इलेक्ट्रान बन्धुता: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Energy released on formation of anions}} इलेक्ट्रॉन आत्मीयता (''ई''<sub>ea</sub>) एक परमाणु या ...")
 
No edit summary
Line 11: Line 11:


इलेक्ट्रॉन समानता की एक सूची का उपयोग रॉबर्ट एस मुल्लिकेन द्वारा इलेक्ट्रॉनों के औसत के बराबर परमाणुओं के लिए [[वैद्युतीयऋणात्मकता]] स्केल विकसित करने के लिए किया गया था।
इलेक्ट्रॉन समानता की एक सूची का उपयोग रॉबर्ट एस मुल्लिकेन द्वारा इलेक्ट्रॉनों के औसत के बराबर परमाणुओं के लिए [[वैद्युतीयऋणात्मकता]] स्केल विकसित करने के लिए किया गया था।
आत्मीयता और [[आयनीकरण क्षमता]]।<ref>Robert S. Mulliken, [[Journal of Chemical Physics]], '''1934''', ''2'', 782.</ref><ref>Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty, University Science Books, 2006, {{ISBN|978-1-891389-31-3}}</ref> इलेक्ट्रॉन बंधुता का उपयोग करने वाली अन्य सैद्धांतिक अवधारणाओं में इलेक्ट्रॉनिक रासायनिक क्षमता और [[रासायनिक कठोरता]] शामिल हैं। एक अन्य उदाहरण, एक अणु या परमाणु जिसमें दूसरे की तुलना में इलेक्ट्रॉन संबंध का अधिक सकारात्मक मूल्य होता है, उसे अक्सर [[इलेक्ट्रॉन स्वीकर्ता]] और कम सकारात्मक [[इलेक्ट्रॉन दाता]] कहा जाता है। साथ में वे [[इंटरवलेंस चार्ज ट्रांसफर]] | चार्ज-ट्रांसफर प्रतिक्रियाओं से गुजर सकते हैं।
आत्मीयता और [[आयनीकरण क्षमता]]।<ref>Robert S. Mulliken, [[Journal of Chemical Physics]], '''1934''', ''2'', 782.</ref><ref>Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty, University Science Books, 2006, {{ISBN|978-1-891389-31-3}}</ref> इलेक्ट्रॉन बंधुता का उपयोग करने वाली अन्य सैद्धांतिक अवधारणाओं में इलेक्ट्रॉनिक रासायनिक क्षमता और [[रासायनिक कठोरता]] सम्मलित  हैं। एक अन्य उदाहरण, एक अणु या परमाणु जिसमें दूसरे की तुलना में इलेक्ट्रॉन संबंध का अधिक सकारात्मक मूल्य होता है, उसे अधिकांशतः  [[इलेक्ट्रॉन स्वीकर्ता]] और कम सकारात्मक [[इलेक्ट्रॉन दाता]] कहा जाता है। साथ में वे [[इंटरवलेंस चार्ज ट्रांसफर]] | चार्ज-ट्रांसफर प्रतिक्रियाओं से गुजर सकते हैं।


=== साइन कन्वेंशन ===
=== साइन कन्वेंशन ===
इलेक्ट्रॉन बंधुता का ठीक से उपयोग करने के लिए, साइन का ट्रैक रखना आवश्यक है। किसी भी प्रतिक्रिया के लिए जो ऊर्जा जारी करती है, [[कुल ऊर्जा]] में ΔE परिवर्तन का नकारात्मक मान होता है और प्रतिक्रिया को [[उष्माक्षेपी प्रतिक्रिया]] कहा जाता है। लगभग सभी गैर-महान गैस परमाणुओं के लिए इलेक्ट्रॉन कैप्चर में ऊर्जा की रिहाई शामिल है<ref>Chemical Principles the Quest for Insight, Peter Atkins and Loretta Jones, Freeman, New York, 2010 {{ISBN|978-1-4292-1955-6}}</ref> और इस प्रकार एक्ज़ोथिर्मिक हैं। सकारात्मक मान जो ई की तालिकाओं में सूचीबद्ध हैं<sub>ea</sub> राशियाँ या परिमाण हैं। यह परिभाषा के भीतर जारी किया गया शब्द है जो ऊर्जा जारी करता है जो ΔE को नकारात्मक संकेत प्रदान करता है। ई को भूलने से भ्रम पैदा होता है<sub>ea</sub> ऊर्जा में परिवर्तन के लिए, ΔE, जिस स्थिति में सारणियों में सूचीबद्ध धनात्मक मान एंडो-नॉट एक्सो-थर्मिक प्रक्रिया के लिए होंगे। दोनों के बीच संबंध ई है<sub>ea</sub> = −ΔE(संलग्न)।
इलेक्ट्रॉन बंधुता का ठीक से उपयोग करने के लिए, साइन का ट्रैक रखना आवश्यक है। किसी भी प्रतिक्रिया के लिए जो ऊर्जा जारी करती है, [[कुल ऊर्जा]] में ΔE परिवर्तन का नकारात्मक मान होता है और प्रतिक्रिया को [[उष्माक्षेपी प्रतिक्रिया]] कहा जाता है। लगभग सभी गैर-महान गैस परमाणुओं के लिए इलेक्ट्रॉन कैप्चर में ऊर्जा की रिहाई सम्मलित  है<ref>Chemical Principles the Quest for Insight, Peter Atkins and Loretta Jones, Freeman, New York, 2010 {{ISBN|978-1-4292-1955-6}}</ref> और इस प्रकार एक्ज़ोथिर्मिक हैं। सकारात्मक मान जो ई की तालिकाओं में सूचीबद्ध हैं<sub>ea</sub> राशियाँ या परिमाण हैं। यह परिभाषा के भीतर जारी किया गया शब्द है जो ऊर्जा जारी करता है जो ΔE को नकारात्मक संकेत प्रदान करता है। ई को भूलने से भ्रम पैदा होता है<sub>ea</sub> ऊर्जा में परिवर्तन के लिए, ΔE, जिस स्थिति में सारणियों में सूचीबद्ध धनात्मक मान एंडो-नॉट एक्सो-थर्मिक प्रक्रिया के लिए होंगे। दोनों के बीच संबंध ई है<sub>ea</sub> = −ΔE(संलग्न)।


