डी रम कोहोलॉजी: Difference between revisions

From Vigyanwiki
m (9 revisions imported from alpha:डी_रम_कोहोलॉजी)
No edit summary
 
Line 127: Line 127:
* {{springer|title=De Rham cohomology|id=p/d030320}}
* {{springer|title=De Rham cohomology|id=p/d030320}}


{{DEFAULTSORT:De Rham Cohomology}}[[Category: कोहोलॉजी सिद्धांत]] [[Category: विभेदक रूप]]
{{DEFAULTSORT:De Rham Cohomology}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|De Rham Cohomology]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023|De Rham Cohomology]]
[[Category:Created On 24/03/2023]]
[[Category:Lua-based templates|De Rham Cohomology]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|De Rham Cohomology]]
[[Category:Pages with script errors|De Rham Cohomology]]
[[Category:Short description with empty Wikidata description|De Rham Cohomology]]
[[Category:Templates Vigyan Ready|De Rham Cohomology]]
[[Category:Templates that add a tracking category|De Rham Cohomology]]
[[Category:Templates that generate short descriptions|De Rham Cohomology]]
[[Category:Templates using TemplateData|De Rham Cohomology]]
[[Category:कोहोलॉजी सिद्धांत|De Rham Cohomology]]
[[Category:विभेदक रूप|De Rham Cohomology]]

Latest revision as of 13:20, 9 April 2023

सदिश क्षेत्र पंक्चर किए गए विमान पर एक विभेदक रूप से संबंधित है जो बंद है किन्तु सटीक नहीं है, यह दर्शाता है कि इस स्थान का डे रम कोहोलॉजी गैर-तुच्छ है।

गणित विषय में डी कोहोलॉजी (जॉर्ज डी रम के नाम पर) बीजगणितीय टोपोलॉजी और विभेदक टोपोलॉजी दोनों से संबंधित ऐसा उपकरण है, जो विशेष रूप से संगणना करने और कोहोलॉजी वर्ग के लिए ठोस प्रतिनिधित्व के लिए अनुकूल रूप में मुख्यतः कई गुना होने के कारण इसमें पारंपरिक टोपोलॉजिकल जानकारी व्यक्त करने में सक्षम माना जाता हैं। इस प्रकार यह निर्धारित गुणों के साथ विभेदक रूपों के अस्तित्व पर आधारित कोहोलॉजी सिद्धांत को प्रकट करता है।

किसी भी स्मूथ वस्तु के लिए कई गुना होने पर यह प्रत्येक बंद और सही अंतर के रूप के कारण बंद हो जाते हैं, किन्तु संयोजन होने के कारण इसका प्रभाव इस स्थिति मे विफल हो सकती है। इस प्रकार अधिकांशतः हम कहते हैं कि यह असफल होल इन अंकों की गणना के संभावित अस्तित्व से संबंधित स्मूथ वस्तु के लिए कई गुना होने पर इसमें प्राप्त होने वाले छिद्र और डी रम कोहोलॉजी समूह में स्मूथ मैनिफोल्ड के टोपोलॉजिकल इनवेरिएंट का समुच्चय सम्मिलित होता है जो इस संबंध को सटीक रूप से निर्धारित करता है।[1]

रूपों की अवधारणा पर एकीकरण विभेदक टोपोलॉजी, ज्यामिति और भौतिकी में मूलभूत महत्व का है, और 'कोहोमोलॉजी' के सबसे महत्वपूर्ण उदाहरणों में से है, जिसका नाम 'डी राम कोहोलॉजी' है, जो ठीक से इसकी माप करता है तथा किस सीमा तक कैलकुलस का मौलिक प्रमेय उच्च आयामों और सामान्य कई गुना में विफल रहता है।
— टेरेंस ताओ, विभेदक रूप और एकीकरण[2]

परिभाषा

डी रम कॉम्प्लेक्स कुछ स्मूथ मैनिफोल्ड पर विभेदक रूप का कोचेन कॉम्प्लेक्स M, अंतर के रूप में बाहरी व्युत्पन्न के साथ प्रकट करता हैं जो इस प्रकार हैं:

जहाँ Ω0(M) स्मूथ का स्थान है तथा इसी के साथ M, Ω1(M) का स्थान है उदाहरण के लिए इसका पहला रूप उक्त उदाहरण हैं। ऐसे प्रपत्र जो बाहरी डेरिवेटिव के अंतर्गत अन्य रूपों की छवि प्रकट करती हैं, साथ ही Ω0(M) स्थिरांक भी 0 में कार्य करता है, यथार्थ और रूप कहलाते हैं जिनकी बाह्य व्युत्पत्ति होती है इसके लिए 0 को बंद प्रारूप कहा जाता है। इस प्रकार बंद और सही अंतर को प्राप्त करने के लिए चित्र में देखें); इसके संबंध में d2 = 0 मान के अनुसार इसका सही मान फॉर्म बंद पर निर्भर करता हैं।

