फ्यूज्ड क्वार्ट्ज: Difference between revisions
(text) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Glass consisting of pure silica}} | {{Short description|Glass consisting of pure silica}} | ||
[[File:Einstein gyro gravity probe b.jpg|thumb|upright=1.5|right|[[ग्रेविटी प्रोब बी]] प्रयोग में घूर्णिका में उपयोग के लिए इस संगलित स्फटिक गोले का निर्माण किया गया था। यह अब तक निर्मित सबसे सटीक क्षेत्रों में से एक है, जो मोटाई के 40 से अधिक परमाणुओं द्वारा एक आदर्श क्षेत्र से विचलित नहीं होता है।<ref> | [[File:Einstein gyro gravity probe b.jpg|thumb|upright=1.5|right|[[ग्रेविटी प्रोब बी]] प्रयोग में घूर्णिका में उपयोग के लिए इस संगलित स्फटिक गोले का निर्माण किया गया था। यह अब तक निर्मित सबसे सटीक क्षेत्रों में से एक है, जो मोटाई के 40 से अधिक परमाणुओं द्वारा एक आदर्श क्षेत्र से विचलित नहीं होता है।<ref> | ||
{{cite web|last=Hardwood |first=W.|title=Spacecraft launched to test Albert Einstein's theories|url=http://www.spaceflightnow.com/delta/d304/|work=[[Spaceflight Now]]|date=20 April 2004|access-date=14 May 2009}}</ref>]]संगलित स्फटिक, संगलित सिलिका या स्फटिक [[ काँच |काँच]] एक काँच है जिसमें लगभग शुद्ध [[सिलिकॉन डाइऑक्साइड]] (सिलिकॉन डाइऑक्साइड, SiO<sub>2</sub>) [[अनाकार ठोस|आकारहीन]] (गैर-पारदर्शी) रूप में | {{cite web|last=Hardwood |first=W.|title=Spacecraft launched to test Albert Einstein's theories|url=http://www.spaceflightnow.com/delta/d304/|work=[[Spaceflight Now]]|date=20 April 2004|access-date=14 May 2009}}</ref>]]संगलित स्फटिक, संगलित सिलिका या स्फटिक [[ काँच |काँच]] एक काँच है जिसमें लगभग शुद्ध [[सिलिकॉन डाइऑक्साइड]] (सिलिकॉन डाइऑक्साइड, SiO<sub>2</sub>) [[अनाकार ठोस|आकारहीन]] (गैर-पारदर्शी) रूप में होती है। यह अन्य सभी व्यावसायिक [[सोडा लाइम गिलास|सोडा नींबू गिलास]] से अलग है जिसमें अन्य सामग्री मिलाई जाती है जो काँच के दृक् और भौतिक गुणों को बदल देती है, जैसे कि पिघले हुए तापमान को कम करना। इसलिए, संगलित [[क्वार्ट्ज|स्फटिक]] में उच्च कार्य और पिघलने का तापमान होता है, जिससे यह अधिकांश सामान्य अनुप्रयोगों के लिए कम वांछनीय हो जाता है। | ||
संगलित स्फटिक़ और संगलित सिलिका का उपयोग परस्पर विनिमय के लिए किया जाता है, लेकिन विभिन्न निर्माण तकनीकों का उल्लेख कर सकते हैं, जैसा कि नीचे बताया गया है, जिसके परिणामस्वरूप विभिन्न अनुरेख अशुद्धियाँ होती हैं। हालांकि संगलित स्फटिक, अनाकार ठोस में होने के कारण, पारदर्शी स्फटिक की तुलना में काफी अलग भौतिक गुण हैं।<ref>{{Cite news|url=http://www.swiftglass.com/quartz-vs-fused-silica-whats-the-difference/|title=Quartz vs. Fused Silica: What's the Difference?|date=2015-09-08|work=Swift Glass|access-date=2017-08-18|language=en-US}}</ref> उदाहरण के लिए, इसके भौतिक गुणों के कारण यह [[ अर्धचालक |अर्धचालक]] निर्माण और प्रयोगशाला उपकरणों में विशेष उपयोग पाता है। | संगलित स्फटिक़ और संगलित सिलिका का उपयोग परस्पर विनिमय के लिए किया जाता है, लेकिन विभिन्न निर्माण तकनीकों का उल्लेख कर सकते हैं, जैसा कि नीचे बताया गया है, जिसके परिणामस्वरूप विभिन्न अनुरेख अशुद्धियाँ होती हैं। हालांकि संगलित स्फटिक, अनाकार ठोस में होने के कारण, पारदर्शी स्फटिक की तुलना में काफी अलग भौतिक गुण हैं।<ref>{{Cite news|url=http://www.swiftglass.com/quartz-vs-fused-silica-whats-the-difference/|title=Quartz vs. Fused Silica: What's the Difference?|date=2015-09-08|work=Swift Glass|access-date=2017-08-18|language=en-US}}</ref> उदाहरण के लिए, इसके भौतिक गुणों के कारण यह [[ अर्धचालक |अर्धचालक]] निर्माण और प्रयोगशाला उपकरणों में विशेष उपयोग पाता है। | ||
Line 29: | Line 28: | ||
इसकी ताकत और उच्च पिघलने बिंदु (साधारण कांच की तुलना में) के कारण, संगलित स्फटिक का उपयोग हलोजन लालटेन और उच्च तीव्रता वाले निर्वहन लालटेन के लिए एक आवरण के रूप में किया जाता है, जो उच्च चमक और लंबे जीवन के संयोजन को प्राप्त करने के लिए उच्च आवरण तापमान पर काम करना चाहिए। कुछ उच्च-शक्ति वाले [[ वेक्यूम - ट्यूब |निर्वात - नालिका]] में सिलिका आवरण का इस्तेमाल किया गया था, जिनके अवरक्त तरंग दैर्ध्य पर अच्छे संचरण ने उनके तापदीप्त धनाग्र के विकिरण शीतलन की सुविधा प्रदान की। | इसकी ताकत और उच्च पिघलने बिंदु (साधारण कांच की तुलना में) के कारण, संगलित स्फटिक का उपयोग हलोजन लालटेन और उच्च तीव्रता वाले निर्वहन लालटेन के लिए एक आवरण के रूप में किया जाता है, जो उच्च चमक और लंबे जीवन के संयोजन को प्राप्त करने के लिए उच्च आवरण तापमान पर काम करना चाहिए। कुछ उच्च-शक्ति वाले [[ वेक्यूम - ट्यूब |निर्वात - नालिका]] में सिलिका आवरण का इस्तेमाल किया गया था, जिनके अवरक्त तरंग दैर्ध्य पर अच्छे संचरण ने उनके तापदीप्त धनाग्र के विकिरण शीतलन की सुविधा प्रदान की। | ||