हालाँकि, यदि मान E को सौंपा गया है<sub>ea</sub> ऋणात्मक है, ऋणात्मक चिन्ह का तात्पर्य दिशा के उलट होने से है, और एक इलेक्ट्रॉन को संलग्न करने के लिए ऊर्जा की आवश्यकता होती है। इस मामले में, इलेक्ट्रॉन कैप्चर एक [[ एन्दोठेर्मिक ]] प्रक्रिया है और संबंध, ई<sub>ea</sub> = −ΔE(संलग्न) अभी भी मान्य है। ऋणात्मक मान आम तौर पर एक दूसरे इलेक्ट्रॉन पर कब्जा करने के लिए उत्पन्न होते हैं, लेकिन नाइट्रोजन परमाणु के लिए भी।
हालाँकि, यदि मान E को सौंपा गया है<sub>ea</sub> ऋणात्मक है, ऋणात्मक चिन्ह का तात्पर्य दिशा के उलट होने से है, और एक इलेक्ट्रॉन को संलग्न करने के लिए ऊर्जा की आवश्यकता होती है। इस मामले में, इलेक्ट्रॉन कैप्चर एक [[ एन्दोठेर्मिक ]] प्रक्रिया है और संबंध, ई<sub>ea</sub> = −ΔE(संलग्न) अभी भी मान्य है। ऋणात्मक मान सामान्यतः  एक दूसरे इलेक्ट्रॉन पर कब्जा करने के लिए उत्पन्न होते हैं, लेकिन नाइट्रोजन परमाणु के लिए भी।


ई की गणना के लिए सामान्य अभिव्यक्ति<sub>ea</sub> जब एक इलेक्ट्रॉन जुड़ा होता है
ई की गणना के लिए सामान्य अभिव्यक्ति<sub>ea</sub> जब एक इलेक्ट्रॉन जुड़ा होता है
Line 24: Line 24:
यह व्यंजक ΔX = X(अंतिम) − X(प्रारंभिक) परंपरा का पालन करता है क्योंकि −ΔE = −(E(अंतिम) − E(प्रारंभिक)) = E(प्रारंभिक) − E(अंतिम)।
यह व्यंजक ΔX = X(अंतिम) − X(प्रारंभिक) परंपरा का पालन करता है क्योंकि −ΔE = −(E(अंतिम) − E(प्रारंभिक)) = E(प्रारंभिक) − E(अंतिम)।


समान रूप से, इलेक्ट्रॉन आत्मीयता को परमाणु से एक इलेक्ट्रॉन को अलग करने के लिए आवश्यक ऊर्जा की मात्रा के रूप में भी परिभाषित किया जा सकता है, जबकि यह एक विद्युत आवेश रखता है | एकल-अतिरिक्त-इलेक्ट्रॉन इस प्रकार परमाणु को एक [[आयन]] बनाता है,<ref name="Compendiumof">{{GoldBookRef|title=Electron affinity|file=E01977}}</ref> यानी प्रक्रिया के लिए ऊर्जा परिवर्तन
समान रूप से, इलेक्ट्रॉन आत्मीयता को परमाणु से एक इलेक्ट्रॉन को अलग करने के लिए आवश्यक ऊर्जा की मात्रा के रूप में भी परिभाषित किया जा सकता है, जबकि यह एक विद्युत आवेश रखता है | एकल-अतिरिक्त-इलेक्ट्रॉन इस प्रकार परमाणु को एक [[आयन]] बनाता है,<ref name="Compendiumof">{{GoldBookRef|title=Electron affinity|file=E01977}}</ref> अर्थात  प्रक्रिया के लिए ऊर्जा परिवर्तन


:एक्स<sup>−</sup> → एक्स + ई<sup>-</सुप>
:एक्स<sup>−</sup> → एक्स + ई<sup>-</सुप>
Line 35: Line 35:
[[File:Electron affinity of the elements.svg|thumb|200px|इलेक्ट्रॉन बंधुता (ई<sub>ea</sub>) बनाम परमाणु संख्या (जेड)। पिछले अनुभाग में हस्ताक्षर परिपाटी की व्याख्या पर ध्यान दें।]]
[[File:Electron affinity of the elements.svg|thumb|200px|इलेक्ट्रॉन बंधुता (ई<sub>ea</sub>) बनाम परमाणु संख्या (जेड)। पिछले अनुभाग में हस्ताक्षर परिपाटी की व्याख्या पर ध्यान दें।]]
{{Main|Electron affinity (data page)}}
{{Main|Electron affinity (data page)}}
हालांकि ई<sub>ea</sub> आवर्त सारणी में बहुत भिन्न होता है, कुछ पैटर्न उभर कर आते हैं। आम तौर पर, अधातुओं में अधिक धनात्मक E होता है<sub>ea</sub> [[धातु]]ओं की तुलना में। ऐसे परमाणु जिनके आयन तटस्थ परमाणुओं की तुलना में अधिक स्थिर होते हैं, उनका E अधिक होता है<sub>ea</sub>. [[क्लोरीन]] सबसे अधिक मजबूती से अतिरिक्त इलेक्ट्रॉनों को आकर्षित करता है; [[नियोन]] सबसे कमजोर रूप से एक अतिरिक्त इलेक्ट्रॉन को आकर्षित करता है। नोबल गैसों की इलेक्ट्रॉन बंधुता को निर्णायक रूप से नहीं मापा गया है, इसलिए उनका थोड़ा नकारात्मक मान हो सकता है या नहीं भी हो सकता है।
चूंकि  ई<sub>ea</sub> आवर्त सारणी में बहुत भिन्न होता है, कुछ पैटर्न उभर कर आते हैं। सामान्यतः , अधातुओं में अधिक धनात्मक E होता है<sub>ea</sub> [[धातु]]ओं की तुलना में। ऐसे परमाणु जिनके आयन तटस्थ परमाणुओं की तुलना में अधिक स्थिर होते हैं, उनका E अधिक होता है<sub>ea</sub>. [[क्लोरीन]] सबसे अधिक मजबूती से अतिरिक्त इलेक्ट्रॉनों को आकर्षित करता है; [[नियोन]] सबसे कमजोर रूप से एक अतिरिक्त इलेक्ट्रॉन को आकर्षित करता है। नोबल गैसों की इलेक्ट्रॉन बंधुता को निर्णायक रूप से नहीं मापा गया है, इसलिए उनका थोड़ा नकारात्मक मान हो सकता है या नहीं भी हो सकता है।


