माध्य: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
सांख्यिकी गणित में कई प्रकार के माध्य होते हैं प्रत्येक माध्य डेटा के दिए गए समूह को सारांशित करने का कार्य करता है अधिकतर किसी दिए गए [[डेटा सेट]] के समग्र मूल्य [[परिमाण (गणित)|परिमाण]] और चिह्न गणित को बेहतर ढंग से समझने के लिए माध्य सांख्यिकी का प्रयोग किया जाता है। | |||
संभाव्यता और सांख्यिकी के बाहर | |||
एक डेटा सेट को ''अंकगणितीय माध्य तथा'' अंकगणितीय औसत के रूप में भी जाना है संख्याओं के परिमित सेट की [[केंद्रीय प्रवृत्ति]] का एक उपाय है विशेष रूप से मानों की संख्या से विभाजित मानों का योग संख्याओं के समूह ''x'' का अंकगणितीय माध्य<sub>1</sub> एक्स<sub>2</sub> पर [[ओवरहेड बार]] का उपयोग करके दर्शाया जाता है <math>\bar{x}</math> कहते हैं{{refn|Pronounced "''x'' bar".|group="note"}} यदि डेटा सेट एक सांख्यिकीय आबादी से नमूने सांख्यिकी द्वारा प्राप्त टिप्पणियों की एक श्रृंखला पर आधारित थे तो अंकगणितीय माध्य [[नमूना माध्य]] है (<math>\bar{x}</math>) इसे अंतर्निहित वितरण के माध्य या अपेक्षित मान से अलग करने के लिए जनसंख्या माध्य <ref>Underhill, L.G.; Bradfield d. (1998) ''Introstat'', Juta and Company Ltd. {{isbn|0-7021-3838-X}} [https://books.google.com/books?id=f6TlVjrSAsgC&pg=PA181 p. 181]</ref>संभाव्यता और सांख्यिकी के बाहर माध्य की अन्य धारणाओं की एक विस्तृत श्रृंखला का उपयोग अधिकतर [[ज्यामिति]] और [[गणितीय विश्लेषण]] में किया जाता है । | |||
== साधनों के प्रकार == | == साधनों के प्रकार == | ||
Line 12: | Line 12: | ||
{{Main|Pythagorean means}} | {{Main|Pythagorean means}} | ||
==== अंकगणितीय माध्य | ==== अंकगणितीय माध्य ==== | ||
संख्याओं की सूची का अंकगणितीय माध्य | संख्याओं की सूची का अंकगणितीय माध्य संख्याओं की संख्या से विभाजित सभी संख्याओं का योग है इसी तरह एक नमूने का अर्थ <math>x_1,x_2,\ldots,x_n</math> इसे x द्वारा निरूपित किया जाता है <math>\bar{x}</math> नमूने में आइटमों की संख्या से विभाजित किया जाता है । | ||
:<math> \bar{x} = \frac{1}{n}\left (\sum_{i=1}^n{x_i}\right ) = \frac{x_1+x_2+\cdots +x_n}{n} </math> | :<math> \bar{x} = \frac{1}{n}\left (\sum_{i=1}^n{x_i}\right ) = \frac{x_1+x_2+\cdots +x_n}{n} </math> | ||
उदाहरण के लिए | उदाहरण के लिए पाँच मानों का अंकगणितीय माध्य: 4, 36, 45, 50, 75 है | ||
:<math>\frac{4+36+45+50+75}{5} = \frac{210}{5} = 42.</math> | :<math>\frac{4+36+45+50+75}{5} = \frac{210}{5} = 42.</math> | ||
==== ज्यामितीय माध्य (जीएम) ==== | ==== ज्यामितीय माध्य (जीएम) ==== | ||
ज्यामितीय माध्य एक औसत है जो सकारात्मक संख्याओं के सेट के लिए उपयोगी होता है | ज्यामितीय माध्य एक औसत है जो सकारात्मक संख्याओं के सेट के लिए उपयोगी होता है जो कि उनके उत्पाद के अनुसार व्याख्या की जाती है और उनकी राशि नहीं होती है । | ||