इसकी शारीरिक शक्ति के कारण, संगलित स्फटिक का उपयोग गहरे निमज्जन जहाजों जैसे कि [[स्नानागार|बॉथस्फीयर]] और [[ बेंटोस्कोप ]]में और [[ अंतरिक्ष शटल |अंतरिक्ष यान]] और [[ अंतरराष्ट्रीय अंतरिक्ष स्टेशन |अंतरराष्ट्रीय अंतरिक्ष केन्द्र]] सहित चालक दल के अंतरिक्ष यान की खिड़कियों में किया गया था।<ref>{{Cite web|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1120&context=nasapub&sei-redir=1|title=अंतरिक्ष यान विंडोज के रूप में पारदर्शी कवच सिरेमिक|last=Salem|first=Jonathan|date=2012|website=Journal of the [[American Ceramic Society]]}}</ref> | इसकी शारीरिक शक्ति के कारण, संगलित स्फटिक का उपयोग गहरे निमज्जन जहाजों जैसे कि [[स्नानागार|बॉथस्फीयर]] और [[ बेंटोस्कोप |बेंटोस्कोप]] में और [[ अंतरिक्ष शटल |अंतरिक्ष यान]] और [[ अंतरराष्ट्रीय अंतरिक्ष स्टेशन |अंतरराष्ट्रीय अंतरिक्ष केन्द्र]] सहित चालक दल के अंतरिक्ष यान की खिड़कियों में किया गया था।<ref>{{Cite web|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1120&context=nasapub&sei-redir=1|title=अंतरिक्ष यान विंडोज के रूप में पारदर्शी कवच सिरेमिक|last=Salem|first=Jonathan|date=2012|website=Journal of the [[American Ceramic Society]]}}</ref> | ||
अर्धचालक उद्योग में, इसकी ताकत, ऊष्मीय स्थिरता और यूवी पारदर्शिता का संयोजन इसे [[फोटोलिथोग्राफी|भाश्मलेखन]] के लिए [[ प्रक्षेपण मुखौटा | प्रक्षेपण आच्छद]] के लिए एक उत्कृष्ट क्रियाधार बनाता है। [[File:EPROM Intel C1702A.jpg|thumb|संवेष्टक के शीर्ष में संगलित स्फटिक़ विंडो के साथ एक [[EPROM|ईपीआरओएम]]]]इसकी यूवी पारदर्शिता भी EPROMs ([[व्यामार्जनीय क्रमादेश्य केवल पठन स्मृति]]) पर विंडोज़ के रूप में उपयोग करती है, यह एक प्रकार की गैर-वाष्पशील स्मृति तंत्र [[ एकीकृत परिपथ |एकीकृत परिपथ]] है जो मजबूत पराबैंगनी प्रकाश के संपर्क में आने से मिट जाती है। ईपीरोम पारदर्शी संगलित स्फटिक (हालांकि कुछ बाद के प्रतिरूप यूवी-पारदर्शी राल का उपयोग करते हैं) विंडो द्वारा पहचाने जाते हैं जो संवेष्टक के शीर्ष पर बैठता है, जिसके माध्यम से सिलिकॉन चिप दिखाई देती है, और जो मिटाने के लिए [[यूवी प्रकाश]] को प्रसारित करती है।<ref>{{Cite web|title=Intel 1702A 2K (256 x 8) UV Erasable PROM|url=http://kormus.cz/mvt/datasheety/C1702A.pdf|url-status=live}}</ref><ref>{{Cite web|title=सीपीयू इतिहास - ईपीरोम|url=http://www.cpushack.com/EPROM.html|access-date=2021-05-12|website=www.cpushack.com}}</ref> | अर्धचालक उद्योग में, इसकी ताकत, ऊष्मीय स्थिरता और यूवी पारदर्शिता का संयोजन इसे [[फोटोलिथोग्राफी|भाश्मलेखन]] के लिए [[ प्रक्षेपण मुखौटा |प्रक्षेपण आच्छद]] के लिए एक उत्कृष्ट क्रियाधार बनाता है। [[File:EPROM Intel C1702A.jpg|thumb|संवेष्टक के शीर्ष में संगलित स्फटिक़ विंडो के साथ एक [[EPROM|ईपीआरओएम]]]]इसकी यूवी पारदर्शिता भी EPROMs ([[व्यामार्जनीय क्रमादेश्य केवल पठन स्मृति]]) पर विंडोज़ के रूप में उपयोग करती है, यह एक प्रकार की गैर-वाष्पशील स्मृति तंत्र [[ एकीकृत परिपथ |एकीकृत परिपथ]] है जो मजबूत पराबैंगनी प्रकाश के संपर्क में आने से मिट जाती है। ईपीरोम पारदर्शी संगलित स्फटिक (हालांकि कुछ बाद के प्रतिरूप यूवी-पारदर्शी राल का उपयोग करते हैं) विंडो द्वारा पहचाने जाते हैं जो संवेष्टक के शीर्ष पर बैठता है, जिसके माध्यम से सिलिकॉन चिप दिखाई देती है, और जो मिटाने के लिए [[यूवी प्रकाश]] को प्रसारित करती है।<ref>{{Cite web|title=Intel 1702A 2K (256 x 8) UV Erasable PROM|url=http://kormus.cz/mvt/datasheety/C1702A.pdf|url-status=live}}</ref><ref>{{Cite web|title=सीपीयू इतिहास - ईपीरोम|url=http://www.cpushack.com/EPROM.html|access-date=2021-05-12|website=www.cpushack.com}}</ref> | ||
ऊष्मीय स्थिरता और संरचना के कारण, इसका उपयोग [[5D ऑप्टिकल डेटा स्टोरेज|5D दृक् डाटा भंडारण]] और अर्धचालक निर्माण भट्टियों में किया जाता है<ref name=spexp>{{cite news|last1=Kazansky|first1=P.|title=Eternal 5D data storage via ultrafast-laser writing in glass|url=http://spie.org/newsroom/technical-articles/6365-eternal-5d-data-storage-via-ultrafast-laser-writing-in-glass|publisher=SPIE Newsroom|date=11 March 2016|display-authors=etal}}</ref>।<ref>{{Cite web |title=सेमीकंडक्टर अनुप्रयोगों के लिए फ्यूज्ड क्वार्ट्ज और सिलिका प्लेट्स|url=https://www.heraeus.com/en/hca/products_and_solutions_hca/products_by_geometry/plates_hca/plates_semiconductor.html |access-date=2022-08-07 |website=Heraeus Holding GmbH |language=en}}</ref><ref>{{Cite web |title=क्वार्ट्ज गुण|url=https://finkenbeiner.com/gedata.html |access-date=2022-08-07 |website=finkenbeiner.com}}</ref> | ऊष्मीय स्थिरता और संरचना के कारण, इसका उपयोग [[5D ऑप्टिकल डेटा स्टोरेज|5D दृक् डाटा भंडारण]] और अर्धचालक निर्माण भट्टियों में किया जाता है<ref name=spexp>{{cite news|last1=Kazansky|first1=P.|title=Eternal 5D data storage via ultrafast-laser writing in glass|url=http://spie.org/newsroom/technical-articles/6365-eternal-5d-data-storage-via-ultrafast-laser-writing-in-glass|publisher=SPIE Newsroom|date=11 March 2016|display-authors=etal}}</ref>।<ref>{{Cite web |title=सेमीकंडक्टर अनुप्रयोगों के लिए फ्यूज्ड क्वार्ट्ज और सिलिका प्लेट्स|url=https://www.heraeus.com/en/hca/products_and_solutions_hca/products_by_geometry/plates_hca/plates_semiconductor.html |access-date=2022-08-07 |website=Heraeus Holding GmbH |language=en}}</ref><ref>{{Cite web |title=क्वार्ट्ज गुण|url=https://finkenbeiner.com/gedata.html |access-date=2022-08-07 |website=finkenbeiner.com}}</ref> | ||