इसके विपरीत, बंद रूप आवश्यक रूप से सटीक नहीं होते हैं। इस व्याख्यात्मक विश्लेषम की स्थिति कई गुना होने के रूप में वृत्त को प्रकट करती है, और 1 मुख्यतः इसके केंद्र में एक संदर्भ बिंदु से कोण (बंद और सटीक अंतर रूपों में वर्णित) के व्युत्पन्न के अनुरूप, सामान्यतः लिखा जाता है। इस प्रकार θ को कोई कार्य नहीं है किन्तु पूरे सर्कल पर इसे इस प्रकार परिभाषित किया गया है जिसमें को इसका व्युत्पन्न माना जाता हैं, इस प्रकार वृद्धि 2π धनात्मक दिशा में सर्कल के चारों ओर जाने से एक बहुविकल्पीय कार्य जिसका तात्पर्य θ से होता है, इस प्रकार यह मुख्य रूप से सर्कल के एक बिंदु को हटाने से यह कम हो जाता है, साथ ही कई गुना की टोपोलॉजी को परिवर्तित कर देता हैं।

यह प्रमुख उदाहरण है कि जब सभी बंद रूप सही माने जाते हैं, इस स्थिति में अंतर्निहित स्थान किसी बिंदु के लिए अनुबंधित रहता है, अर्थात यह केवल संयोजन के स्थान नो-होल की स्थिति को प्रकट करता है। इस स्थितियों में बाहरी व्युत्पन्न बंद रूपों तक सीमित स्थानीय व्युत्क्रम है जिसे बंद और सही अंतर के रूप में जाना जाता हैं।[3][4] चूंकि यह भी शून्य है,[3] इस प्रकार यह व्युत्क्रम तीरों के साथ दोहरी श्रृंखला क्षेत्र बनाता है,[5] जो डी राम कॉम्प्लेक्स की तुलना में पोंकारे लेम्मा में वर्णित स्थिति के लिए उपयोग किया जाता है।

डी राम कोहोलॉजी के पीछे का विचार बंद रूपों के समतुल्य वर्गों को कई गुना परिभाषित करना है। किसी दो बंद रूपों को α, β ∈ Ωk(M) में वर्गीकृत करता है कोहोमोलॉगस के रूप में यदि वे सही रूप से भिन्न होते हैं, अर्थात इस स्थिति में αβ सही मान प्रकट करते है। इस प्रकार यह वर्गीकरण बंद रूपों के स्थान पर एक तुल्यता संबंध Ωk(M) को प्रेरित करता है, इस प्रकार इसे k-वाँ दे राम कोहोलॉजी समूह द्वारा परिभाषित किया जाता हैं इस प्रकार तुल्यता वर्गों का समुच्चय होने के लिए, अर्थात् बंद इस प्रकार रूपों के समुच्चय Ωk(M) के प्रारूपों को सही रूपों में प्रकट करता हैं।

ध्यान दें कि, किसी भी कई गुना के लिए M की रचना m डिस्कनेक्ट किए गए घटक, जिनमें से प्रत्येक जुड़ा हुआ स्थान है, हमारे पास उनमें से कुछ हैं जो इस प्रकार हैं।

यह इस तथ्य से अनुसरण करता है कि कोई भी सुचारू कार्य चालू है, इस प्रकार M शून्य व्युत्पन्न के साथ हर क्षेत्र अलग-अलग जुड़े हुए घटकों जैसे M में से प्रत्येक इस स्थिति में स्थिर रहते है।

डी राम कोहोलॉजी की गणना

शून्य कोहोलॉजी और मेयर-विएटोरिस अनुक्रम के बारे में उपरोक्त तथ्य का उपयोग करते हुए अधिकांशतः कई गुना सामान्य डी रम कॉहोमोलॉजी मिल सकती है। इस प्रकार अन्य उपयोगी तथ्य इस प्रकार है कि डी राम कोहोलॉजी होमोटॉपी इनवेरिएंट है। जबकि संगणना नहीं दी गई है, कुछ सामान्य सांस्थितिकीय वस्तुओं के लिए संगणित डी रम कोहोलॉजी निम्नलिखित हैं:

n}-क्षेत्र

एन-क्षेत्र के लिए या n-वृत्त, , और साथ ही खुले अंतराल के उत्पाद के साथ मिलकर, हमारे पास निम्नलिखित हैं। इस प्रकार n > 0, m ≥ 0, और I खुले वास्तविक अंतराल को प्रकट करता हैं।

n}-टोरस

वें टोरस कार्टेशियन उत्पाद है: इसी प्रकार का मान होने पर हम यहाँ इस समीकरण से उक्त मान प्राप्त किए जा सकते हैं

