त्रिभुज केंद्र
ज्यामिति में, त्रिभुज केंद्र किसी त्रिभुज के तल की ज्यामिति में ऐसा बिंदु होता है जो किसी त्रिभुज के मध्य में होता है। उदाहरण के लिए केंद्रक, परिधि केंद्र, केंद्र और ऑर्थोसेंटर ग्रीक गणित से परिचित थे, और सरल स्ट्रेटएज और कम्पास निर्माण द्वारा प्राप्त किए जा सकते हैं।
इन मौलिक केंद्रों में से प्रत्येक में इसका मान इस प्रकार है कि यह ज्यामिति समानता के अनुसार अपरिवर्तनीय (गणित) अधिक त्रुटिहीन रूप से समकक्ष संरचना है। दूसरे शब्दों में यह किसी भी त्रिभुज और किसी भी समानता परिवर्तन है (जैसे घूर्णन (गणित), प्रतिबिंब (गणित), फैलाव (मीट्रिक स्थान), या अनुवाद (ज्यामिति)) के लिए, रूपांतरित त्रिभुज का केंद्र वही बिंदु है जो मूल त्रिभुज का रूपांतरित केंद्र होता हैं।
यह त्रिभुज केंद्र की परिभाषित के लिए आवश्यक मान निरूपित करता है। इस प्रकार यह अन्य प्रसिद्ध बिंदुओं जैसे कि ब्रोकार्ड बिंदुओं को निरस्त करता है जो प्रतिबिंब के अनुसार अपरिवर्तनीय नहीं हैं और इसलिए त्रिभुज केंद्रों के रूप में अर्हता प्राप्त करने में विफल रहते हैं।
एक समबाहु त्रिभुज के लिए, सभी त्रिभुज केंद्र उसके केंद्रक पर संपाती होते हैं। चूंकि त्रिभुज केंद्र सामान्यतः अन्य सभी त्रिभुजों पर दूसरे से अलग स्थिति लेते हैं। इस प्रकार हजारों त्रिभुज केंद्रों की परिभाषाएं और गुण 'त्रिभुज केंद्रों के विश्वकोश' में एकत्र किए गए हैं।
इतिहास
यदि प्राचीन यूनानियों ने त्रिभुज के मौलिक केंद्रों की खोज की थी, किन्तु इस प्रकार उन्होंने त्रिभुज केंद्र की कोई परिभाषा नहीं बनाई थी। इस प्रकार प्राचीन यूनानियों के पश्चात त्रिभुज से जुड़े कई विशेष बिंदुओं जैसे फ़र्मेट बिंदु, नौ-बिंदु केंद्र, लेमोइन बिंदु, गेरगोन बिंदु और फ़्यूरबैक बिंदु की खोज की गई थी।
1980 के दशक में त्रिभुज ज्यामिति में रुचि के पुनरुद्धार के समय यह देखा गया कि ये विशेष बिंदु कुछ सामान्य गुणों को साझा करते हैं जो इस प्रकार अब त्रिभुज केंद्र की औपचारिक परिभाषा का आधार बनते हैं।[1][2] इस प्रकार त्रिभुज केंद्रों के क्लार्क किम्बरलिंग के विश्वकोश में 50,730 त्रिभुज केंद्रों की व्याख्या की गई सूची है।[3] त्रिभुज केंद्रों के विश्वकोश में प्रत्येक प्रविष्टि द्वारा दर्शाया गया है, जिसमे या जहाँ प्रविष्टि की स्थितीय सूचकांक है। उदाहरण के लिए, त्रिभुज का केन्द्रक दूसरी प्रविष्टि है और इसे या द्वारा निरूपित किया जाता है।
औपचारिक परिभाषा
तीन वास्तविक चर a, b, c के फलन (गणित) या वास्तविक-मूल्यवान फलन f में निम्नलिखित गुण हो सकते हैं:
- समरूपता: f(ta,tb,tc) = tn f(a,b,c) कुछ स्थिर n के लिए और सभी t > 0 के लिए किया जाता हैं।
- द्वितीय सममिति दूसरे और तीसरे चर में: f(a,b,c) = f(a,c,b)
यदि गैर-शून्य f में ये दोनों गुण हैं तो इसे त्रिभुज केंद्र फलन कहा जाता है। यदि f त्रिभुज केंद्र फलन है और a, b, c संदर्भ त्रिभुज की पार्श्व-लंबाई हैं तो वह बिंदु जिसके त्रिरेखीय निर्देशांक हैं f(a,b,c) : f(b,c,a) : f(c , a, b) को त्रिभुज केंद्र कहा जाता है।