Line 38: | Line 37: | ||
=== दुर्दम्य सामग्री अनुप्रयोग === | === दुर्दम्य सामग्री अनुप्रयोग === | ||
एक औद्योगिक अपरिष्कृत सामग्री के रूप में जुड़े हुए स्फटिक का उपयोग विभिन्न दुर्दम्य आकृतियों जैसे घरिया, पटल, आवरण और बेल्लोर्मि को कई उच्च तापमान वाली ऊष्मीय प्रक्रियाओं के लिए किया जाता है, जिसमें [[ इस्पात निर्माण | इस्पात निर्माण]], निवेश विमुंचन और काँच निर्माण सम्मिलित हैं। संगलित किए गए स्फटिक से बने दुर्दम्य आकृतियों में उत्कृष्ट ऊष्मीय प्रघात प्रतिरोध होता है और अधिकांश तत्वों और यौगिकों के लिए रासायनिक रूप से निष्क्रिय होते हैं, जिनमें[[ हाइड्रोफ्लुओरिक अम्ल ]]को छोड़कर, एकाग्रता की परवाह किए बिना लगभग सभी अम्ल सम्मिलित होते हैं, जो काफी कम सांद्रता में भी बहुत प्रतिक्रियाशील होते हैं। पारभासी संगलित-स्फटिक नलिका सामान्यतः [[क्वार्ट्ज हीटर|स्फटिक तापक]], औद्योगिक भट्टियों और अन्य समान अनुप्रयोगों के लिए उपयोग की जाती हैं। | एक औद्योगिक अपरिष्कृत सामग्री के रूप में जुड़े हुए स्फटिक का उपयोग विभिन्न दुर्दम्य आकृतियों जैसे घरिया, पटल, आवरण और बेल्लोर्मि को कई उच्च तापमान वाली ऊष्मीय प्रक्रियाओं के लिए किया जाता है, जिसमें [[ इस्पात निर्माण |इस्पात निर्माण]], निवेश विमुंचन और काँच निर्माण सम्मिलित हैं। संगलित किए गए स्फटिक से बने दुर्दम्य आकृतियों में उत्कृष्ट ऊष्मीय प्रघात प्रतिरोध होता है और अधिकांश तत्वों और यौगिकों के लिए रासायनिक रूप से निष्क्रिय होते हैं, जिनमें[[ हाइड्रोफ्लुओरिक अम्ल ]]को छोड़कर, एकाग्रता की परवाह किए बिना लगभग सभी अम्ल सम्मिलित होते हैं, जो काफी कम सांद्रता में भी बहुत प्रतिक्रियाशील होते हैं। पारभासी संगलित-स्फटिक नलिका सामान्यतः [[क्वार्ट्ज हीटर|स्फटिक तापक]], औद्योगिक भट्टियों और अन्य समान अनुप्रयोगों के लिए उपयोग की जाती हैं। | ||
सामान्य तापमान पर इसकी कम यांत्रिक नमी के कारण, इसका उपयोग [[क्यू कारक]] अनुनादक के लिए किया जाता है। उच्च-क्यू गुंजयमान यंत्र, विशेष रूप से कंपन संरचना घूर्णिका चषक अनुनादक के लिए किया जाता है।<ref>[http://www.sensorsmag.com/sensors/acceleration-vibration/an-overview-mems-inertial-sensing-technology-970 An Overview of MEMS Inertial Sensing Technology], February 1, 2003</ref><ref>{{cite journal|last1=Penn|first1=Steven D.|last2=Harry|first2=Gregory M.|last3=Gretarsson|first3=Andri M.|last4=Kittelberger|first4=Scott E.|last5=Saulson|first5=Peter R. |author-link5=Peter Saulson|last6=Schiller|first6=John J.|last7=Smith|first7=Joshua R.|last8=Swords|first8=Sol O.|title=फ्यूज्ड सिलिका में मापा गया उच्च गुणवत्ता कारक|journal=Review of Scientific Instruments|volume=72|issue=9|pages=3670–3673|year=2001|doi=10.1063/1.1394183|arxiv=gr-qc/0009035|bibcode=2001RScI...72.3670P|s2cid=11630697}}</ref> इसी कारण से संगलित स्फटिक़ भी आधुनिक कांच के उपकरणों जैसे काँच वीणा और [[ verrophone |वेर्रोफ़ोन]] के लिए उपयोग की जाने वाली सामग्री है, और इसका उपयोग ऐतिहासिक [[ग्लास हारमोनिका|काँच हारमोनिका]] के नए निर्माण के लिए भी किया जाता है, जिससे इन उपकरणों को ऐतिहासिक रूप से इस्तेमाल किया जाने वाला [[ सीसा क्रिस्टल |सीसा पारदर्शी]] से अधिक गतिशील क्षेत्र और स्पष्ट ध्वनि मिलती है। । | सामान्य तापमान पर इसकी कम यांत्रिक नमी के कारण, इसका उपयोग [[क्यू कारक]] अनुनादक के लिए किया जाता है। उच्च-क्यू गुंजयमान यंत्र, विशेष रूप से कंपन संरचना घूर्णिका चषक अनुनादक के लिए किया जाता है।<ref>[http://www.sensorsmag.com/sensors/acceleration-vibration/an-overview-mems-inertial-sensing-technology-970 An Overview of MEMS Inertial Sensing Technology], February 1, 2003</ref><ref>{{cite journal|last1=Penn|first1=Steven D.|last2=Harry|first2=Gregory M.|last3=Gretarsson|first3=Andri M.|last4=Kittelberger|first4=Scott E.|last5=Saulson|first5=Peter R. |author-link5=Peter Saulson|last6=Schiller|first6=John J.|last7=Smith|first7=Joshua R.|last8=Swords|first8=Sol O.|title=फ्यूज्ड सिलिका में मापा गया उच्च गुणवत्ता कारक|journal=Review of Scientific Instruments|volume=72|issue=9|pages=3670–3673|year=2001|doi=10.1063/1.1394183|arxiv=gr-qc/0009035|bibcode=2001RScI...72.3670P|s2cid=11630697}}</ref> इसी कारण से संगलित स्फटिक़ भी आधुनिक कांच के उपकरणों जैसे काँच वीणा और [[ verrophone |वेर्रोफ़ोन]] के लिए उपयोग की जाने वाली सामग्री है, और इसका उपयोग ऐतिहासिक [[ग्लास हारमोनिका|काँच हारमोनिका]] के नए निर्माण के लिए भी किया जाता है, जिससे इन उपकरणों को ऐतिहासिक रूप से इस्तेमाल किया जाने वाला [[ सीसा क्रिस्टल |सीसा पारदर्शी]] से अधिक गतिशील क्षेत्र और स्पष्ट ध्वनि मिलती है। । | ||
Line 54: | Line 53: | ||