:<math>\bar{x} = \left( \prod_{i=1}^n{x_i} \right )^\frac{1}{n} = \left(x_1 x_2 \cdots x_n \right)^\frac{1}{n}</math> <ref name=":2">{{Cite web|title=Mean {{!}} mathematics|url=https://www.britannica.com/science/mean|access-date=2020-08-21|website=Encyclopedia Britannica|language=en}}</ref> | :<math>\bar{x} = \left( \prod_{i=1}^n{x_i} \right )^\frac{1}{n} = \left(x_1 x_2 \cdots x_n \right)^\frac{1}{n}</math> <ref name=":2">{{Cite web|title=Mean {{!}} mathematics|url=https://www.britannica.com/science/mean|access-date=2020-08-21|website=Encyclopedia Britannica|language=en}}</ref> | ||
उदाहरण के लिए | उदाहरण के लिए पाँच मानों का ज्यामितीय माध्य: 4, 36, 45, 50, 75 है | ||
:<math>(4 \times 36 \times 45 \times 50 \times 75)^\frac{1}{5} = \sqrt[5]{24\;300\;000} = 30.</math> | :<math>(4 \times 36 \times 45 \times 50 \times 75)^\frac{1}{5} = \sqrt[5]{24\;300\;000} = 30.</math> | ||
==== [[अनुकूल माध्य]] (एचएम) ==== | ==== [[अनुकूल माध्य]] (एचएम) ==== | ||
हार्मोनिक माध्य एक औसत है जो संख्याओं के सेट के लिए उपयोगी होता है जो माप की किसी इकाई के संबंध में परिभाषित होते हैं | हार्मोनिक माध्य एक औसत है जो संख्याओं के सेट के लिए उपयोगी होता है जो माप की किसी इकाई के संबंध में परिभाषित होते हैं | ||
:<math> \bar{x} = n \left ( \sum_{i=1}^n \frac{1}{x_i} \right ) ^{-1}</math> | :<math> \bar{x} = n \left ( \sum_{i=1}^n \frac{1}{x_i} \right ) ^{-1}</math> | ||
उदाहरण के लिए, पाँच मानों का हार्मोनिक माध्य | उदाहरण के लिए, पाँच मानों का हार्मोनिक माध्य 4, 36, 45, 50, 75 है | ||
:<math>\frac{5}{\tfrac{1}{4}+\tfrac{1}{36}+\tfrac{1}{45} + \tfrac{1}{50} + \tfrac{1}{75}} = \frac{5}{\;\tfrac{1}{3}\;} = 15.</math> | :<math>\frac{5}{\tfrac{1}{4}+\tfrac{1}{36}+\tfrac{1}{45} + \tfrac{1}{50} + \tfrac{1}{75}} = \frac{5}{\;\tfrac{1}{3}\;} = 15.</math> | ||
==== | ==== अंकगणित माध्य, ज्यामितीय माध्य और अनुकूल माध्य के बीच संबंध ==== | ||
{{ | {{अंकगणितीय माध्य, ज्यामिति माध्य, अनुकूल माध्य}} | ||
{{Main|Inequality of arithmetic and geometric means}} | {{Main|Inequality of arithmetic and geometric means}} | ||
अंकगणितीय माध्य, ज्यामितिय माध्य और अनुकूल माध्य इन असमानताओं को संतुष्ट करते हैं। | |||
:<math> \mathrm{AM} \ge \mathrm{GM} \ge \mathrm{HM} \, </math> | :<math> \mathrm{AM} \ge \mathrm{GM} \ge \mathrm{HM} \, </math> |
Revision as of 17:33, 2 April 2023
सांख्यिकी गणित में कई प्रकार के माध्य होते हैं प्रत्येक माध्य डेटा के दिए गए समूह को सारांशित करने का कार्य करता है अधिकतर किसी दिए गए डेटा सेट के समग्र मूल्य परिमाण और चिह्न गणित को बेहतर ढंग से समझने के लिए माध्य सांख्यिकी का प्रयोग किया जाता है।