इ<sub>ea</sub> आम तौर पर समूह 18 तक पहुँचने से पहले आवर्त सारणी में एक अवधि (पंक्ति) में वृद्धि होती है। यह परमाणु के संयोजी खोल के भरने के कारण होता है; एक [[हलोजन]] परमाणु एक इलेक्ट्रॉन प्राप्त करने पर [[समूह 1 तत्व]] के परमाणु की तुलना में अधिक ऊर्जा जारी करता है क्योंकि यह एक भरा हुआ [[इलेक्ट्रॉन कवच]] प्राप्त करता है और इसलिए अधिक स्थिर होता है। समूह 18 में, वैलेंस शेल भरा हुआ है, जिसका अर्थ है कि जोड़े गए इलेक्ट्रॉन अस्थिर हैं, बहुत जल्दी बाहर निकलने की प्रवृत्ति रखते हैं।
इ<sub>ea</sub> सामान्यतः  समूह 18 तक पहुँचने से पहले आवर्त सारणी में एक अवधि (पंक्ति) में वृद्धि होती है। यह परमाणु के संयोजी खोल के भरने के कारण होता है; एक [[हलोजन]] परमाणु एक इलेक्ट्रॉन प्राप्त करने पर [[समूह 1 तत्व]] के परमाणु की तुलना में अधिक ऊर्जा जारी करता है क्योंकि यह एक भरा हुआ [[इलेक्ट्रॉन कवच]] प्राप्त करता है और इसलिए अधिक स्थिर होता है। समूह 18 में, वैलेंस शेल भरा हुआ है, जिसका अर्थ है कि जोड़े गए इलेक्ट्रॉन अस्थिर हैं, बहुत जल्दी बाहर निकलने की प्रवृत्ति रखते हैं।


विरोधाभासी रूप से, ई<sub>ea</sub> आवर्त सारणी के अधिकांश स्तंभों में नीचे जाने पर घटता नहीं है। उदाहरण के लिए, ई<sub>ea</sub> वास्तव में [[समूह 2 तत्व]] डेटा के लिए कॉलम अवरोही पर लगातार बढ़ता है। इस प्रकार, इलेक्ट्रॉन आत्मीयता वैद्युतीयऋणात्मकता के समान बाएँ-दाएँ प्रवृत्ति का अनुसरण करती है, लेकिन ऊपर-नीचे की प्रवृत्ति का नहीं।
विरोधाभासी रूप से, ई<sub>ea</sub> आवर्त सारणी के अधिकांश स्तंभों में नीचे जाने पर घटता नहीं है। उदाहरण के लिए, ई<sub>ea</sub> वास्तव में [[समूह 2 तत्व]] डेटा के लिए कॉलम अवरोही पर लगातार बढ़ता है। इस प्रकार, इलेक्ट्रॉन आत्मीयता वैद्युतीयऋणात्मकता के समान बाएँ-दाएँ प्रवृत्ति का अनुसरण करती है, लेकिन ऊपर-नीचे की प्रवृत्ति का नहीं।
Line 52: Line 52:
== इलेक्ट्रॉन बंधुता जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है ==
== इलेक्ट्रॉन बंधुता जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है ==