संगलित स्फटिक़ के फैलाव (दृग्विद्या) को निम्नलिखित [[सेलमीयर समीकरण]] द्वारा अनुमानित किया जा सकता है:<ref name=m>{{cite journal|last1=Malitson|first1=I. H.|title=इंटरस्पेसिमेन कंपेरिजन ऑफ द रिफ्रैक्टिव इंडेक्स ऑफ फ्यूज्ड सिलिका|journal=Journal of the Optical Society of America|volume=55|issue=10|pages=1205–1209|date=October 1965|doi=10.1364/JOSA.55.001205 |bibcode=1965JOSA...55.1205M|url=https://www.opticsinfobase.org/DirectPDFAccess/BF3D3BCC-E051-50FE-1CC45E714EE1496A_52806/josa-55-10-1205.pdf |access-date=2014-07-12}}</ref> | संगलित स्फटिक़ के फैलाव (दृग्विद्या) को निम्नलिखित [[सेलमीयर समीकरण]] द्वारा अनुमानित किया जा सकता है:<ref name=m>{{cite journal|last1=Malitson|first1=I. H.|title=इंटरस्पेसिमेन कंपेरिजन ऑफ द रिफ्रैक्टिव इंडेक्स ऑफ फ्यूज्ड सिलिका|journal=Journal of the Optical Society of America|volume=55|issue=10|pages=1205–1209|date=October 1965|doi=10.1364/JOSA.55.001205 |bibcode=1965JOSA...55.1205M|url=https://www.opticsinfobase.org/DirectPDFAccess/BF3D3BCC-E051-50FE-1CC45E714EE1496A_52806/josa-55-10-1205.pdf |access-date=2014-07-12}}</ref> | ||
:<math>\varepsilon=n^2=1+\frac{0.6961663\lambda^2}{\lambda^2-0.0684043^2}+\frac{0.4079426\lambda^2}{\lambda^2-0.1162414^2} + \frac{0.8974794\lambda^2}{\lambda^2-9.896161^2},</math> | :<math>\varepsilon=n^2=1+\frac{0.6961663\lambda^2}{\lambda^2-0.0684043^2}+\frac{0.4079426\lambda^2}{\lambda^2-0.1162414^2} + \frac{0.8974794\lambda^2}{\lambda^2-9.896161^2},</math> | ||
जहां तरंग दैर्ध्य <math>\lambda</math> माइक्रोमीटर में मापा जाता है। यह समीकरण 0.21 और 3.71 माइक्रोन के बीच और 20 डिग्री सेल्सियस पर मान्य है।<ref name=m/> इसकी वैधता की पुष्टि 6.7 μm तक तरंग दैर्ध्य के लिए की गई थी।<ref name=rk>{{cite journal |last1=Kitamura |first1=Rei |last2=Pilon |first2=Laurent |last3=Jonasz |first3=Miroslaw |title=निकट के कमरे के तापमान पर चरम पराबैंगनी से सुदूर इन्फ्रारेड तक सिलिका ग्लास के ऑप्टिकल स्थिरांक|journal=Applied Optics |volume=46 |issue=33 |pages=8118–8133 |date=2007-11-19 |doi=10.1364/AO.46.008118 |pmid=18026551 |url=http://www.seas.ucla.edu/%7Epilon/Publications/AO2007-1.pdf |access-date=2014-07-12|bibcode=2007ApOpt..46.8118K |s2cid=17169097 }}</ref> वास्तविक (अपवर्तक सूचकांक) और काल्पनिक (अवशोषण सूचकांक) भागों के लिए प्रायोगिक आंकड़े संगलित स्फटिक़ के जटिल अपवर्तक सूचकांक के हिस्सों की साहित्य में 30 एनएम से 1000 माइक्रोन तक की वर्णक्रमीय सीमा पर कितामुरा एट अल द्वारा समीक्षा की गई है।<ref name=rk/>और [http://www.seas.ucla.edu/~pilon/downloads.htm ऑनलाइन उपलब्ध] | जहां तरंग दैर्ध्य <math>\lambda</math> माइक्रोमीटर में मापा जाता है। यह समीकरण 0.21 और 3.71 माइक्रोन के बीच और 20 डिग्री सेल्सियस पर मान्य है।<ref name=m/> इसकी वैधता की पुष्टि 6.7 μm तक तरंग दैर्ध्य के लिए की गई थी।<ref name=rk>{{cite journal |last1=Kitamura |first1=Rei |last2=Pilon |first2=Laurent |last3=Jonasz |first3=Miroslaw |title=निकट के कमरे के तापमान पर चरम पराबैंगनी से सुदूर इन्फ्रारेड तक सिलिका ग्लास के ऑप्टिकल स्थिरांक|journal=Applied Optics |volume=46 |issue=33 |pages=8118–8133 |date=2007-11-19 |doi=10.1364/AO.46.008118 |pmid=18026551 |url=http://www.seas.ucla.edu/%7Epilon/Publications/AO2007-1.pdf |access-date=2014-07-12|bibcode=2007ApOpt..46.8118K |s2cid=17169097 }}</ref> वास्तविक (अपवर्तक सूचकांक) और काल्पनिक (अवशोषण सूचकांक) भागों के लिए प्रायोगिक आंकड़े संगलित स्फटिक़ के जटिल अपवर्तक सूचकांक के हिस्सों की साहित्य में 30 एनएम से 1000 माइक्रोन तक की वर्णक्रमीय सीमा पर कितामुरा एट अल द्वारा समीक्षा की गई है।<ref name=rk/>और [http://www.seas.ucla.edu/~pilon/downloads.htm ऑनलाइन उपलब्ध] हैं। | ||
इसकी काफी उच्च [[अब्बे संख्या]] 67.8 इसे दृश्यमान तरंग दैर्ध्य पर सबसे कम फैलाव (दृग्विद्या) चश्मे के साथ-साथ दृश्यमान (एन) <sub>d</sub>= 1.4585) में असाधारण रूप से कम अपवर्तक सूचकांक बनाती है। ध्यान दें कि जुड़े हुए स्फटिक में पारदर्शी स्फटिक की तुलना में बहुत अलग और कम अपवर्तक सूचकांक होता है जो कि अपवर्तक सूचकांक n<sub>o</sub>= 1.5443 और n<sub>e</sub>= 1.5534 के साथ समान तरंग दैर्ध्य पर द्विअपवर्तक होता है। हालांकि इन रूपों का एक ही रासायनिक सूत्र है, उनकी भिन्न संरचनाओं के परिणामस्वरूप विभिन्न दृक् और अन्य भौतिक गुण होते हैं। | इसकी काफी उच्च [[अब्बे संख्या]] 67.8 इसे दृश्यमान तरंग दैर्ध्य पर सबसे कम फैलाव (दृग्विद्या) चश्मे के साथ-साथ दृश्यमान (एन) <sub>d</sub>= 1.4585) में असाधारण रूप से कम अपवर्तक सूचकांक बनाती है। ध्यान दें कि जुड़े हुए स्फटिक में पारदर्शी स्फटिक की तुलना में बहुत अलग और कम अपवर्तक सूचकांक होता है जो कि अपवर्तक सूचकांक n<sub>o</sub>= 1.5443 और n<sub>e</sub>= 1.5534 के साथ समान तरंग दैर्ध्य पर द्विअपवर्तक होता है। हालांकि इन रूपों का एक ही रासायनिक सूत्र है, उनकी भिन्न संरचनाओं के परिणामस्वरूप विभिन्न दृक् और अन्य भौतिक गुण होते हैं। | ||
Line 86: | Line 85: | ||
}}</ref> | }}</ref> | ||