यह परिभाषा सुनिश्चित करती है कि समान त्रिभुजों के त्रिभुज केंद्र ऊपर निर्दिष्ट अपरिवर्तनीय मानदंडों को पूरा करते हैं। इस परिपाटी के अनुसार त्रिभुज केंद्र के तीन त्रिरेखीय निर्देशांकों में से केवल पहले को उद्धृत किया जाता है क्योंकि अन्य दो a, b, c के चक्रीय क्रमचय द्वारा प्राप्त किए जाते हैं। इस प्रक्रिया को 'चक्रीयता' के रूप में जाना जाता है।[4][5] इस प्रकार प्रत्येक त्रिभुज केंद्र कार्य अद्वितीय त्रिभुज केंद्र से मेल खाता है। यह पत्राचार विशेषण नहीं है। अलग-अलग फलन ही त्रिभुज केंद्र को परिभाषित कर सकते हैं। उदाहरण के लिए, कार्य f1(a, b, c) = 1/a और f2(a, b, c) = bc दोनों केन्द्रक के अनुरूप हैं।
दो त्रिभुज केंद्र कार्य समान त्रिभुज केंद्र को परिभाषित करते हैं यदि और केवल यदि उनका अनुपात a, b और c में सममित कार्य है।
यहां तक कि यदि त्रिभुज केंद्र फंक्शन हर स्थान पर यह अच्छी तरह से परिभाषित किया गया है, तो सदैव इसके संबंधित त्रिभुज केंद्र के लिए नहीं कहा जा सकता है। उदाहरण के लिए, मान लीजिए f(a, b, c) 0 है यदि a/b और a/c दोनों परिमेय हैं और अन्यथा 1 मान इंगित कता हैं। फिर पूर्णांक भुजाओं वाले किसी भी त्रिभुज के लिए संबद्ध त्रिभुज केंद्र 0:0:0 का मूल्यांकन करता है जो अपरिभाषित है।
डिफ़ॉल्ट डोमेन
कुछ स्थितियों में इन कार्यों को ℝ3 उदाहरण के लिए, X365 के ट्रिलिनियर्सजो त्रिभुज केंद्रों के विश्वकोश में 365वीं प्रविष्टि है, इसके मान a1/2 : b1/2 : c1/2 इसलिए a, b, c ऋणात्मक नहीं हो सकते हैं। इसके अतिरिक्त, त्रिभुज की भुजाओं का प्रतिनिधित्व करने के लिए उन्हें त्रिभुज असमानता को संतुष्ट करना चाहिए। इसलिए इसके फलस्वरूप किसी फलन के प्रत्येक फलन का डोमेन ℝ3 जहां a ≤ b + c, b ≤ c + a, और c ≤ a + b इसके क्षेत्र 'T' के सभी त्रिकोणों का डोमेन प्रकट करते हैं, और यह सभी त्रिभुज-आधारित कार्यों के लिए डिफ़ॉल्ट डोमेन है।
अन्य उपयोगी डोमेन
ऐसे कई उदाहरण हैं जहां विश्लेषण को टी से छोटे डोमेन तक सीमित करना वांछनीय हो सकता है। उदाहरण के लिए:
- * केंद्र x3, x4, x22, x24, x40 तीव्र त्रिभुजों के लिए विशिष्ट संदर्भ है, अर्थात् T का वह क्षेत्र जहाँ a2 ≤ b2 + c2, b2 ≤ c2 + a2, c2 ≤ a2 + b2 द्वारा प्रकट किया जाता हैं।
- * फर्मेट बिंदु और x के बीच अंतर करते समय T13 2π/3 से अधिक कोण वाले त्रिभुज का डोमेन महत्वपूर्ण है, दूसरे शब्दों में त्रिभुज जिसके लिए a2 > b2 + bc + c2 या b2 > c2 + as + a2 या c2 > a2 + b+ b2।
- अधिक व्यावहारिक मूल्य का एक डोमेन क्योंकि यह टी में सघन है फिर भी सभी तुच्छ त्रिकोणों (यानी बिंदुओं) को बाहर करता है और पतित त्रिकोण (यानी रेखाएं) सभी त्रिकोण त्रिकोणों का समूह है। यह टी से विमानों बी = सी, सी = ए, ए = बी को हटाकर प्राप्त किया जाता है।
डोमेन समरूपता
प्रत्येक उपसमुच्चय D ⊆ T व्यवहार्य डोमेन नहीं है। द्विसममिति परीक्षण का समर्थन करने के लिए D को समतल पर b = c, c = a, a = b के बारे में सममित होना चाहिए। चक्रीयता का समर्थन करने के लिए इसे a = b = c रेखा के बारे में 2π/3 घुमावों के अनुसार अपरिवर्तनीय भी होना चाहिए। सभी का सबसे सरल डोमेन रेखा (t,t,t) है जो सभी त्रिभुज त्रिकोणों के सेट से मेल खाती है।
उदाहरण
परिकेंद्र
त्रिभुज ABC की भुजाओं के लंब समद्विभाजकों का संगम बिंदु परिकेन्द्र होता है। परिकेन्द्र के त्रिरेखीय निर्देशांक हैं
- A (B2 + C2 − A2) : B(C2 + A2 − B2): C(A2 + B2 − C2).
