेलेनियम और टेल्यूरियम मशीनीकरण को बढ़ाते हैं।<ref>Degarmo, p. 113.</ref> मिश्रित तत्व या तो ठोस समाधान या यौगिक या कार्बाइड बनाते हैं। निकल फेराइट में बहुत घुलनशील है। इसलिए यह यौगिक बनाता है। सामान्यतः Ni<sub>3</sub>Al एल्युमीनियम फेराइट में घुल जाता है और यौगिक Al<sub>2</sub>O<sub>3</sub> बनाता है और AlN। सिलिकॉन भी बहुत घुलनशील है और सामान्यतः यौगिक SiO<sub>2</sub>•M<sub>x</sub>O<sub>y</sub>.बनाता है। मैंगनीज अधिकतर फेराइट में घुलकर MnS, MnO•SiO<sub>2</sub> यौगिक बनाता है। किन्तु (Fe,Mn)<sub>3</sub>C के रूप में कार्बाइड भी बनाएगा। क्रोमियम स्टील में फेराइट और कार्बाइड चरणों के बीच विभाजन बनाता है, जिससे (Fe,Cr<sub>3</sub>)C, Cr<sub>7</sub>C<sub>3</sub>, और Cr<sub>23</sub>C<sub>6</sub> क्रोमियम बनाने वाले कार्बाइड का प्रकार कार्बन की मात्रा और अन्य प्रकार के मिश्र धातु तत्वों पर निर्भर करता है। टंगस्टन और मोलिब्डेनम कार्बाइड बनाते हैं। यदि पर्याप्त कार्बन और शक्तिशाली कार्बाइड बनाने वाले तत्वों (अर्थात् टाइटेनियम और नाइओबियम) की अनुपस्थिति होती है। तो वे कार्बाइड क्रमशः W<sub>2</sub>C और Mo<sub>2</sub>C बनाते हैं। वैनेडियम, टाइटेनियम और नाइओबियम शक्तिशाली कार्बाइड बनाने वाले तत्व हैं। जो क्रमशः [[वैनेडियम कार्बाइड]], [[टाइटेनियम कार्बाइड]] और [[नाइओबियम कार्बाइड]] बनाते हैं।<ref>Smith, pp. 394–395.</ref> मिश्रधातु तत्वों का स्टील के यूटेक्टॉइड तापमान पर भी प्रभाव पड़ता है। मैंगनीज और निकल यूटेक्टाइड तापमान को कम करते हैं और ऑस्टेनाइट स्थिरीकरण तत्वों के रूप में जाने जाते हैं। इन तत्वों की पर्याप्त मात्रा के साथ ऑस्टेनिटिक संरचना कमरे के तापमान पर प्राप्त की जा सकती है। कार्बाइड बनाने वाले तत्व यूटेक्टॉइड तापमान बढ़ाते हैं। इन तत्वों को फेराइट स्थिरीकरण तत्वों के रूप में जाना जाता है।<ref>Smith, pp. 395–396.</ref>


{| class="wikitable" border="1"
{| class="wikitable" border="1"
Line 111: Line 111:
| 2.0 ||स्प्रिंग स्टील्स
| 2.0 ||स्प्रिंग स्टील्स
|-
|-
| Higher percentages ||चुंबकीय गुणों में सुधार करता है।
|उच्च प्रतिशत
|चुंबकीय गुणों में सुधार करता है।
|-
|-
| [[Sulfur|सल्फर]] || 0.08–0.15 ||फ्री-मशीनिंग गुण
| [[Sulfur|सल्फर]] || 0.08–0.15 ||फ्री-मशीनिंग गुण

Revision as of 23:23, 23 March 2023

मिश्र धातु इस्पात स्टील है। जो सामग्री गुणों की सूची यांत्रिक गुणों में सुधार करने के लिए वजन से 1.0% और 50% के बीच कुल मात्रा में विभिन्न प्रकार के रासायनिक तत्वों के साथ मिश्र धातु है।

मिश्र धातु इस्पात का प्रकार

मिश्र धातु स्टील्स को दो समूहों में बांटा गया है: कम मिश्र धातु स्टील्स और उच्च मिश्र धातु स्टील्स। दोनों के बीच का अंतर विवादित है। स्मिथ और हाशमी अंतर को 4.0% पर परिभाषित करते हैं। जबकि डीगार्मो, एट अल इसे 8.0% पर परिभाषित करते हैं।[1][2] सामान्यतः एलॉय स्टील वाक्यांश कम-मिश्र धातु स्टील्स को संदर्भित करता है।