*चुंबकीय संवेदनशीलता: -11.28 × 10<sup>-6</sup> (एसआई, 22 डिग्री सेल्सियस)<ref>{{cite journal|last1=Wapler|first1=M. C.|last2=Leupold|first2=J.|last3=Dragonu|first3=I.|last4=von Elverfeldt|first4=D.|last5=Zaitsev|first5=M.|last6=Wallrabe|first6=U.|title=एमआर इंजीनियरिंग, माइक्रो-एमआर और उससे आगे के लिए सामग्री के चुंबकीय गुण|journal=JMR|date=2014|volume=242|pages=233–242|doi=10.1016/j.jmr.2014.02.005|arxiv=1403.4760|bibcode=2014JMagR.242..233W|pmid=24705364|s2cid=11545416}}</ref> | *चुंबकीय संवेदनशीलता: -11.28 × 10<sup>-6</sup> (एसआई, 22 डिग्री सेल्सियस)<ref>{{cite journal|last1=Wapler|first1=M. C.|last2=Leupold|first2=J.|last3=Dragonu|first3=I.|last4=von Elverfeldt|first4=D.|last5=Zaitsev|first5=M.|last6=Wallrabe|first6=U.|title=एमआर इंजीनियरिंग, माइक्रो-एमआर और उससे आगे के लिए सामग्री के चुंबकीय गुण|journal=JMR|date=2014|volume=242|pages=233–242|doi=10.1016/j.jmr.2014.02.005|arxiv=1403.4760|bibcode=2014JMagR.242..233W|pmid=24705364|s2cid=11545416}}</ref> | ||
*हैमेकर स्थिरांक: A = 6.5 × 10<sup>-20</sup> | *हैमेकर स्थिरांक: A = 6.5 × 10<sup>-20</sup> J. | ||
*[[सतह तनाव]]: 0.300 N/m 1800-2400 डिग्री सेल्सियस पर<ref>[http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-2-8-1101 Surface tension and viscosity measurement of optical glasses using a scanning CO<sub>2</sub> laser ]</ref> | *[[सतह तनाव]]: 0.300 N/m 1800-2400 डिग्री सेल्सियस पर<ref>[http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-2-8-1101 Surface tension and viscosity measurement of optical glasses using a scanning CO<sub>2</sub> laser ]</ref> | ||
*[[अपवर्तक सूचकांक]]: एन<sub>d</sub> = 1.4585 (587.6 एनएम पर) | *[[अपवर्तक सूचकांक]]: एन<sub>d</sub> = 1.4585 (587.6 एनएम पर) | ||
*तापमान के साथ अपवर्तक सूचकांक में परिवर्तन: 1.28 × 10<sup>−5</sup>/के (20–30 डिग्री सेल्सियस)<ref name="m"/> | *तापमान के साथ अपवर्तक सूचकांक में परिवर्तन: 1.28 × 10<sup>−5</sup>/के (20–30 डिग्री सेल्सियस)<ref name="m"/> | ||
*[[तनाव-ऑप्टिक गुणांक|तनाव-दृक् गुणांक]]: | *[[तनाव-ऑप्टिक गुणांक|तनाव-दृक् गुणांक]]: P<sub>11</sub> = 0.113, पृ<sub>12</sub> = 0.252। | ||
* अब्बे संख्या: Vd = 67.82<ref>{{Cite web|url=https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson|title=फ्यूज्ड सिलिका (फ्यूज्ड क्वार्ट्ज) का अपवर्तक सूचकांक|website=Refractive Index|access-date=2017-08-18}}</ref> | * अब्बे संख्या: Vd = 67.82<ref>{{Cite web|url=https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson|title=फ्यूज्ड सिलिका (फ्यूज्ड क्वार्ट्ज) का अपवर्तक सूचकांक|website=Refractive Index|access-date=2017-08-18}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[ व्यकोर ]] | * [[ व्यकोर |व्यकोर]] | ||
* [[तरल पदार्थ और चश्मे की संरचना|तरल पदार्थ और काँच की संरचना]] | * [[तरल पदार्थ और चश्मे की संरचना|तरल पदार्थ और काँच की संरचना]] | ||
*[[क्वार्ट्ज फाइबर|स्फटिक तंतु]] | *[[क्वार्ट्ज फाइबर|स्फटिक तंतु]] |
Revision as of 11:53, 5 April 2023
संगलित स्फटिक, संगलित सिलिका या स्फटिक काँच एक काँच है जिसमें लगभग शुद्ध सिलिकॉन डाइऑक्साइड (सिलिकॉन डाइऑक्साइड, SiO2) आकारहीन (गैर-पारदर्शी) रूप में होती है। यह अन्य सभी व्यावसायिक सोडा नींबू गिलास से अलग है जिसमें अन्य सामग्री मिलाई जाती है जो काँच के दृक् और भौतिक गुणों को बदल देती है, जैसे कि पिघले हुए तापमान को कम करना। इसलिए, संगलित स्फटिक में उच्च कार्य और पिघलने का तापमान होता है, जिससे यह अधिकांश सामान्य अनुप्रयोगों के लिए कम वांछनीय हो जाता है।
संगलित स्फटिक़ और संगलित सिलिका का उपयोग परस्पर विनिमय के लिए किया जाता है, लेकिन विभिन्न निर्माण तकनीकों का उल्लेख कर सकते हैं, जैसा कि नीचे बताया गया है, जिसके परिणामस्वरूप विभिन्न अनुरेख अशुद्धियाँ होती हैं। हालांकि संगलित स्फटिक, अनाकार ठोस में होने के कारण, पारदर्शी स्फटिक की तुलना में काफी अलग भौतिक गुण हैं।[2] उदाहरण के लिए, इसके भौतिक गुणों के कारण यह अर्धचालक निर्माण और प्रयोगशाला उपकरणों में विशेष उपयोग पाता है।
अन्य सामान्य चश्मे की तुलना में, शुद्ध सिलिका का दृक् संचरण पराबैंगनी और अवरक्त तरंग दैर्ध्य में अच्छी तरह से फैलता है, इसलिए इन तरंग दैर्ध्य के लिए लेंस (प्रकाशिकी) और अन्य प्रकाशिकी बनाने के लिए उपयोग किया जाता है। निर्माण प्रक्रियाओं के आधार पर, अशुद्धियाँ दृक् संप्रेषण को प्रतिबंधित कर देंगी, जिसके परिणामस्वरूप संगलित स्फटिक़ के वाणिज्यिक कोटि अवरक्त में या (फिर अधिक बार संगलित सिलिका के रूप में संदर्भित) पराबैंगनी में उपयोग के लिए अनुकूलित होंगे। संगलित स्फटिक के ऊष्मीय विस्तार का कम गुणांक इसे सटीक दर्पण क्रियाधार के लिए उपयोगी सामग्री बनाता है।[3]
निर्माण
संगलित स्फटिक उच्च शुद्धता वाली सिलिका रेत को पिघलाने (पिघलने) द्वारा निर्मित होता है, जिसमें स्फटिक पारदर्शी होते हैं। वाणिज्यिक सिलिका काँच के चार मूल प्रकार हैं:
- प्रकार I एक निर्वात या एक निष्क्रिय वातावरण में प्राकृतिक स्फटिक को पिघलाकर प्रेरण द्वारा निर्मित किया जाता है।
- प्रकार II एक उच्च तापमान वाली लौ में स्फटिक पारदर्शी चूर्ण को संगलित करके बनाया जाता है।
- प्रकार III हाइड्रोजन-ऑक्सीजन की लौ में सिलिकॉन टेट्राक्लोराइड को जलाने से निर्मित होता है।
- प्रकार IV एक जल वाष्प मुक्त प्लाज्मा लौ में SiCl4 को जलाने से निर्मित होता है।[4]