चलो f(A,B,C) = A(B2 + C2 − A2)
- F (TA, TB, TC) = (TA) ((TB)2 + (TC)2 − (I)2 ) = T3 (A(B2 + C2 − A2) = T3 f(A,B,C) (समरूपता)
- F (A, C, B) = A (C2 + B2 − A2) = A (B2 + C2 − A2) = f(A,B,C) (द्विसममिति)
अतः f त्रिभुज केंद्र फलन है। चूँकि संगत त्रिभुज केंद्र में परिकेन्द्र के समान त्रिरेखीय होते हैं, इसलिए यह इस प्रकार है कि परिकेन्द्र त्रिभुज केंद्र है।
पहला आइसोगोनिक केंद्र
मान लें कि A'BC समबाहु त्रिभुज है जिसका आधार BC और शीर्ष A' BC की ऋणात्मक भुजा पर है और मान लें कि AB'C और ABC' समान रूप से त्रिभुज ABC की अन्य दो भुजाओं पर आधारित समबाहु त्रिभुज हैं। फिर रेखाएँ AA', BB' और CC' समवर्ती हैं और सहमति का बिंदु पहला आइसोगोनल केंद्र है। इसके त्रिरेखीय निर्देशांक हैं
- CSC (A + π/3) : CSC (B + π/3) : CSC (C + π/3)
A, B और C के संदर्भ में इन निर्देशांकों को व्यक्त करते हुए, यह सत्यापित किया जा सकता है कि वे वास्तव में त्रिभुज केंद्र के निर्देशांक के परिभाषित गुणों को संतुष्ट करते हैं। इसलिए पहला आइसोगोनिक केंद्र भी त्रिभुज केंद्र है।
फर्मेट बिंदु
उक्त समीकरण के अनुसार फलन
तब f द्विसममित और सजातीय है इसलिए यह त्रिभुज केंद्र फलन है। इसके अतिरिक्त, जब भी कोई शीर्ष कोण 2π/3 से अधिक होता है, और पहले आइसोगोनिक केंद्र के साथ, संबंधित त्रिभुज केंद्र अधिक कोण वाले शीर्ष के साथ मेल खाता है। इसलिए, यह त्रिभुज केंद्र और कोई नहीं बल्कि फर्मेट बिंदु है।
गैर-उदाहरण
ब्रोकेड बिंदु
पहले ब्रोकार्ड बिंदु के त्रिरेखीय निर्देशांक c/b : a/c : b/a हैं। ये निर्देशांक एकरूपता और चक्रीयता के गुणों को संतुष्ट करते हैं किन्तु द्विसममिति को नहीं। तो पहला ब्रोकार्ड बिंदु (सामान्य रूप से) त्रिभुज केंद्र नहीं है। दूसरे ब्रोकार्ड बिंदु में त्रिरेखीय निर्देशांक b/c : c/a : a/b है और इसी तरह की टिप्पणी लागू होती है।
पहला और दूसरा ब्रोकार्ड अंक, बिंदुओं के कई द्विकेंद्रित युग्मों में से मुख्य हैं,[6] त्रिभुज से परिभाषित बिंदुओं के जोड़े इस संपत्ति के साथ कि जोड़ी (किन्तु प्रत्येक व्यक्तिगत बिंदु नहीं) त्रिभुज की समानता के अनुसार संरक्षित है। कई बाइनरी ऑपरेशंस, जैसे मिडपॉइंट और ट्रिलिनियर उत्पाद, जब दो ब्रोकार्ड पॉइंट्स के साथ-साथ अन्य बाइसेंट्रिक जोड़े पर लागू होते हैं, तो त्रिभुज केंद्र उत्पन्न होते हैं।
कुछ प्रसिद्ध त्रिभुज केंद्र
मौलिक त्रिभुज केंद्र
नाम | ट्रिलिनियर निर्देशांक | विवरण | ||
---|---|---|---|---|
X1 | केंद्र में | I | 1 : 1 : 1 | कोण द्विभाजक का प्रतिच्छेदन। त्रिभुज के खुदे हुए वृत्त का केंद्र। |
X2 | केन्द्रक | G | bc : ca : ab | माध्यिकाओं का प्रतिच्छेदन। एक समान त्रिकोणीय पटल के द्रव्यमान का केंद्र। |