एक डेटा सेट को अंकगणितीय माध्य तथा अंकगणितीय औसत के रूप में भी जाना है संख्याओं के परिमित सेट की केंद्रीय प्रवृत्ति का एक उपाय है विशेष रूप से मानों की संख्या से विभाजित मानों का योग संख्याओं के समूह x का अंकगणितीय माध्य1 एक्स2 पर ओवरहेड बार का उपयोग करके दर्शाया जाता है कहते हैं[note 1] यदि डेटा सेट एक सांख्यिकीय आबादी से नमूने सांख्यिकी द्वारा प्राप्त टिप्पणियों की एक श्रृंखला पर आधारित थे तो अंकगणितीय माध्य नमूना माध्य है () इसे अंतर्निहित वितरण के माध्य या अपेक्षित मान से अलग करने के लिए जनसंख्या माध्य [1]संभाव्यता और सांख्यिकी के बाहर माध्य की अन्य धारणाओं की एक विस्तृत श्रृंखला का उपयोग अधिकतर ज्यामिति और गणितीय विश्लेषण में किया जाता है ।
साधनों के प्रकार
पाइथागोरस का अर्थ है
अंकगणितीय माध्य
संख्याओं की सूची का अंकगणितीय माध्य संख्याओं की संख्या से विभाजित सभी संख्याओं का योग है इसी तरह एक नमूने का अर्थ इसे x द्वारा निरूपित किया जाता है नमूने में आइटमों की संख्या से विभाजित किया जाता है ।
उदाहरण के लिए पाँच मानों का अंकगणितीय माध्य: 4, 36, 45, 50, 75 है
ज्यामितीय माध्य (जीएम)
ज्यामितीय माध्य एक औसत है जो सकारात्मक संख्याओं के सेट के लिए उपयोगी होता है जो कि उनके उत्पाद के अनुसार व्याख्या की जाती है और उनकी राशि नहीं होती है ।
उदाहरण के लिए पाँच मानों का ज्यामितीय माध्य: 4, 36, 45, 50, 75 है
अनुकूल माध्य (एचएम)
हार्मोनिक माध्य एक औसत है जो संख्याओं के सेट के लिए उपयोगी होता है जो माप की किसी इकाई के संबंध में परिभाषित होते हैं
उदाहरण के लिए, पाँच मानों का हार्मोनिक माध्य 4, 36, 45, 50, 75 है
अंकगणित माध्य, ज्यामितीय माध्य और अनुकूल माध्य के बीच संबंध
Template:अंकगणितीय माध्य, ज्यामिति माध्य, अनुकूल माध्य
अंकगणितीय माध्य, ज्यामितिय माध्य और अनुकूल माध्य इन असमानताओं को संतुष्ट करते हैं।
समानता तब होती है जब दिए गए नमूने के सभी तत्व समान हों।
सांख्यिकीय स्थान
वर्णनात्मक आंकड़ों में, माध्य को माध्यिका, मोड (सांख्यिकी) या मध्य-श्रेणी के साथ भ्रमित किया जा सकता है, क्योंकि इनमें से किसी को भी गलत तरीके से औसत कहा जा सकता है (औपचारिक रूप से, केंद्रीय प्रवृत्ति का एक उपाय)। प्रेक्षणों के समुच्चय का माध्य मानों का अंकगणितीय औसत है; हालाँकि, तिरछापन के लिए, माध्य आवश्यक रूप से मध्य मान (माध्यिका), या सबसे संभावित मान (मोड) के समान नहीं है। उदाहरण के लिए, औसत आय आम तौर पर बहुत बड़ी आय वाले लोगों की एक छोटी संख्या से ऊपर की ओर तिरछी होती है, ताकि बहुमत की आय औसत से कम हो। इसके विपरीत, औसत आय वह स्तर है जिस पर आधी आबादी नीचे और आधी ऊपर है। मोड आय सबसे अधिक संभावित आय है और कम आय वाले लोगों की बड़ी संख्या का पक्ष लेती है। हालांकि इस तरह के विषम डेटा के लिए मध्यिका और मोड अक्सर अधिक सहज ज्ञान युक्त उपाय होते हैं, कई तिरछे वितरण वास्तव में उनके माध्यम से सर्वोत्तम रूप से वर्णित होते हैं, जिसमें घातीय वितरण और पॉसॉन वितरण वितरण शामिल हैं।
एक संभाव्यता वितरण का मतलब