स्फटिक में केवल सिलिकॉन और ऑक्सीजन होता है, हालांकि वाणिज्यिक स्फटिक काँच में प्रायः अशुद्धियाँ होती हैं। दो प्रमुख अशुद्धियाँ अल्युमीनियम और टाइटेनियम हैं[5] जो पराबैंगनी तरंग दैर्ध्य पर दृक् संप्रेषण को प्रभावित करते हैं। यदि निर्माण प्रक्रिया में पानी उपस्थित है, तो हाइड्रॉकसिल (ओएच) समूह अंतः स्थापित हो सकते हैं जो अवरक्त में संचरण को कम करता है।
संयोजन
पिघलने को लगभग 2200 डिग्री सेल्सियस (4000 डिग्री फ़ारेनहाइट) पर या तो विद्युत रूप से गर्म भट्टी (विद्युत रूप से जुड़े हुए) या गैस/ऑक्सीजन-ईंधन वाली भट्टी (अग्नि-संगलित) का उपयोग करके प्रभावित किया जाता है।[6] संगलित सिलिका को लगभग किसी भी सिलिकॉन युक्त रासायनिक अग्रदूत से बनाया जा सकता है, सामान्यतः एक सतत प्रक्रिया का उपयोग करते हुए जिसमें सिलिकॉन डाइऑक्साइड के लिए वाष्पशील सिलिकॉन यौगिकों की लौ ऑक्सीकरण और परिणामी धूल का ऊष्मीय संलयन सम्मिलित होता है (हालांकि वैकल्पिक प्रक्रियाओं का उपयोग किया जाता है)। इसका परिणाम अत्युच्च शुद्धता के साथ एक पारदर्शी काँच में होता है और गहरे पराबैंगनी में बेहतर दृक् संप्रेषण होता है। एक सामान्य विधि में सिलिकॉन टेट्राक्लोराइड को हाइड्रोजन-ऑक्सीजन लौ में जोड़ना सम्मिलित है।[citation needed]
उत्पाद की गुणवत्ता
संगलित स्फटिक सामान्य रूप से पारदर्शी होता है। हालाँकि, सामग्री पारभासी हो सकती है यदि छोटे हवा के बुलबुले को अंदर फंसने दिया जाए। संगलित स्फटिक की जल सामग्री (और इसलिए अवरक्त संप्रेषण) निर्माण प्रक्रिया द्वारा निर्धारित की जाती है। लौ-संगलित सामग्री में हाइड्रोकार्बन और ऑक्सीजन के संयोजन के कारण भट्टी को ईंधन देने के कारण सामग्री के भीतर हाइड्रॉक्सिल [ओएच] समूह बनाने के कारण हमेशा पानी की मात्रा अधिक होती है। एक आईआर श्रेणी सामग्री में सामान्यतः 10 पीपीएम से कम [ओएच] सामग्री होती है।[citation needed]
अनुप्रयोग
संगलित स्फटिक के कई दृक् अनुप्रयोग इसकी व्यापक पारदर्शिता सीमा का उपयोग करते हैं, जो पराबैंगनी और निकट-मध्य अवरक्त में अच्छी तरह से विस्तार कर सकते हैं। संगलित स्फटिक प्रकाशित तंतु के लिए प्रमुख प्रारम्भिक सामग्री है, जिसका उपयोग दूरसंचार के लिए किया जाता है।
इसकी ताकत और उच्च पिघलने बिंदु (साधारण कांच की तुलना में) के कारण, संगलित स्फटिक का उपयोग हलोजन लालटेन और उच्च तीव्रता वाले निर्वहन लालटेन के लिए एक आवरण के रूप में किया जाता है, जो उच्च चमक और लंबे जीवन के संयोजन को प्राप्त करने के लिए उच्च आवरण तापमान पर काम करना चाहिए। कुछ उच्च-शक्ति वाले निर्वात - नालिका में सिलिका आवरण का इस्तेमाल किया गया था, जिनके अवरक्त तरंग दैर्ध्य पर अच्छे संचरण ने उनके तापदीप्त धनाग्र के विकिरण शीतलन की सुविधा प्रदान की।
इसकी शारीरिक शक्ति के कारण, संगलित स्फटिक का उपयोग गहरे निमज्जन जहाजों जैसे कि बॉथस्फीयर और बेंटोस्कोप में और अंतरिक्ष यान और अंतरराष्ट्रीय अंतरिक्ष केन्द्र सहित चालक दल के अंतरिक्ष यान की खिड़कियों में किया गया था।[7]
अर्धचालक उद्योग में, इसकी ताकत, ऊष्मीय स्थिरता और यूवी पारदर्शिता का संयोजन इसे भाश्मलेखन के लिए प्रक्षेपण आच्छद के लिए एक उत्कृष्ट क्रियाधार बनाता है।
इसकी यूवी पारदर्शिता भी EPROMs (व्यामार्जनीय क्रमादेश्य केवल पठन स्मृति) पर विंडोज़ के रूप में उपयोग करती है, यह एक प्रकार की गैर-वाष्पशील स्मृति तंत्र एकीकृत परिपथ है जो मजबूत पराबैंगनी प्रकाश के संपर्क में आने से मिट जाती है। ईपीरोम पारदर्शी संगलित स्फटिक (हालांकि कुछ बाद के प्रतिरूप यूवी-पारदर्शी राल का उपयोग करते हैं) विंडो द्वारा पहचाने जाते हैं जो संवेष्टक के शीर्ष पर बैठता है, जिसके माध्यम से सिलिकॉन चिप दिखाई देती है, और जो मिटाने के लिए यूवी प्रकाश को प्रसारित करती है।[8][9]
ऊष्मीय स्थिरता और संरचना के कारण, इसका उपयोग 5D दृक् डाटा भंडारण और अर्धचालक निर्माण भट्टियों में किया जाता है[10]।[11][12]
संगलित स्फटिक़ में पहले सतह के दर्पणों को बनाने के लिए लगभग आदर्श गुण होते हैं जैसे कि दूरबीन में उपयोग किया जाता है। सामग्री अनुमानित तरीके से व्यवहार करती है और दृक् फैब्रिकेटर को सतह पर बहुत सुचारू परिमार्जन लगाने और कम परीक्षण पुनरावृत्तियों के साथ वांछित आकृति का उत्पादन करने की अनुमति देती है। कुछ उदाहरणों में, संगलित स्फटिक़ के एक उच्च शुद्धता वाले यूवी श्रेणी का उपयोग विशेष-उद्देश्य लेंसों के अलग-अलग अलेपित लेंस तत्वों में से कई को बनाने के लिए किया गया है, जिसमें जीस 105 mm f/4.3 UV सोनार सम्मिलित है, एक लेंस जिसे पहले हैसलब्लैड कैमरे के लिए बनाया गया था, और निकोन यूवी-निक्कोर 105 mm f/4.5 (वर्तमान में निकोन PF10545MF-UV के रूप में बेचा जाता है) लेंस। इन लेंसों का उपयोग यूवी छायाचित्रण के लिए किया जाता है, क्योंकि स्फटिक काँच अधिक सामान्य फ्लिंट कांच या क्राउन काँच (दृग्विद्या) सिद्धांत से बने लेंसों की तुलना में बहुत कम तरंग दैर्ध्य पर पारदर्शी हो सकता है।
संगलित स्फटिक़ को उच्च परिशुद्धता वाले सूक्ष्मतरंग परिपथ के लिए एक क्रियाधार के रूप में उपयोग करने के लिए धातुकृत और उकेरा जा सकता है, ऊष्मीय स्थिरता इसे संकीर्ण बैंड निस्यन्दक और इसी तरह की मांग वाले अनुप्रयोगों के लिए एक अच्छा विकल्प बनाती है। एल्यूमिना की तुलना में कम ढांकता हुआ स्थिरांक उच्च प्रतिबाधा पट्टी या पतले क्रियाधार की अनुमति देता है।
दुर्दम्य सामग्री अनुप्रयोग