प्रत्येक स्टील मिश्र धातु है। किन्तु सभी स्टील्स को मिश्र धातु स्टील्स नहीं कहा जाता है। सबसे सरल स्टील लोहा (Fe) कार्बन (C) (लगभग 0.1% से 1%, प्रकार के आधार पर) के साथ मिश्रित होता है और कुछ नहीं (सामान्य अशुद्धियों के माध्यम से नगण्य निशान को छोड़कर)। इन्हें कार्बन स्टील्स कहा जाता है। चूंकि अलॉय स्टील शब्द मानक शब्द है। जिसमें कार्बन के अतिरिक्त अन्य मिश्र धातु तत्वों को इसके अतिरिक्त जोड़ा गया है। सामान्य मिश्र धातुओं में मैंगनीज (सबसे सामान्य), निकल, क्रोमियम, मोलिब्डेनम, वैनेडियम, सिलिकॉन और बोरॉन सम्मिलित हैं। कम आम मिश्र धातुओं में एल्युमीनियम, कोबाल्ट, तांबा, मोम, नाइओबियम, टाइटेनियम, टंगस्टन, विश्वास करना , जस्ता, सीसा और जिक्रोनियम सम्मिलित हैं।

गुण

मिश्र धातु स्टील्स (कार्बन स्टील्स की तुलना में) में उत्तम गुणों की एक श्रृंखला निम्नलिखित है: सामग्री की शक्ति, कठोरता, पहनने के प्रतिरोध, संक्षारण प्रतिरोध, कठोरता और गर्म कठोरता। इनमें से कुछ उत्तम गुणों को प्राप्त करने के लिए धातु को ताप उपचार की आवश्यकता हो सकती है।

चूंकि मिश्र धातु इस्पात पुराने समय से बनाए जाते रहे हैं। किन्तु जब तक रसायन शास्त्र के इतिहास ने उनकी रचनाओं का उजागर नहीं किया। तब तक उनकी धातु विज्ञान को अच्छी प्रकार से नहीं समझा गया था। पहले के समय से मिश्र धातु स्टील गुप्त व्यंजनों के मॉडल पर बनाई गई महंगी विलासिता थी और चाकू और तलवार जैसे औजारों में जाली थी। मशीन युग के आधुनिक मिश्र धातु स्टील्स को उन्नत औजारों का स्टील्स और नए उपलब्ध स्टेनलेस स्टील्स के रूप में विकसित किया गया था। आज अलॉय स्टील्स का प्रयोग दैनिक जीवन के औजारों और फ्लैटवेयर से लेकर अत्यधिक मांग वाले अनुप्रयोगों जैसे कि जेट इंजन के टरबाइन ब्लेड और परमाणु रिएक्टरों में अनुप्रयोगों की एक विस्तृत श्रृंखला में होता है।

लोहे के फेरोमैग्नेटिक गुणों के कारण कुछ स्टील मिश्र धातुओं को महत्वपूर्ण अनुप्रयोग मिलते हैं। जहां पर चुंबकत्व के प्रति उनकी प्रतिक्रिया बहुत महत्वपूर्ण होती है। जिसमें इलेक्ट्रिक मोटर्स और ट्रांसफार्मर सम्मिलित हैं।

लो-अलॉय स्टील्स

कुछ सामान्य लो अलॉय स्टील्स हैं:

  1. डी6एसी
  2. 300 मी
  3. 256ए
प्रिंसिपल लो-अलॉय स्टील्स
एसएई पदनाम संघटन
13xx Mn 1.75%
40xx Mo 0.20% or 0.25% or 0.25% Mo & 0.042% S
41xx Cr 0.50% or 0.80% or 0.95%, Mo 0.12% or 0.20% or 0.25% or 0.30%
43xx Ni 1.82%, Cr 0.50% to 0.80%, Mo 0.25%
44xx Mo 0.40% or 0.52%
46xx Ni 0.85% or 1.82%, Mo 0.20% or 0.25%
47xx Ni 1.05%, Cr 0.45%, Mo 0.20% or 0.35%
48xx Ni 3.50%, Mo 0.25%
50xx Cr 0.27% or 0.40% or 0.50% or 0.65%
50xxx Cr 0.50%, C 1.00% min
50Bxx Cr 0.28% or 0.50%, और बोरॉन मिलाया
51xx Cr 0.80% or 0.87% or 0.92% or 1.00% or 1.05%
51xxx Cr 1.02%, C 1.00% min
51Bxx Cr 0.80%, और बोरॉन मिलाया
52xxx Cr 1.45%, C 1.00% min
61xx Cr 0.60% or 0.80% or 0.95%, V 0.10% or 0.15% min
86xx Ni 0.55%, Cr 0.50%, Mo 0.20%
87xx Ni 0.55%, Cr 0.50%, Mo 0.25%
88xx Ni 0.55%, Cr 0.50%, Mo 0.35%
92xx Si 1.40% or 2.00%, Mn 0.65% or 0.82% or 0.85%, Cr 0.00% or 0.65%
94Bxx Ni 0.45%, Cr 0.40%, Mo 0.12%, और बोरॉन मिलाया
ES-1 Ni 5%, Cr 2%, Si 1.25%, W 1%, Mn 0.85%, Mo 0.55%, Cu 0.5%, Cr 0.40%, C 0.2%, V 0.1%