प्रायिकता वितरण का माध्य उस वितरण वाले यादृच्छिक चर का दीर्घकालीन अंकगणितीय औसत मान है। यदि यादृच्छिक चर द्वारा निरूपित किया जाता है , तो इसे के अपेक्षित मूल्य के रूप में भी जाना जाता है (निरूपित ). असतत संभाव्यता वितरण के लिए, माध्य द्वारा दिया जाता है , जहां यादृच्छिक चर के सभी संभावित मानों का योग लिया जाता है और संभाव्यता द्रव्यमान कार्य है। निरंतर संभाव्यता वितरण के लिए, माध्य है , कहाँ संभाव्यता घनत्व समारोह है।[4] उन सभी मामलों में, जिनमें वितरण न तो असतत है और न ही निरंतर है, मतलब इसकी संभावना माप के संबंध में यादृच्छिक चर का लेबेसेग एकीकरण है। माध्य का अस्तित्व या परिमित होना आवश्यक नहीं है; कुछ संभाव्यता वितरण के लिए माध्य अनंत है (+∞ या −∞), जबकि अन्य के लिए माध्य अपरिभाषित (गणित) है।
सामान्यीकृत का अर्थ है
शक्ति मतलब
सामान्यीकृत माध्य, जिसे शक्ति माध्य या होल्डर माध्य के रूप में भी जाना जाता है, द्विघात माध्य, अंकगणितीय, ज्यामितीय और हार्मोनिक साधनों का एक अमूर्त है। इसे n धनात्मक संख्याओं x के समुच्चय के लिए परिभाषित किया गया हैi द्वारा
पैरामीटर एम के लिए अलग-अलग मान चुनकर, निम्न प्रकार के साधन प्राप्त किए जाते हैं:
एफ-मीन
इसे सामान्यीकृत f-mean|सामान्यीकृत के रूप में आगे सामान्यीकृत किया जा सकता है f-अर्थ
और फिर से एक उलटा का उपयुक्त विकल्प f दे देंगे
भारित अंकगणितीय माध्य
भारित माध्य (या भारित औसत) का उपयोग किया जाता है यदि कोई एक ही जनसंख्या के विभिन्न आकार के नमूनों से औसत मानों को जोड़ना चाहता है:
कहाँ और नमूने का माध्य और आकार हैं क्रमश। अन्य अनुप्रयोगों में, वे संबंधित मूल्यों द्वारा माध्य पर प्रभाव की विश्वसनीयता के लिए एक माप का प्रतिनिधित्व करते हैं।
छोटा मतलब
कभी-कभी, संख्याओं के एक समूह में आउटलेयर हो सकते हैं (अर्थात, डेटा मान जो दूसरों की तुलना में बहुत कम या बहुत अधिक हैं)। अक्सर, आउटलेयर त्रुटिपूर्ण डेटा होते हैं जो विरूपण साक्ष्य (अवलोकन) के कारण होते हैं। इस मामले में, कोई छोटा मतलब का उपयोग कर सकता है। इसमें शीर्ष या निचले छोर पर डेटा के दिए गए हिस्सों को छोड़ना शामिल है, आमतौर पर प्रत्येक छोर पर एक समान राशि और फिर शेष डेटा का अंकगणितीय माध्य लेना। हटाए गए मानों की संख्या को मानों की कुल संख्या के प्रतिशत के रूप में दर्शाया गया है।
अंतःचतुर्थक माध्य
अंतरचतुर्थक माध्य एक काटे गए माध्य का एक विशिष्ट उदाहरण है। मूल्यों के निम्नतम और उच्चतम तिमाही को हटाने के बाद यह केवल अंकगणितीय माध्य है।
यह मानते हुए कि मूल्यों का आदेश दिया गया है, इसलिए वजन के एक विशिष्ट सेट के लिए भारित माध्य का एक विशिष्ट उदाहरण है।
एक समारोह का मतलब
कुछ परिस्थितियों में, गणितज्ञ मूल्यों के एक अनंत (या यहां तक कि एक बेशुमार) सेट के माध्य की गणना कर सकते हैं। माध्य मान की गणना करते समय ऐसा हो सकता है एक समारोह का . सहजता से, एक फ़ंक्शन का एक वक्र के एक खंड के तहत क्षेत्र की गणना के रूप में सोचा जा सकता है, और उसके बाद उस खंड की लंबाई से विभाजित किया जा सकता है। यह ग्राफ पेपर पर वर्गों की गिनती करके या अधिक सटीक रूप से अभिन्न द्वारा किया जा सकता है। एकीकरण सूत्र इस प्रकार लिखा गया है:
इस मामले में, यह सुनिश्चित करने के लिए ध्यान रखा जाना चाहिए कि अभिन्न अभिसरण हो। लेकिन माध्य परिमित हो सकता है भले ही फलन स्वयं कुछ बिंदुओं पर अनंत की ओर प्रवृत्त हो।