[[File:Semiconductor vacuum junction.svg|thumb|सेमीकंडक्टर-वैक्यूम इंटरफेस का [[बैंड आरेख]] इलेक्ट्रॉन एफिनिटी ई दिखा रहा है<sub>EA</sub>, निकट-सतह निर्वात ऊर्जा E के बीच अंतर के रूप में परिभाषित किया गया है<sub>vac</sub>, और निकट-सतह [[चालन बैंड]] एज ई<sub>C</sub>. यह भी दिखाया गया है: [[फर्मी स्तर]] ई<sub>F</sub>, [[संयोजी बंध]] एज ई<sub>V</sub>, कार्य समारोह डब्ल्यू।]]ठोस अवस्था भौतिकी के क्षेत्र में, इलेक्ट्रॉन बंधुता को रसायन विज्ञान और परमाणु भौतिकी की तुलना में अलग तरह से परिभाषित किया जाता है। सेमीकंडक्टर-वैक्यूम इंटरफ़ेस (अर्थात सेमीकंडक्टर की सतह) के लिए, इलेक्ट्रॉन एफ़िनिटी, जिसे आमतौर पर E द्वारा दर्शाया जाता है<sub>EA</sub> या χ, अर्धचालक के ठीक बाहर निर्वात से एक इलेक्ट्रॉन को चालन बैंड के नीचे अर्धचालक के अंदर ले जाने से प्राप्त ऊर्जा के रूप में परिभाषित किया गया है:<ref>{{cite web|first = Raymond T. |last =  Tung | url=http://academic.brooklyn.cuny.edu/physics/tung/Schottky/surface.htm|title=सेमीकंडक्टर की मुक्त सतहें|work= Brooklyn College}}</ref>
[[File:Semiconductor vacuum junction.svg|thumb|सेमीकंडक्टर-वैक्यूम इंटरफेस का [[बैंड आरेख]] इलेक्ट्रॉन एफिनिटी ई दिखा रहा है<sub>EA</sub>, निकट-सतह निर्वात ऊर्जा E के बीच अंतर के रूप में परिभाषित किया गया है<sub>vac</sub>, और निकट-सतह [[चालन बैंड]] एज ई<sub>C</sub>. यह भी दिखाया गया है: [[फर्मी स्तर]] ई<sub>F</sub>, [[संयोजी बंध]] एज ई<sub>V</sub>, कार्य समारोह डब्ल्यू।]]ठोस अवस्था भौतिकी के क्षेत्र में, इलेक्ट्रॉन बंधुता को रसायन विज्ञान और परमाणु भौतिकी की तुलना में अलग तरह से परिभाषित किया जाता है। सेमीकंडक्टर-वैक्यूम इंटरफ़ेस (अर्थात सेमीकंडक्टर की सतह) के लिए, इलेक्ट्रॉन एफ़िनिटी, जिसे सामान्यतः  E द्वारा दर्शाया जाता है<sub>EA</sub> या χ, अर्धचालक के ठीक बाहर निर्वात से एक इलेक्ट्रॉन को चालन बैंड के नीचे अर्धचालक के अंदर ले जाने से प्राप्त ऊर्जा के रूप में परिभाषित किया गया है:<ref>{{cite web|first = Raymond T. |last =  Tung | url=http://academic.brooklyn.cuny.edu/physics/tung/Schottky/surface.htm|title=सेमीकंडक्टर की मुक्त सतहें|work= Brooklyn College}}</ref>
:<math>E_{\rm ea} \equiv E_{\rm vac} - E_{\rm C}</math>
:<math>E_{\rm ea} \equiv E_{\rm vac} - E_{\rm C}</math>
निरपेक्ष शून्य पर एक आंतरिक अर्धचालक में, यह अवधारणा कार्यात्मक रूप से इलेक्ट्रॉन आत्मीयता की रसायन विज्ञान की परिभाषा के अनुरूप है, क्योंकि एक जोड़ा इलेक्ट्रॉन अनायास चालन बैंड के नीचे जाएगा। गैर-शून्य तापमान पर, और अन्य सामग्रियों (धातु, अर्ध-धातु, अत्यधिक अपमिश्रित अर्धचालक) के लिए, सादृश्य धारण नहीं करता है क्योंकि एक जोड़ा इलेक्ट्रॉन इसके बजाय औसत रूप से फर्मी स्तर पर जाएगा। किसी भी मामले में, एक ठोस पदार्थ के इलेक्ट्रॉन बन्धुता का मूल्य गैस चरण में एक ही पदार्थ के परमाणु के लिए रसायन विज्ञान और परमाणु भौतिकी इलेक्ट्रॉन बन्धुता मूल्य से बहुत अलग है। उदाहरण के लिए, एक सिलिकॉन क्रिस्टल सतह में इलेक्ट्रॉन बन्धुता 4.05 eV होती है, जबकि एक पृथक सिलिकॉन परमाणु में इलेक्ट्रॉन बन्धुता 1.39 eV होती है।
निरपेक्ष शून्य पर एक आंतरिक अर्धचालक में, यह अवधारणा कार्यात्मक रूप से इलेक्ट्रॉन आत्मीयता की रसायन विज्ञान की परिभाषा के अनुरूप है, क्योंकि एक जोड़ा इलेक्ट्रॉन अनायास चालन बैंड के नीचे जाएगा। गैर-शून्य तापमान पर, और अन्य सामग्रियों (धातु, अर्ध-धातु, अत्यधिक अपमिश्रित अर्धचालक) के लिए, सादृश्य धारण नहीं करता है क्योंकि एक जोड़ा इलेक्ट्रॉन इसके अतिरिक्त  औसत रूप से फर्मी स्तर पर जाएगा। किसी भी मामले में, एक ठोस पदार्थ के इलेक्ट्रॉन बन्धुता का मूल्य गैस चरण में एक ही पदार्थ के परमाणु के लिए रसायन विज्ञान और परमाणु भौतिकी इलेक्ट्रॉन बन्धुता मूल्य से बहुत अलग है। उदाहरण के लिए, एक सिलिकॉन क्रिस्टल सतह में इलेक्ट्रॉन बन्धुता 4.05 eV होती है, जबकि एक पृथक सिलिकॉन परमाणु में इलेक्ट्रॉन बन्धुता 1.39 eV होती है।