एक औद्योगिक अपरिष्कृत सामग्री के रूप में जुड़े हुए स्फटिक का उपयोग विभिन्न दुर्दम्य आकृतियों जैसे घरिया, पटल, आवरण और बेल्लोर्मि को कई उच्च तापमान वाली ऊष्मीय प्रक्रियाओं के लिए किया जाता है, जिसमें इस्पात निर्माण, निवेश विमुंचन और काँच निर्माण सम्मिलित हैं। संगलित किए गए स्फटिक से बने दुर्दम्य आकृतियों में उत्कृष्ट ऊष्मीय प्रघात प्रतिरोध होता है और अधिकांश तत्वों और यौगिकों के लिए रासायनिक रूप से निष्क्रिय होते हैं, जिनमेंहाइड्रोफ्लुओरिक अम्ल को छोड़कर, एकाग्रता की परवाह किए बिना लगभग सभी अम्ल सम्मिलित होते हैं, जो काफी कम सांद्रता में भी बहुत प्रतिक्रियाशील होते हैं। पारभासी संगलित-स्फटिक नलिका सामान्यतः स्फटिक तापक, औद्योगिक भट्टियों और अन्य समान अनुप्रयोगों के लिए उपयोग की जाती हैं।
सामान्य तापमान पर इसकी कम यांत्रिक नमी के कारण, इसका उपयोग क्यू कारक अनुनादक के लिए किया जाता है। उच्च-क्यू गुंजयमान यंत्र, विशेष रूप से कंपन संरचना घूर्णिका चषक अनुनादक के लिए किया जाता है।[13][14] इसी कारण से संगलित स्फटिक़ भी आधुनिक कांच के उपकरणों जैसे काँच वीणा और वेर्रोफ़ोन के लिए उपयोग की जाने वाली सामग्री है, और इसका उपयोग ऐतिहासिक काँच हारमोनिका के नए निर्माण के लिए भी किया जाता है, जिससे इन उपकरणों को ऐतिहासिक रूप से इस्तेमाल किया जाने वाला सीसा पारदर्शी से अधिक गतिशील क्षेत्र और स्पष्ट ध्वनि मिलती है। ।
स्फटिक काँचवेयर का उपयोग कभी-कभी रसायन विज्ञान प्रयोगशालाओं में किया जाता है जब मानक बोरोसिल काँच उच्च तापमान का सामना नहीं कर सकता है या जब उच्च यूवी संचरण की आवश्यकता होती है। उत्पादन की लागत काफी अधिक है, इसके उपयोग को सीमित करना; यह सामान्यतः एकल मूल तत्व के रूप में पाया जाता है, जैसे कि भट्टी में एक नलिका, या संचन पेटी के रूप में, गर्मी के सीधे संपर्क में आने वाले तत्व।
संगलित स्फटिक के गुण
ऊष्मीय विस्तार का बेहद कम गुणांक, लगभग 5.5×10−7/K (20–320 डिग्री सेल्सियस), बिना दरार के बड़े, तेज तापमान परिवर्तन से पारित होने की इसकी उल्लेखनीय क्षमता के लिए जिम्मेदारी है (ऊष्मीय शॉक देखें)।
संगलित स्फटिक तीव्र यूवी रोशनी के तहत स्फुरदीप्ति और आतपन (भौतिकी) (बैंगनी विवर्णता) के लिए प्रवण होता है, जैसा कि प्रायः फ्लैशट्यूब में देखा जाता है। यूवी श्रेणी कृत्रिम संगलित सिलिका (एचपीएफएस, स्पेक्ट्रोसिल और सुप्रासिल सहित विभिन्न व्यापारिक नामों के तहत बेची गई) में बहुत कम धात्विक अशुद्धता सामग्री होती है जो इसे पराबैंगनी में पारदर्शी बनाती है। 1 सेमी की मोटाई वाले एक दृक् में 170 एनएम के तरंग दैर्ध्य पर लगभग 50% संप्रेषण होता है, जो 160 एनएम पर केवल कुछ प्रतिशत तक गिर जाता है। हालांकि, इसका अवरक्त संप्रेषण 2.2 μm और 2.7 μm पर मजबूत जल अवशोषण द्वारा सीमित है।
अवरक्त श्रेणी संगलित स्फटिक़ (व्यापारिक नाम इन्फ्रासिल, विट्रोसिल आईआर, और अन्य), जो विद्युत रूप से जुड़ा हुआ है, धातु की अशुद्धियों की अधिक उपस्थिति है, इसकी यूवी संप्रेषण तरंग दैर्ध्य को लगभग 250 एनएम तक सीमित करता है, लेकिन पानी की मात्रा बहुत कम है, जिससे उत्कृष्ट अवरक्त संचरण 3.6 μm तरंग दैर्ध्य तक होता है। सभी श्रेणी के पारदर्शी संगलित स्फटिक/संगलित सिलिका में लगभग समान यांत्रिक गुण होते हैं।
अपवर्तक सूचकांक
संगलित स्फटिक़ के फैलाव (दृग्विद्या) को निम्नलिखित सेलमीयर समीकरण द्वारा अनुमानित किया जा सकता है:[15]
जहां तरंग दैर्ध्य माइक्रोमीटर में मापा जाता है। यह समीकरण 0.21 और 3.71 माइक्रोन के बीच और 20 डिग्री सेल्सियस पर मान्य है।[15] इसकी वैधता की पुष्टि 6.7 μm तक तरंग दैर्ध्य के लिए की गई थी।[4] वास्तविक (अपवर्तक सूचकांक) और काल्पनिक (अवशोषण सूचकांक) भागों के लिए प्रायोगिक आंकड़े संगलित स्फटिक़ के जटिल अपवर्तक सूचकांक के हिस्सों की साहित्य में 30 एनएम से 1000 माइक्रोन तक की वर्णक्रमीय सीमा पर कितामुरा एट अल द्वारा समीक्षा की गई है।[4]और ऑनलाइन उपलब्ध हैं।
इसकी काफी उच्च अब्बे संख्या 67.8 इसे दृश्यमान तरंग दैर्ध्य पर सबसे कम फैलाव (दृग्विद्या) चश्मे के साथ-साथ दृश्यमान (एन) d= 1.4585) में असाधारण रूप से कम अपवर्तक सूचकांक बनाती है। ध्यान दें कि जुड़े हुए स्फटिक में पारदर्शी स्फटिक की तुलना में बहुत अलग और कम अपवर्तक सूचकांक होता है जो कि अपवर्तक सूचकांक no= 1.5443 और ne= 1.5534 के साथ समान तरंग दैर्ध्य पर द्विअपवर्तक होता है। हालांकि इन रूपों का एक ही रासायनिक सूत्र है, उनकी भिन्न संरचनाओं के परिणामस्वरूप विभिन्न दृक् और अन्य भौतिक गुण होते हैं।
भौतिक गुणों की सूची
- घनत्व: 2.203 ग्राम/सेमी3
- खनिज कठोरता का मोह मापक्रम: 5.3–6.5 (मोह्स मापक्रम), 8.8 पास्कल (इकाई)
- परम तन्य शक्ति: 48.3 पास्कल (यूनिट)
- संपीड़न शक्ति: > 1.1 GPa
- आयतन प्रत्यास्थता गुणांक: ~37 GPa
- कतरनी मापांक: 31 GPa
- यंग मापांक: 71.7 GPa
- पॉइसन का अनुपात: 0.17
- लैम तन्य स्थिरांक: λ = 15.87 GPa, μ = 31.26 GPa
- ऊष्मीय विस्तार का गुणांक: 5.5 × 10-7/के (औसत 20–320 डिग्री सेल्सियस)
- तापीय चालकता: 1.3 W/(m·K)
- व्यापक और गहन मात्रा: 45.3 J/(mol·K)
- मृदुलन बिंदु: ≈ 1665 डिग्री सेल्सियस
- अनीलनांक: ≈ 1140 डिग्री सेल्सियस
- अनीलनांक: 1070 डिग्री सेल्सियस
- विद्युत प्रतिरोधकता और चालकता: > 1018 Ω·मी
- सापेक्ष पारगम्यता: 3.75 20 डिग्री सेल्सियस 1 मेगाहर्ट्ज पर
- क्षीणन स्थिरांक: 0.0004 से कम 20 °C 1 मेगाहर्ट्ज सामान्यतः 6 × 10−5 10 GHz पर[16]
- परावैद्युत सामर्थ्य: 250-400 केवी/सेमी 20 डिग्री सेल्सियस पर[17]
- चुंबकीय संवेदनशीलता: -11.28 × 10-6 (एसआई, 22 डिग्री सेल्सियस)[18]
- हैमेकर स्थिरांक: A = 6.5 × 10-20 J.