कोणों का माध्य और चक्रीय राशियाँ
कोण, दिन के समय, और अन्य चक्रीय मात्राओं को जोड़ने और अन्यथा संख्याओं को संयोजित करने के लिए मॉड्यूलर अंकगणित की आवश्यकता होती है। इन सभी स्थितियों में कोई अद्वितीय माध्य नहीं होगा। उदाहरण के लिए, आधी रात से पहले और बाद में एक घंटे का समय आधी रात और दोपहर दोनों के बराबर है। यह भी संभव है कि कोई माध्य मौजूद न हो। रंग पहिया पर विचार करें - सभी रंगों के सेट का कोई मतलब नहीं है। इन स्थितियों में, आपको यह तय करना होगा कि कौन सा माध्य सबसे अधिक उपयोगी है। आप औसत करने से पहले मूल्यों को समायोजित करके या चक्रीय मात्राओं के माध्य का उपयोग करके ऐसा कर सकते हैं।
फ्रेचेट मतलब
फ्रेचेट माध्य एक सतह (गणित) पर बड़े पैमाने पर वितरण के केंद्र को निर्धारित करने के लिए एक तरीका देता है, या अधिक आम तौर पर, रीमैनियन कई गुना कई अन्य माध्यमों के विपरीत, फ्रेचेट माध्य को एक ऐसे स्थान पर परिभाषित किया गया है, जिसके तत्वों को आवश्यक रूप से एक साथ जोड़ा नहीं जा सकता है या स्केलर द्वारा गुणा नहीं किया जा सकता है। इसे कभी-कभी करचर माध्य (हरमन करचर के नाम पर) के रूप में भी जाना जाता है।
त्रिकोणीय सेट
ज्यामिति में, हजारों भिन्न हैं त्रिभुज केंद्र के लिए परिभाषाएँ जो सभी को समतल में बिंदुओं के त्रिकोणीय सेट के माध्य के रूप में व्याख्या की जा सकती हैं।[citation needed]
स्वानसन का नियम
यह मामूली विषम वितरण के लिए माध्य का एक अनुमान है।[5] इसका उपयोग हाइड्रोकार्बन अन्वेषण में किया जाता है और इसे इस प्रकार परिभाषित किया जाता है:
जहां पी10, पी50 और पी90 वितरण का 10वां, 50वां और 90वां प्रतिशतक।
अन्य साधन
- अंकगणित-ज्यामितीय माध्य
- अंकगणित-हार्मोनिक माध्य
- सिजेरो मतलब
- चिसिनी मतलब
- कॉन्ट्राहार्मोनिक मतलब
- प्राथमिक सममित माध्य
- ज्यामितीय-हार्मोनिक माध्य
- मुख्य माध्य
- हाइंज मतलब
- हेरोनियन मतलब
- समान माध्य
- लेहमर मतलब
- लघुगणक माध्य
- औसत चलन
- न्यूमैन-सैंडोर मतलब
- अर्ध-अंकगणितीय माध्य
- मूल माध्य वर्ग (द्विघात माध्य)
- रेनी की एंट्रॉपी (एक सामान्यीकृत एफ-मीन)
- गोलाकार माध्य
- Stolarsky मतलब
- भारित ज्यामितीय माध्य
- भारित हार्मोनिक माध्य
यह भी देखें
- केंद्रीय प्रवृत्ति
- मध्य
- मोड (सांख्यिकी)
- वर्णनात्मक आँकड़े
- कुकुदता
- औसत का नियम
- औसत मूल्य प्रमेय
- पल (गणित)
- सारांश आँकड़े
- टेलर का नियम
टिप्पणियाँ
- ↑ Pronounced "x bar".
संदर्भ
- ↑ Underhill, L.G.; Bradfield d. (1998) Introstat, Juta and Company Ltd. ISBN 0-7021-3838-X p. 181
- ↑ 2.0 2.1 2.2 "Mean | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-21.
- ↑ "एपी सांख्यिकी समीक्षा - घनत्व वक्र और सामान्य वितरण". Archived from the original on 2 April 2015. Retrieved 16 March 2015.
- ↑ Weisstein, Eric W. "आबादी मतलब". mathworld.wolfram.com (in English). Retrieved 2020-08-21.
- ↑ Hurst A, Brown GC, Swanson RI (2000) Swanson's 30-40-30 Rule. American Association of Petroleum Geologists Bulletin 84(12) 1883-1891