किसी सतह की इलेक्ट्रॉन बंधुता उसके कार्य फलन से निकटता से संबंधित है, लेकिन उससे भिन्न है। कार्य फ़ंक्शन [[थर्मोडायनामिक कार्य]] है जिसे सामग्री से निर्वात में एक इलेक्ट्रॉन को विपरीत रूप से और समतापीय रूप से हटाकर प्राप्त किया जा सकता है; यह थर्मोडायनामिक इलेक्ट्रॉन औसतन फ़र्मी स्तर पर जाता है, चालन बैंड किनारे पर नहीं: <math> W = E_{\rm vac} - E_{\rm F}</math>. जबकि एक अर्धचालक के कार्य समारोह को [[डोपिंग (सेमीकंडक्टर)]] द्वारा बदला जा सकता है, इलेक्ट्रॉन संबंध आदर्श रूप से डोपिंग के साथ नहीं बदलता है और इसलिए यह भौतिक स्थिरांक होने के करीब है। हालांकि, कार्य समारोह की तरह इलेक्ट्रॉन संबंध सतह समाप्ति (क्रिस्टल चेहरा, सतह रसायन, आदि) पर निर्भर करता है और यह सख्ती से सतह की संपत्ति है।
किसी सतह की इलेक्ट्रॉन बंधुता उसके कार्य फलन से निकटता से संबंधित है, लेकिन उससे भिन्न है। कार्य फ़ंक्शन [[थर्मोडायनामिक कार्य]] है जिसे सामग्री से निर्वात में एक इलेक्ट्रॉन को विपरीत रूप से और समतापीय रूप से हटाकर प्राप्त किया जा सकता है; यह थर्मोडायनामिक इलेक्ट्रॉन औसतन फ़र्मी स्तर पर जाता है, चालन बैंड किनारे पर नहीं: <math> W = E_{\rm vac} - E_{\rm F}</math>. जबकि एक अर्धचालक के कार्य समारोह को [[डोपिंग (सेमीकंडक्टर)]] द्वारा बदला जा सकता है, इलेक्ट्रॉन संबंध आदर्श रूप से डोपिंग के साथ नहीं बदलता है और इसलिए यह भौतिक स्थिरांक होने के करीब है। चूंकि , कार्य समारोह की तरह इलेक्ट्रॉन संबंध सतह समाप्ति (क्रिस्टल चेहरा, सतह रसायन, आदि) पर निर्भर करता है और यह सख्ती से सतह की संपत्ति है।


सेमीकंडक्टर भौतिकी में, इलेक्ट्रॉन बंधुता का प्राथमिक उपयोग वास्तव में सेमीकंडक्टर-वैक्यूम सतहों के विश्लेषण में नहीं है, बल्कि दो सामग्रियों के इंटरफेस पर होने वाले [[बैंड झुकना]] का अनुमान लगाने के लिए ह्यूरिस्टिक [[इलेक्ट्रॉन बंधुता नियम]] में होता है, विशेष रूप से धातु-अर्धचालक जंक्शनों में और अर्धचालक विषमताएँ।
सेमीकंडक्टर भौतिकी में, इलेक्ट्रॉन बंधुता का प्राथमिक उपयोग वास्तव में सेमीकंडक्टर-वैक्यूम सतहों के विश्लेषण में नहीं है, बल्कि दो सामग्रियों के इंटरफेस पर होने वाले [[बैंड झुकना]] का अनुमान लगाने के लिए ह्यूरिस्टिक [[इलेक्ट्रॉन बंधुता नियम]] में होता है, विशेष रूप से धातु-अर्धचालक जंक्शनों में और अर्धचालक विषमताएँ।


कुछ परिस्थितियों में इलेक्ट्रॉन बंधुता ऋणात्मक हो सकती है।<ref>{{Cite journal | last1 = Himpsel | first1 = F. | last2 = Knapp | first2 = J. | last3 = Vanvechten | first3 = J. | last4 = Eastman | first4 = D. | title = Quantum photoyield of diamond(111)—A stable negative-affinity emitter | doi = 10.1103/PhysRevB.20.624 | journal = Physical Review B | volume = 20 | issue = 2 | pages = 624 | year = 1979 |bibcode = 1979PhRvB..20..624H }}</ref> अक्सर नकारात्मक इलेक्ट्रॉन संबंध कुशल [[कैथोड]] प्राप्त करने के लिए वांछित होते हैं जो कम ऊर्जा हानि के साथ वैक्यूम को इलेक्ट्रॉनों की आपूर्ति कर सकते हैं। पूर्वाग्रह वोल्टेज या रोशनी की स्थिति जैसे विभिन्न मापदंडों के एक समारोह के रूप में देखी गई इलेक्ट्रॉन उपज का उपयोग इन संरचनाओं को बैंड आरेखों के साथ वर्णित करने के लिए किया जा सकता है जिसमें इलेक्ट्रॉन आत्मीयता एक पैरामीटर है। इलेक्ट्रॉन उत्सर्जन पर सतह समाप्ति के स्पष्ट प्रभाव के एक उदाहरण के लिए, [[मार्च्यवका प्रभाव]] में चित्र 3 देखें।
कुछ परिस्थितियों में इलेक्ट्रॉन बंधुता ऋणात्मक हो सकती है।<ref>{{Cite journal | last1 = Himpsel | first1 = F. | last2 = Knapp | first2 = J. | last3 = Vanvechten | first3 = J. | last4 = Eastman | first4 = D. | title = Quantum photoyield of diamond(111)—A stable negative-affinity emitter | doi = 10.1103/PhysRevB.20.624 | journal = Physical Review B | volume = 20 | issue = 2 | pages = 624 | year = 1979 |bibcode = 1979PhRvB..20..624H }}</ref> अधिकांशतः  नकारात्मक इलेक्ट्रॉन संबंध कुशल [[कैथोड]] प्राप्त करने के लिए वांछित होते हैं जो कम ऊर्जा हानि के साथ वैक्यूम को इलेक्ट्रॉनों की आपूर्ति कर सकते हैं। पूर्वाग्रह वोल्टेज या रोशनी की स्थिति जैसे विभिन्न मापदंडों के एक समारोह के रूप में देखी गई इलेक्ट्रॉन उपज का उपयोग इन संरचनाओं को बैंड आरेखों के साथ वर्णित करने के लिए किया जा सकता है जिसमें इलेक्ट्रॉन आत्मीयता एक पैरामीटर है। इलेक्ट्रॉन उत्सर्जन पर सतह समाप्ति के स्पष्ट प्रभाव के एक उदाहरण के लिए, [[मार्च्यवका प्रभाव]] में चित्र 3 देखें।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 09:28, 2 April 2023