X3 | परिभ्रमण केंद्र | O | cos A : cos B : cos C | पक्षों के लंबवत द्विभाजक का प्रतिच्छेदन। त्रिभुज के परिबद्ध वृत्त का केंद्र। |
X4 | ऑर्थोसेंटर | H | sec A : sec B : sec C | ऊँचाइयों का चौराहा। |
X5 | नौ सूत्री केंद्र | N | cos(B − C) : cos(C − A) : cos(A − B) | प्रत्येक पक्ष के मध्य बिंदु, प्रत्येक ऊंचाई के पाद और ऑर्थोसेंटर और प्रत्येक शीर्ष के बीच के मध्य बिंदु से गुजरने वाले वृत्त का केंद्र। |
X6 | सिम्मेडियन बिंदु | K | a : b : c | सिम्मेडियन्स का इंटरसेक्शन - संबंधित कोण द्विभाजक के बारे में प्रत्येक माध्यिका का प्रतिबिंब। |
X7 | गेरगोन बिंदु | Ge | bc/(b + c − a) : ca/(c + a − b) : ab/(a + b − c) | प्रत्येक शीर्ष को उस बिंदु से जोड़ने वाली रेखाओं का प्रतिच्छेदन जहां अंतर्वृत्त विपरीत दिशा को स्पर्श करता है। |
X8 | नागल बिंदु | Na | (b + c − a)/a : (c + a − b)/b: (a + b − c)/c | प्रत्येक शीर्ष को उस बिंदु से जोड़ने वाली रेखाओं का प्रतिच्छेदन जहां एक वृत्त विपरीत दिशा को स्पर्श करता है। |
X9 | मिट्टेनपंकट | M | (b + c − a) : (c + a − b) : (a + b − c) | एक्सेंट्रल ट्राइएंगल का सिम्मेडियन पॉइंट (और विभिन्न समकक्ष परिभाषाएं)। |
X10 | स्पाइकर केंद्र | Sp | bc(b + c) : ca(c + a) : ab(a + b) | औसत दर्जे का त्रिभुज का केंद्र। एक समान त्रिकोणीय वायरफ्रेम के द्रव्यमान का केंद्र। |
X11 | फायरबैक बिंदु | F | 1 − cos(B − C) : 1 − cos(C − A) : 1 − cos(A − B) | वह बिंदु जिस पर नौ-बिंदु वाला वृत्त अंतःवृत्त को स्पर्श करता है। |
X13 | फर्मेट बिंदु | X | csc(A + π/3) : csc(B + π/3) : csc(C + π/3) (*) | वह बिंदु जो शीर्षों से दूरियों का न्यूनतम संभव योग है। |
X15 X16 |
आइसोडायनामिक बिंदु | S S′ |
sin(A + π/3) : sin(B + π/3) : sin(C + π/3) sin(A − π/3) : sin(B − π/3) : sin(C − π/3) |
व्युत्क्रमण के केंद्र जो त्रिभुज को एक समबाहु त्रिभुज में बदलते हैं। |
X17 X18 |
नेपोलियन इशारा करता है | N N′ |
sec(A − π/3) : sec(B − π/3) : sec(C − π/3) sec(A + π/3) : sec(B + π/3) : sec(C + π/3) |
प्रत्येक शीर्ष को एक समबाहु त्रिभुज के केंद्र से जोड़ने वाली रेखाओं का चौराहा बाहर की ओर (पहला नेपोलियन बिंदु) या अंदर की ओर (दूसरा नेपोलियन बिंदु), विपरीत दिशा में लगा होता है। |
X99 | स्टेनर पॉइंट | S | bc/(b2 − c2) : ca/(c2 − a2) : ab/(a2 − b2) | विभिन्न समकक्ष परिभाषाएँ। |
वर्तमान त्रिभुज केंद्र