भौतिक विज्ञान

सामग्री में कुछ गुण प्राप्त करने के लिए मिश्र धातु तत्व जोड़े जाते हैं। मिश्र धातु तत्व गुणों को बदल सकते हैं और वैयक्तिकृत कर सकते हैं। जैसे- उनका लचीलापन, शक्ति, स्वरूपण और कठोरता।[3] एक दिशानिर्देश के रूप में मिश्र धातु तत्वों को शक्ति या कठोरता बढ़ाने के लिए कम प्रतिशत (5% से कम) में जोड़ा जाता है या बड़े प्रतिशत (5% से अधिक) में संक्षारण प्रतिरोध या अत्यधिक तापमान स्थिरता जैसे विशेष गुणों को प्राप्त करने के लिए जोड़ा जाता है।[2]मेल्ट (निर्माण) से घुलित ऑक्सीजन, गंधक और फास्फोरस को हटाने के लिए इस्पात निर्माण प्रक्रिया के समय मैंगनीज, सिलिकॉन या एल्यूमीनियम मिलाया जाता है। फेराइट में ठोस घोल बनाकर शक्ति बढ़ाने के लिए मैंगनीज, सिलिकॉन, निकल और तांबा मिलाया जाता है। क्रोमियम, वैनेडियम, मोलिब्डेनम और टंगस्टन दूसरे चरण के करबैड बनाकर शक्ति बढ़ाते हैं। निकेल और कॉपर कम मात्रा में संक्षारण प्रतिरोध में सुधार करते हैं। मोलिब्डेनम भंगुरता का विरोध करने में सहायता करता है। ज़िरकोनियम, सेरियम और कैल्शियम समावेशन के आकार को नियंत्रित करके कठोरता को बढ़ाते हैं। सल्फर (मैंगनीज सल्फाइड के रूप में), सीसा, बिस्मथ, सेलेनियम और टेल्यूरियम मशीनीकरण को बढ़ाते हैं।[4] मिश्रित तत्व या तो ठोस समाधान या यौगिक या कार्बाइड बनाते हैं। निकल फेराइट में बहुत घुलनशील है। इसलिए यह यौगिक बनाता है। सामान्यतः Ni3Al एल्युमीनियम फेराइट में घुल जाता है और यौगिक Al2O3 बनाता है और AlN। सिलिकॉन भी बहुत घुलनशील है और सामान्यतः यौगिक SiO2•MxOy.बनाता है। मैंगनीज अधिकतर फेराइट में घुलकर MnS, MnO•SiO2 यौगिक बनाता है। किन्तु (Fe,Mn)3C के रूप में कार्बाइड भी बनाएगा। क्रोमियम स्टील में फेराइट और कार्बाइड चरणों के बीच विभाजन बनाता है, जिससे (Fe,Cr3)C, Cr7C3, और Cr23C6 क्रोमियम बनाने वाले कार्बाइड का प्रकार कार्बन की मात्रा और अन्य प्रकार के मिश्र धातु तत्वों पर निर्भर करता है। टंगस्टन और मोलिब्डेनम कार्बाइड बनाते हैं। यदि पर्याप्त कार्बन और शक्तिशाली कार्बाइड बनाने वाले तत्वों (अर्थात् टाइटेनियम और नाइओबियम) की अनुपस्थिति होती है। तो वे कार्बाइड क्रमशः W2C और Mo2C बनाते हैं। वैनेडियम, टाइटेनियम और नाइओबियम शक्तिशाली कार्बाइड बनाने वाले तत्व हैं। जो क्रमशः वैनेडियम कार्बाइड, टाइटेनियम कार्बाइड और नाइओबियम कार्बाइड बनाते हैं।[5] मिश्रधातु तत्वों का स्टील के यूटेक्टॉइड तापमान पर भी प्रभाव पड़ता है। मैंगनीज और निकल यूटेक्टाइड तापमान को कम करते हैं और ऑस्टेनाइट स्थिरीकरण तत्वों के रूप में जाने जाते हैं। इन तत्वों की पर्याप्त मात्रा के साथ ऑस्टेनिटिक संरचना कमरे के तापमान पर प्राप्त की जा सकती है। कार्बाइड बनाने वाले तत्व यूटेक्टॉइड तापमान बढ़ाते हैं। इन तत्वों को फेराइट स्थिरीकरण तत्वों के रूप में जाना जाता है।[6]