इलेक्ट्रॉन आत्मीयता (ea) एक परमाणु या अणु को तब जारी ऊर्जा की मात्रा के रूप में परिभाषित किया जाता है जब एक इलेक्ट्रॉन गैसीय अवस्था में एक तटस्थ परमाणु या अणु से जुड़कर ऋणायन बनाता है।

एक्स (जी) + ई → एक्स(जी) + ऊर्जा

यह इलेक्ट्रॉन कैप्चर आयनीकरण के एन्थैल्पी परिवर्तन के समान नहीं है, जिसे ऊर्जा जारी होने पर ऋणात्मक के रूप में परिभाषित किया जाता है। दूसरे शब्दों में, तापीय धारिता परिवर्तन और इलेक्ट्रॉन बंधुता एक नकारात्मक चिह्न से भिन्न होते हैं।

ठोस अवस्था भौतिकी में, किसी सतह के लिए इलेक्ट्रॉन बंधुता को कुछ अलग तरीके से परिभाषित किया जाता है (इलेक्ट्रॉन आत्मीयता # इलेक्ट्रॉन संबंध जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है)।

इलेक्ट्रॉन बंधुता का मापन और उपयोग

इस गुण का उपयोग केवल गैसीय अवस्था में परमाणुओं और अणुओं को मापने के लिए किया जाता है, क्योंकि ठोस या तरल अवस्था में उनके ऊर्जा स्तर अन्य परमाणुओं या अणुओं के संपर्क से बदल जाते हैं।

इलेक्ट्रॉन समानता की एक सूची का उपयोग रॉबर्ट एस मुल्लिकेन द्वारा इलेक्ट्रॉनों के औसत के बराबर परमाणुओं के लिए वैद्युतीयऋणात्मकता स्केल विकसित करने के लिए किया गया था। आत्मीयता और आयनीकरण क्षमता[1][2] इलेक्ट्रॉन बंधुता का उपयोग करने वाली अन्य सैद्धांतिक अवधारणाओं में इलेक्ट्रॉनिक रासायनिक क्षमता और रासायनिक कठोरता सम्मलित हैं। एक अन्य उदाहरण, एक अणु या परमाणु जिसमें दूसरे की तुलना में इलेक्ट्रॉन संबंध का अधिक सकारात्मक मूल्य होता है, उसे अधिकांशतः इलेक्ट्रॉन स्वीकर्ता और कम सकारात्मक इलेक्ट्रॉन दाता कहा जाता है। साथ में वे इंटरवलेंस चार्ज ट्रांसफर | चार्ज-ट्रांसफर प्रतिक्रियाओं से गुजर सकते हैं।

साइन कन्वेंशन

इलेक्ट्रॉन बंधुता का ठीक से उपयोग करने के लिए, साइन का ट्रैक रखना आवश्यक है। किसी भी प्रतिक्रिया के लिए जो ऊर्जा जारी करती है, कुल ऊर्जा में ΔE परिवर्तन का नकारात्मक मान होता है और प्रतिक्रिया को उष्माक्षेपी प्रतिक्रिया कहा जाता है। लगभग सभी गैर-महान गैस परमाणुओं के लिए इलेक्ट्रॉन कैप्चर में ऊर्जा की रिहाई सम्मलित है[3] और इस प्रकार एक्ज़ोथिर्मिक हैं। सकारात्मक मान जो ई की तालिकाओं में सूचीबद्ध हैंea राशियाँ या परिमाण हैं। यह परिभाषा के भीतर जारी किया गया शब्द है जो ऊर्जा जारी करता है जो ΔE को नकारात्मक संकेत प्रदान करता है। ई को भूलने से भ्रम पैदा होता हैea ऊर्जा में परिवर्तन के लिए, ΔE, जिस स्थिति में सारणियों में सूचीबद्ध धनात्मक मान एंडो-नॉट एक्सो-थर्मिक प्रक्रिया के लिए होंगे। दोनों के बीच संबंध ई हैea = −ΔE(संलग्न)।

हालाँकि, यदि मान E को सौंपा गया हैea ऋणात्मक है, ऋणात्मक चिन्ह का तात्पर्य दिशा के उलट होने से है, और एक इलेक्ट्रॉन को संलग्न करने के लिए ऊर्जा की आवश्यकता होती है। इस मामले में, इलेक्ट्रॉन कैप्चर एक एन्दोठेर्मिक प्रक्रिया है और संबंध, ईea = −ΔE(संलग्न) अभी भी मान्य है। ऋणात्मक मान सामान्यतः एक दूसरे इलेक्ट्रॉन पर कब्जा करने के लिए उत्पन्न होते हैं, लेकिन नाइट्रोजन परमाणु के लिए भी।

ई की गणना के लिए सामान्य अभिव्यक्तिea जब एक इलेक्ट्रॉन जुड़ा होता है

Eea = (EinitialEfinal)attach = −ΔE(attach)

यह व्यंजक ΔX = X(अंतिम) − X(प्रारंभिक) परंपरा का पालन करता है क्योंकि −ΔE = −(E(अंतिम) − E(प्रारंभिक)) = E(प्रारंभिक) − E(अंतिम)।