हम अलग-अलग रूपों का उपयोग करके सीधे टोरस के डे राम कोहोलॉजी के लिए स्पष्ट जनरेटर भी पा सकते हैं। इस प्रकार भागफल कई गुना दिया गया है और विभेदक रूप के द्वारा हम यह कह सकते हैं कि के लिए -अपर्वतनीय है। इस प्रकार यह यदि किसी भी भिन्नता से प्रेरित होता है तब इस स्थिति में , अपने पास . द्वारा प्रकट होता हैं। इस प्रकार विशेष रूप से यहाँ पर किसी भी रूप का पुलबैक है तथा -अपरिवर्तनीय हैं। इसके अतिरिक्त, पुलबैक इंजेक्टिव मोर्फिज्म है। इन स्थितियों में विभेदक रूप के समान हैं तथा -अपरिवर्तनीय के पश्चात के समान हैं। किन्तु यहाँ ध्यान दें कि के लिए , -प्रपत्र अपरिवर्तनीय नहीं है। इस प्रकार इंजेक्शन के साथ इसका तात्पर्य है

चूंकि टोरस की कोहोलॉजी रिंग के द्वारा उत्पन्न होती है, इन रूपों के बाहरी उत्पादों को लेने से टोरस के डी रम कोहोलॉजी के लिए सभी स्पष्ट प्रतिनिधि (गणित) मिलते हैं।

पंचर यूक्लिडियन स्पेस

छिद्रित यूक्लिडियन स्थान सरल है जिसे मूल के साथ हटा दिया गया हैं।

मोबियस पट्टी

हम इस तथ्य से निष्कर्ष निकाल सकते हैं कि मोबियस पट्टी M, विरूपण को वापस ले लिया जा सकता है, 1-क्षेत्र अर्थात वास्तविक इकाई वृत्त के लिए:

डि राम की प्रमेय

सामान्यीकृत स्टोक्स प्रमेय या स्टोक्स प्रमेय मुख्यतः डी रम कोहोलॉजी और चेन (बीजगणितीय टोपोलॉजी) के समरूपता (गणित) के बीच द्वंद्व (गणित) की अभिव्यक्ति को प्रकट करती है। इसमें कहा गया है कि प्राप्त होने वाले अंतर रूपों और संयोजन की जोड़ी हैं, इसके एकीकरण के माध्यम से डी रम कोहोलॉजी से समूह समरूपता प्रदान करती है, इस कोहोलॉजी के लिए 1931 में जार्ज डी राम द्वारा सिद्ध किया गया जिसमें डी राम की प्रमेय के अनुसार बताया गया है कि सहजता से यह कई गुना होने के लिए M के द्वारा मानचित्र को वास्तविकता में तुल्याकारिता से प्रकट करता हैं।

इसके अधिक सही रूप के लिए उक्त मानचित्र पर विचार करें

निम्नानुसार परिभाषित किया गया है: किसी के लिए, I(ω) के तत्व होता है, जो निम्नानुसार कार्य करता है:

डी राम के प्रमेय का दावा है कि यह डी रम कोहोमोलॉजी और एकवचन कोहोलॉजी के बीच समरूपता है।

बाहरी उत्पाद इन समूहों के समूहों के प्रत्यक्ष योग को रिंग (गणित) संरचना के साथ संपन्न करता है। प्रमेय का एक और परिणाम यह है कि दो कोहोलॉजी रिंग आइसोमोर्फिक वर्गीकृत रिंग के रूप में हैं, जहां एकवचन कोहोलॉजी पर अनुरूप उत्पाद कप उत्पाद है।

शीफ-सैद्धांतिक डी राम समरूपता

किसी भी चिकने मैनिफोल्ड एम के लिए, मान लीजिए एबेलियन समूह से जुड़े एम पर निरंतर शीफ बनते हैं, इस प्रकार दूसरे शब्दों में, एम पर स्थानीय रूप से निरंतर वास्तविक-मूल्यवान कार्यों का समूह है। फिर हमारे पास एक प्राकृतिक समरूपता है