- सतह तनाव: 0.300 N/m 1800-2400 डिग्री सेल्सियस पर[19]
- अपवर्तक सूचकांक: एनd = 1.4585 (587.6 एनएम पर)
- तापमान के साथ अपवर्तक सूचकांक में परिवर्तन: 1.28 × 10−5/के (20–30 डिग्री सेल्सियस)[15]
- तनाव-दृक् गुणांक: P11 = 0.113, पृ12 = 0.252।
- अब्बे संख्या: Vd = 67.82[20]
यह भी देखें
संदर्भ
- ↑ Hardwood, W. (20 April 2004). "Spacecraft launched to test Albert Einstein's theories". Spaceflight Now. Retrieved 14 May 2009.
- ↑ "Quartz vs. Fused Silica: What's the Difference?". Swift Glass (in English). 2015-09-08. Retrieved 2017-08-18.
- ↑ De Jong, Bernard H. W. S.; Beerkens, Ruud G. C.; Van Nijnatten, Peter A. (2000). "Glass". उलमन्स एनसाइक्लोपीडिया ऑफ इंडस्ट्रियल केमिस्ट्री. doi:10.1002/14356007.a12_365. ISBN 3-527-30673-0.
- ↑ 4.0 4.1 4.2 Kitamura, Rei; Pilon, Laurent; Jonasz, Miroslaw (2007-11-19). "निकट के कमरे के तापमान पर चरम पराबैंगनी से सुदूर इन्फ्रारेड तक सिलिका ग्लास के ऑप्टिकल स्थिरांक" (PDF). Applied Optics. 46 (33): 8118–8133. Bibcode:2007ApOpt..46.8118K. doi:10.1364/AO.46.008118. PMID 18026551. S2CID 17169097. Retrieved 2014-07-12.
- ↑ Chemical purity of fused quartz / fused silica, www.heraeus-quarzglas.com
- ↑ Varshneya, Arun K. (2019). अकार्बनिक चश्मे के मूल तत्व. John C. Mauro. Amsterdam. ISBN 978-0-12-816226-2. OCLC 1101101049.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Salem, Jonathan (2012). "अंतरिक्ष यान विंडोज के रूप में पारदर्शी कवच सिरेमिक". Journal of the American Ceramic Society.
{{cite web}}
: zero width space character in|title=
at position 45 (help) - ↑ "Intel 1702A 2K (256 x 8) UV Erasable PROM" (PDF).
{{cite web}}
: CS1 maint: url-status (link) - ↑ "सीपीयू इतिहास - ईपीरोम". www.cpushack.com. Retrieved 2021-05-12.
- ↑ Kazansky, P.; et al. (11 March 2016). "Eternal 5D data storage via ultrafast-laser writing in glass". SPIE Newsroom.
- ↑ "सेमीकंडक्टर अनुप्रयोगों के लिए फ्यूज्ड क्वार्ट्ज और सिलिका प्लेट्स". Heraeus Holding GmbH (in English). Retrieved 2022-08-07.
- ↑ "क्वार्ट्ज गुण". finkenbeiner.com. Retrieved 2022-08-07.
- ↑ An Overview of MEMS Inertial Sensing Technology, February 1, 2003
- ↑ Penn, Steven D.; Harry, Gregory M.; Gretarsson, Andri M.; Kittelberger, Scott E.; Saulson, Peter R.; Schiller, John J.; Smith, Joshua R.; Swords, Sol O. (2001). "फ्यूज्ड सिलिका में मापा गया उच्च गुणवत्ता कारक". Review of Scientific Instruments. 72 (9): 3670–3673. arXiv:gr-qc/0009035. Bibcode:2001RScI...72.3670P. doi:10.1063/1.1394183. S2CID 11630697.
- ↑ 15.0 15.1 15.2 Malitson, I. H. (October 1965). "इंटरस्पेसिमेन कंपेरिजन ऑफ द रिफ्रैक्टिव इंडेक्स ऑफ फ्यूज्ड सिलिका" (PDF). Journal of the Optical Society of America. 55 (10): 1205–1209. Bibcode:1965JOSA...55.1205M. doi:10.1364/JOSA.55.001205. Retrieved 2014-07-12.
- ↑ "कीसाइट टेक्नोलॉजीज जेनेसिस कॉन्सेप्ट्स" (PDF). Keysight Technologies.
- ↑ "Fused Silica". OpticsLand. Archived from the original on 2013-06-02. Retrieved 2016-02-27.
- ↑ Wapler, M. C.; Leupold, J.; Dragonu, I.; von Elverfeldt, D.; Zaitsev, M.; Wallrabe, U. (2014). "एमआर इंजीनियरिंग, माइक्रो-एमआर और उससे आगे के लिए सामग्री के चुंबकीय गुण". JMR. 242: 233–242. arXiv:1403.4760. Bibcode:2014JMagR.242..233W. doi:10.1016/j.jmr.2014.02.005. PMID 24705364. S2CID 11545416.
- ↑ Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser
- ↑ "फ्यूज्ड सिलिका (फ्यूज्ड क्वार्ट्ज) का अपवर्तक सूचकांक". Refractive Index. Retrieved 2017-08-18.
बाहरी संबंध
- "Frozen Eye to Bring New Worlds into View" Popular Mechanics, June 1931 General Electrics, West Lynn Massachusetts Labs work on large fuzed quartz blocks