समान रूप से, इलेक्ट्रॉन आत्मीयता को परमाणु से एक इलेक्ट्रॉन को अलग करने के लिए आवश्यक ऊर्जा की मात्रा के रूप में भी परिभाषित किया जा सकता है, जबकि यह एक विद्युत आवेश रखता है | एकल-अतिरिक्त-इलेक्ट्रॉन इस प्रकार परमाणु को एक आयन बनाता है,[4] अर्थात प्रक्रिया के लिए ऊर्जा परिवर्तन

एक्स → एक्स + ई-</सुप>

यदि आगे और पीछे की प्रतिक्रियाओं के लिए एक ही टेबल का उपयोग किया जाता है, तो संकेतों को स्विच किए बिना, सही परिभाषा को संबंधित दिशा, अटैचमेंट (रिलीज़) या डिटैचमेंट (आवश्यक) पर लागू करने के लिए ध्यान रखा जाना चाहिए। चूंकि लगभग सभी डिटेचमेंट (आवश्यकता +) तालिका में सूचीबद्ध ऊर्जा की मात्रा है, वे डिटेचमेंट प्रतिक्रियाएं एंडोथर्मिक हैं, या ΔE (डिटैच)> 0।

Eea = (EfinalEinitial)detach = ΔE(detach) = −ΔE(attach).

तत्वों की इलेक्ट्रॉन बंधुता

इलेक्ट्रॉन बंधुता (ईea) बनाम परमाणु संख्या (जेड)। पिछले अनुभाग में हस्ताक्षर परिपाटी की व्याख्या पर ध्यान दें।

चूंकि ईea आवर्त सारणी में बहुत भिन्न होता है, कुछ पैटर्न उभर कर आते हैं। सामान्यतः , अधातुओं में अधिक धनात्मक E होता हैea धातुओं की तुलना में। ऐसे परमाणु जिनके आयन तटस्थ परमाणुओं की तुलना में अधिक स्थिर होते हैं, उनका E अधिक होता हैea. क्लोरीन सबसे अधिक मजबूती से अतिरिक्त इलेक्ट्रॉनों को आकर्षित करता है; नियोन सबसे कमजोर रूप से एक अतिरिक्त इलेक्ट्रॉन को आकर्षित करता है। नोबल गैसों की इलेक्ट्रॉन बंधुता को निर्णायक रूप से नहीं मापा गया है, इसलिए उनका थोड़ा नकारात्मक मान हो सकता है या नहीं भी हो सकता है।

ea सामान्यतः समूह 18 तक पहुँचने से पहले आवर्त सारणी में एक अवधि (पंक्ति) में वृद्धि होती है। यह परमाणु के संयोजी खोल के भरने के कारण होता है; एक हलोजन परमाणु एक इलेक्ट्रॉन प्राप्त करने पर समूह 1 तत्व के परमाणु की तुलना में अधिक ऊर्जा जारी करता है क्योंकि यह एक भरा हुआ इलेक्ट्रॉन कवच प्राप्त करता है और इसलिए अधिक स्थिर होता है। समूह 18 में, वैलेंस शेल भरा हुआ है, जिसका अर्थ है कि जोड़े गए इलेक्ट्रॉन अस्थिर हैं, बहुत जल्दी बाहर निकलने की प्रवृत्ति रखते हैं।

विरोधाभासी रूप से, ईea आवर्त सारणी के अधिकांश स्तंभों में नीचे जाने पर घटता नहीं है। उदाहरण के लिए, ईea वास्तव में समूह 2 तत्व डेटा के लिए कॉलम अवरोही पर लगातार बढ़ता है। इस प्रकार, इलेक्ट्रॉन आत्मीयता वैद्युतीयऋणात्मकता के समान बाएँ-दाएँ प्रवृत्ति का अनुसरण करती है, लेकिन ऊपर-नीचे की प्रवृत्ति का नहीं।

निम्नलिखित डेटा जौल प्रति मोल | केजे / मोल में उद्धृत किया गया है।

आणविक इलेक्ट्रॉन समानताएं

अणुओं की इलेक्ट्रॉन बंधुता उनकी इलेक्ट्रॉनिक संरचना का एक जटिल कार्य है। उदाहरण के लिए, बेंजीन के लिए इलेक्ट्रॉन बंधुता नकारात्मक है, जैसा कि नेफ़थलीन की है, जबकि अंगारिन, फेनेंथ्रीन और पाइरीन की सकारात्मक हैं। सिलिको प्रयोगों से पता चलता है कि hexacyanobenzene की इलेक्ट्रॉन बंधुता फुलरीन से अधिक है।[5]


इलेक्ट्रॉन बंधुता जैसा कि ठोस अवस्था भौतिकी में परिभाषित किया गया है

सेमीकंडक्टर-वैक्यूम इंटरफेस का बैंड आरेख इलेक्ट्रॉन एफिनिटी ई दिखा रहा हैEA, निकट-सतह निर्वात ऊर्जा E के बीच अंतर के रूप में परिभाषित किया गया हैvac, और निकट-सतह चालन बैंड एज ईC. यह भी दिखाया गया है: फर्मी स्तरF, संयोजी बंध एज ईV, कार्य समारोह डब्ल्यू।

ठोस अवस्था भौतिकी के क्षेत्र में, इलेक्ट्रॉन बंधुता को रसायन विज्ञान और परमाणु भौतिकी की तुलना में अलग तरह से परिभाषित किया जाता है। सेमीकंडक्टर-वैक्यूम इंटरफ़ेस (अर्थात सेमीकंडक्टर की सतह) के लिए, इलेक्ट्रॉन एफ़िनिटी, जिसे सामान्यतः E द्वारा दर्शाया जाता हैEA या χ, अर्धचालक के ठीक बाहर निर्वात से एक इलेक्ट्रॉन को चालन बैंड के नीचे अर्धचालक के अंदर ले जाने से प्राप्त ऊर्जा के रूप में परिभाषित किया गया है:[6]