डी रम कोहोलॉजी और शेफ कोहोलॉजी के बीच . (ध्यान दें कि इससे पता चलता है कि डे रम कोहोलॉजी की गणना सीच कोहोलॉजी के संदर्भ में भी की जा सकती है; वास्तव में, चूंकि हर स्मूथ मैनिफोल्ड पैराकॉम्पैक्ट हौसडॉर्फ है, हमारे पास यह है कि शीफ कोहोलॉजी सीच कोहोलॉजी के लिए आइसोमोर्फिक है किसी भी अच्छे कवर के लिए बीजगणितीय टोपोलॉजी एम के रूप में किया जाता हैं।

प्रमाण

मानक प्रमाण यह दिखाते हुए आगे बढ़ता है कि डे रहम क्षेत्र, जब शीशों के एक क्षेत्र के रूप में देखा जाता है, का चक्रीय संकल्प है, इसके अधिक विस्तार से, मान लीजिए m, M का आयाम है और मान लीजिए के शीफ (गणित) को निरूपित करें एम पर फॉर्म (इसके साथ का वलय एम पर कार्य करता है)। पॉइंकेयर लेम्मा द्वारा, ढेरों का निम्नलिखित क्रम सटीक है (शेवों की एबेलियन श्रेणी में):

यह लंबा सटीक क्रम अब ढेरों के छोटे सटीक अनुक्रमों में टूट जाता है

जहाँ सटीकता से हमारे पास समरूपताएँ हैं, यहाँ पर सबके लिए k का मान इनमें से प्रत्येक कोहोलॉजी में एक लंबे सटीक अनुक्रम को प्रेरित करता है। इस वलय के बाद से का एम पर कार्य एकता के विभाजन को स्वीकार करते हैं, कोई भी -मॉड्यूल महीन शीफ है, इसमें विशेष रूप से, ढेरी के लिए यह सही हैं। इसलिए, शीफ कोहोलॉजी समूह के लिए पर विलुप्त हो जाता हैं, चूँकि पैराकॉम्पैक्ट स्थानों पर सभी महीन ढेर एसाइक्लिक होते हैं। जो लंबे सटीक कोहोलॉजी मान को अंततः आइसोमोर्फिज्म की श्रृंखला में अलग करती है। श्रृंखला के एक छोर पर शीफ कोहोलॉजी द्वारा प्रकट होती है और दूसरी तरफ डी रम कोहोलॉजी है।

संबंधित विचार

द रम कोहोलॉजी ने कई गणितीय विचारों को प्रेरित किया है, जिसमें डोलबौल्ट कोहोलॉजी, हॉज थ्योरी और अतियाह-सिंगर इंडेक्स प्रमेय सम्मिलित हैं। चूंकि, अधिक मौलिक संदर्भों में भी, प्रमेय ने कई विकासों को प्रेरित किया है। सबसे पहले, हॉज सिद्धांत यह प्रमाणित करता है कि कोहोलॉजी के बीच समरूपता को प्रकट करता है जिसमें हार्मोनिक रूप होते हैं और डे रम कोहोलॉजी बंद रूपों से मिलकर प्रारूपों सटीक रूप होते हैं। यह हार्मोनिक रूपों और हॉज प्रमेय की उपयुक्त परिभाषा पर निर्भर करता है। अधिक जानकारी के लिए हॉज सिद्धांत देखें।

हार्मोनिक रूप

यदि M कॉम्पैक्ट क्षेत्र रीमैनियन कई गुना है, फिर प्रत्येक समकक्ष वर्ग बिल्कुल हार्मोनिक रूप होता है। हर सदस्य किसी दिए गए तुल्यता वर्ग के बंद रूपों को इस रूप में लिखा जा सकता है

जहाँ सटीक है और हार्मोनिक है: .

कॉम्पैक्ट कनेक्टेड रीमैनियन मैनिफोल्ड पर कोई भी हार्मोनिक फ़ंक्शन स्थिर है। इस प्रकार, इस विशेष प्रतिनिधि तत्व को कई गुना पर समतुल्य रूप से समतुल्य रूपों का एक चरम (न्यूनतम) समझा जा सकता है। उदाहरण के लिए, ए पर 2-टोरस्र्स , कोई स्थिरांक की कल्पना कर सकता है, 1-एक रूप जहां सभी बालों को एक ही दिशा में बड़े करीने से कंघी की जाती है (और सभी बालों की लंबाई समान होती है)। इस स्थितियों में, दो कोहोलॉजिकल रूप से अलग-अलग कंघी हैं; अन्य सभी रैखिक संयोजन हैं। विशेष रूप से, इसका अर्थ है कि a की पहली बेट्टी संख्या 2-टोरस दो होते हैं। अधिक सामान्यतः -आयामी टोरस के विभिन्न संयोजनों पर विचार कर सकते हैं, जो मुख्य रूप से - टोरस पर बनता है। इस प्रकार कों लिये जाने पर ऐसे संयोजन के समान लिए जाते हैं जिनका उपयोग आधार वैक्टर बनाने के लिए किया जा सकता है, इस प्रकार डी राम कोहोलॉजी समूह के लिए -थ बेट्टी संख्या -टोरस को लेने के लिए इस प्रकार है .