स्टील के लिए प्रमुख मिश्र धातु तत्वों के प्रमुख प्रभाव[7]
तत्व प्रतिशतता बेसिक कार्यक्रम
एल्यूमिनियम 0.95–1.30 नाइट्राइडिंग स्टील्स में मिश्र धातु तत्व
बिस्मथ मशीनीकरण में सुधार करता है।
बोरॉन 0.001–0.003 (बोरॉन स्टील) एक शक्तिशाली कठोरता एजेंट
क्रोमियम 0.5–2 कठोरता बढ़ाता है
4–18 संक्षारण प्रतिरोध बढ़ाता है।
कॉपर 0.1–0.4 जंग प्रतिरोध
लेड उत्तम मशीनीकरण
मैग्नीज 0.25–0.40 भंगुरता को कम करने के लिए सल्फर और फास्फोरस के साथ मिलकर। पिघले हुए स्टील से अतिरिक्त ऑक्सीजन को निकालने में भी सहायता करता है।
>1 परिवर्तन बिंदुओं को कम करके और परिवर्तनों को सुस्त बनाकर कठोरता को बढ़ाता है।
मॉलीवेडनम 0.2–5 स्थिर कार्बाइड; अनाज के विकास को रोकता है। स्टील की कठोरता को बढ़ाता है। इस प्रकार मोलिब्डेनम मशीन टूल्स के काटने वाले भागों और टर्बोजेट इंजनों के टरबाइन ब्लेड बनाने के लिए बहुत ही मूल्यवान मिश्र धातु धातु बनाता है। रॉकेट मोटर्स में भी प्रयोग किया जाता है।
निकिल 2–5 सख्त
12–20 संक्षारण प्रतिरोध बढ़ाता है।
सिलिकॉन 0.2–0.7 कठोरता बढ़ाता है।
2.0 स्प्रिंग स्टील्स
उच्च प्रतिशत चुंबकीय गुणों में सुधार करता है।
सल्फर 0.08–0.15 फ्री-मशीनिंग गुण
टाईटेनियम अक्रिय कणों में कार्बन को ठीक करता है; क्रोमियम स्टील्स में मार्टेंसिटिक कठोरता को कम करता है।
टंगस्टन गलनांक भी बढ़ाता है।
वैनेडियम 0.15 स्थिर कार्बाइड; लचीलापन बनाए रखते हुए शक्ति बढ़ाता है। अनाज संरचना को बढ़ावा देता है। उच्च तापमान पर भंगुरता को बढ़ाता है


यह भी देखें

संदर्भ

  1. Smith, p. 393.
  2. 2.0 2.1 Degarmo, p. 112.
  3. "What Are the Different Types of Steel? | Metal Exponents Blog". Metal Exponents (in English). 2020-08-18. Retrieved 2021-01-29.
  4. Degarmo, p. 113.
  5. Smith, pp. 394–395.
  6. Smith, pp. 395–396.
  7. Degarmo, p. 144.



ग्रन्थसूची

  • Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2007), Materials and Processes in Manufacturing (10th ed.), Wiley, ISBN 978-0-470-05512-0.
  • Groover, M. P., 2007, p. 105-106, Fundamentals of Modern Manufacturing: Materials, Processes and Systems, 3rd ed, John Wiley & Sons, Inc., Hoboken, NJ, ISBN 978-0-471-74485-6.
  • Smith, William F.; Hashemi, Javad (2001), Foundations of Material Science and Engineering (4th ed.), McGraw-Hill, p. 394, ISBN 0-07-295358-6