निरपेक्ष शून्य पर एक आंतरिक अर्धचालक में, यह अवधारणा कार्यात्मक रूप से इलेक्ट्रॉन आत्मीयता की रसायन विज्ञान की परिभाषा के अनुरूप है, क्योंकि एक जोड़ा इलेक्ट्रॉन अनायास चालन बैंड के नीचे जाएगा। गैर-शून्य तापमान पर, और अन्य सामग्रियों (धातु, अर्ध-धातु, अत्यधिक अपमिश्रित अर्धचालक) के लिए, सादृश्य धारण नहीं करता है क्योंकि एक जोड़ा इलेक्ट्रॉन इसके अतिरिक्त औसत रूप से फर्मी स्तर पर जाएगा। किसी भी मामले में, एक ठोस पदार्थ के इलेक्ट्रॉन बन्धुता का मूल्य गैस चरण में एक ही पदार्थ के परमाणु के लिए रसायन विज्ञान और परमाणु भौतिकी इलेक्ट्रॉन बन्धुता मूल्य से बहुत अलग है। उदाहरण के लिए, एक सिलिकॉन क्रिस्टल सतह में इलेक्ट्रॉन बन्धुता 4.05 eV होती है, जबकि एक पृथक सिलिकॉन परमाणु में इलेक्ट्रॉन बन्धुता 1.39 eV होती है।

किसी सतह की इलेक्ट्रॉन बंधुता उसके कार्य फलन से निकटता से संबंधित है, लेकिन उससे भिन्न है। कार्य फ़ंक्शन थर्मोडायनामिक कार्य है जिसे सामग्री से निर्वात में एक इलेक्ट्रॉन को विपरीत रूप से और समतापीय रूप से हटाकर प्राप्त किया जा सकता है; यह थर्मोडायनामिक इलेक्ट्रॉन औसतन फ़र्मी स्तर पर जाता है, चालन बैंड किनारे पर नहीं: . जबकि एक अर्धचालक के कार्य समारोह को डोपिंग (सेमीकंडक्टर) द्वारा बदला जा सकता है, इलेक्ट्रॉन संबंध आदर्श रूप से डोपिंग के साथ नहीं बदलता है और इसलिए यह भौतिक स्थिरांक होने के करीब है। चूंकि , कार्य समारोह की तरह इलेक्ट्रॉन संबंध सतह समाप्ति (क्रिस्टल चेहरा, सतह रसायन, आदि) पर निर्भर करता है और यह सख्ती से सतह की संपत्ति है।

सेमीकंडक्टर भौतिकी में, इलेक्ट्रॉन बंधुता का प्राथमिक उपयोग वास्तव में सेमीकंडक्टर-वैक्यूम सतहों के विश्लेषण में नहीं है, बल्कि दो सामग्रियों के इंटरफेस पर होने वाले बैंड झुकना का अनुमान लगाने के लिए ह्यूरिस्टिक इलेक्ट्रॉन बंधुता नियम में होता है, विशेष रूप से धातु-अर्धचालक जंक्शनों में और अर्धचालक विषमताएँ।

कुछ परिस्थितियों में इलेक्ट्रॉन बंधुता ऋणात्मक हो सकती है।[7] अधिकांशतः नकारात्मक इलेक्ट्रॉन संबंध कुशल कैथोड प्राप्त करने के लिए वांछित होते हैं जो कम ऊर्जा हानि के साथ वैक्यूम को इलेक्ट्रॉनों की आपूर्ति कर सकते हैं। पूर्वाग्रह वोल्टेज या रोशनी की स्थिति जैसे विभिन्न मापदंडों के एक समारोह के रूप में देखी गई इलेक्ट्रॉन उपज का उपयोग इन संरचनाओं को बैंड आरेखों के साथ वर्णित करने के लिए किया जा सकता है जिसमें इलेक्ट्रॉन आत्मीयता एक पैरामीटर है। इलेक्ट्रॉन उत्सर्जन पर सतह समाप्ति के स्पष्ट प्रभाव के एक उदाहरण के लिए, मार्च्यवका प्रभाव में चित्र 3 देखें।

यह भी देखें

संदर्भ

  1. Robert S. Mulliken, Journal of Chemical Physics, 1934, 2, 782.
  2. Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty, University Science Books, 2006, ISBN 978-1-891389-31-3
  3. Chemical Principles the Quest for Insight, Peter Atkins and Loretta Jones, Freeman, New York, 2010 ISBN 978-1-4292-1955-6
  4. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Electron affinity". doi:10.1351/goldbook.E01977
  5. Remarkable electron accepting properties of the simplest benzenoid cyanocarbons: hexacyanobenzene, octacyanonaphthalene and decacyanoanthracene Xiuhui Zhang, Qianshu Li, Justin B. Ingels, Andrew C. Simmonett, Steven E. Wheeler, Yaoming Xie, R. Bruce King, Henry F. Schaefer III and F. Albert Cotton Chemical Communications, 2006, 758–760 Abstract
  6. Tung, Raymond T. "सेमीकंडक्टर की मुक्त सतहें". Brooklyn College.
  7. Himpsel, F.; Knapp, J.; Vanvechten, J.; Eastman, D. (1979). "Quantum photoyield of diamond(111)—A stable negative-affinity emitter". Physical Review B. 20 (2): 624. Bibcode:1979PhRvB..20..624H. doi:10.1103/PhysRevB.20.624.


बाहरी संबंध