अधिक सही उत्तर के लिए यह अंतर कई गुना करने के लिए M का मान इसे सहायक रिमेंनियन मीट्रिक से लैस कर सकता है। फिर लाप्लासियन द्वारा परिभाषित किया गया है

साथ बाहरी व्युत्पन्न और सहविभेदक या लाप्लासियन सजातीय (श्रेणीबद्ध बीजगणित में) रेखीय अंतर ऑपरेटर को रूप में उपयोग किया जाता है जो अंतर रूपों के बाहरी बीजगणित पर कार्य करता है: हम डिग्री के प्रत्येक घटक पर इसकी क्रिया को के रूप में अलग से देख सकते हैं।

अगर कॉम्पैक्ट स्पेस और उन्मुख है, डिफरेंशियल फॉर्म के स्पेस पर अभिनय करने वाले लाप्लासियन के कर्नेल (बीजगणित) का आयाम या k-रूप तब बराबर (हॉज सिद्धांत द्वारा) डी रम कोहोलॉजी समूह की डिग्री के बराबर है : लाप्लासियन बंद रूप (कैलकुलस) के प्रत्येक कोहोलॉजी वर्ग में एक अद्वितीय हार्मोनिक रूप चुनता है। विशेष रूप से, सभी हार्मोनिक का स्थान -फॉर्म चालू है के लिए आइसोमोर्फिक है, ऐसे प्रत्येक स्थान का आयाम परिमित है, और इसके द्वारा दिया गया -वीं बेट्टी संख्या को प्रकट करता हैं।

हॉज अपघटन

मान लीजिए कॉम्पैक्ट स्पेस उन्मुख कई गुना रीमैनियन मैनिफोल्ड है। इस प्रक्रिया में हॉज अपघटन यह प्रदर्शित करता है कि कोई भी -फॉर्म ऑन विशिष्ट रूप से तीन के योग में विभाजित L2 होता है जिसका मुख्य अवयव इस प्रकार हैं:

जहाँ सटीक है, सह-सटीक है, और हार्मोनिक है।

यह प्रदर्शित करता हैं कि सह-बंद है तथा यदि और सह-सटीक अगर किसी रूप के लिए का मान पर हार्मोनिक है। इस प्रकार यदि लाप्लासियन शून्य है, तब यह इस बात पर ध्यान देने के बाद होता है कि सटीक और सह-सटीक रूप ऑर्थोगोनल हैं; ऑर्थोगोनल पूरक में ऐसे रूप होते हैं जो बंद और सह-बंद दोनों होते हैं अर्ताथ हार्मोनिक प्रारूप को प्रकट करता हैं। यहाँ रूढ़िवादिता को इसके संबंध L2 आंतरिक उत्पाद चालू में परिभाषित किया गया है :

सोबोलेव रिक्त स्थान या वितरण (गणित) के उपयोग से, अपघटन को उदाहरण के लिए पूर्ण रीमैनियन मैनिफोल्ड तक बढ़ाया जा सकता है।[6]

यह भी देखें

उद्धरण

  1. Lee 2013, p. 440.
  2. Tao, Terence (2007) "Differential Forms and Integration" Princeton Companion to Mathematics 2008. Timothy Gowers, ed.
  3. 3.0 3.1 Edelen, Dominic G. B. (2011). एप्लाइड बाहरी कलन (Revised ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43871-9. OCLC 56347718.
  4. Warner, Frank W. (1983). डिफरेंशियल मैनिफोल्ड्स और लाइ ग्रुप्स की नींव. New York: Springer. ISBN 0-387-90894-3. OCLC 9683855.
  5. Kycia, Radosław Antoni (2020). "पॉइंकेयर लेम्मा, एंटीएक्सैक्ट फॉर्म और फर्मियोनिक क्वांटम हार्मोनिक ऑसिलेटर". Results in Mathematics (in English). 75 (3): 122. doi:10.1007/s00025-020-01247-8. ISSN 1422-6383. S2CID 199472766.
  6. Jean-Pierre Demailly, Complex Analytic and Differential Geometry Ch VIII, § 3.

संदर्भ

बाहरी संबंध