अधिक हाल के त्रिभुज केंद्रों की निम्न तालिका में, विभिन्न बिंदुओं के लिए कोई विशिष्ट अंकन का उल्लेख नहीं किया गया है। इसके साथ ही प्रत्येक केंद्र के लिए केवल पहला त्रिरेखीय निर्देशांक f(a,b,c) निर्दिष्ट किया गया है। ट्रिलिनियर निर्देशांक की चक्रीयता संपत्ति का उपयोग करके अन्य निर्देशांक सरलता से प्राप्त किए जा सकते हैं।
विश्वकोश
त्रिभुज केंद्र का संदर्भ |
नाम | केंद्रीय फलन f(a,b,c) |
वर्ष का विवरण |
---|---|---|---|
X21 | शिफलर पॉइंट | 1/(cos B + cos C) | 1985 |
X22 | एक्सेटर पॉइंट | a(b4 + c4 − a4) | 1986 |
X111 | पैरी बिंदु | a/(2a2 − b2 − c2) | early 1990s |
X173 | सर्वांगसम समद्विबाहु बिंदु | tan(A/2) + sec(A/2) | 1989 |
X174 | सर्वांगसमता का Yff केंद्र | sec(A/2) | 1987 |
X175 | आइसोपेरिमेट्रिक बिंदु | − 1 + sec(A/2) cos(B/2) cos(C/2) | 1985 |
X179 | पहला अजिमा-मालफट्टी बिंदु | sec4(A/4) | |
X181 | एपोलोनियस बिंदु | a(b + c)2/(b + c − a) | 1987 |
X192 | समान समानांतर बिंदु | bc(ca + ab − bc) | 1961 |
X356 | मॉर्ले केंद्र | cos(A/3) + 2 cos(B/3) cos(C/3) | 1978[7] |
X360 | हॉफस्टाटर शून्य बिंदु | A/a | 1992 |
त्रिभुज केन्द्रों के सामान्य वर्ग
किम्बरलिंग केंद्र
32,000 से अधिक त्रिभुज केंद्रों का ऑनलाइन विश्वकोश बनाने वाले क्लार्क किम्बरलिंग के सम्मान में, विश्वकोश में सूचीबद्ध त्रिभुज केंद्रों को सामूहिक रूप से किम्बरलिंग केंद्र कहा जाता है।[8]
बहुपद त्रिभुज केंद्र
एक त्रिभुज केंद्र P को बहुपद त्रिभुज केंद्र कहा जाता है यदि P के त्रिरेखीय निर्देशांक को a, b और c में बहुपद के रूप में व्यक्त किया जा सकता है।
नियमित त्रिभुज केंद्र
एक त्रिभुज केंद्र P को नियमित त्रिभुज बिंदु कहा जाता है यदि P के त्रिरेखीय निर्देशांक को Δ, a, b और c में बहुपद के रूप में व्यक्त किया जा सकता है, जहाँ Δ त्रिभुज का क्षेत्रफल है।
प्रमुख त्रिभुज केंद्र
एक त्रिभुज केंद्र P को प्रमुख त्रिभुज केंद्र कहा जाता है यदि P के त्रिरेखीय निर्देशांक को f(A) : f(B): f(C) के रूप में व्यक्त किया जा सकता है, जहां f(X) कोण X का कार्य है। अकेले और अन्य कोणों या पार्श्व लंबाई पर निर्भर नहीं करता है।[9]
पारलौकिक त्रिभुज केंद्र
एक त्रिभुज केंद्र P को पारलौकिक त्रिभुज केंद्र कहा जाता है यदि P का केवल a, b और c के बीजगणितीय कार्यों का उपयोग करके कोई त्रिरेखीय प्रतिनिधित्व नहीं है।
विविध
समद्विबाहु त्रिभुज
किसी त्रिभुज केंद्र में उपलब्ध फलन इस प्रकार होता हैं। यदि किसी त्रिभुज की दो भुजाएँ बराबर हैं (मान लीजिए a = b) तो
इसलिए संबंधित त्रिभुज केंद्र के दो घटक सदैव बराबर होते हैं। इसलिए, समद्विबाहु त्रिभुज के सभी त्रिभुज केंद्र इसकी सममित रेखा पर स्थित होने चाहिए। समबाहु त्रिभुज के लिए सभी तीन घटक समान होते हैं इसलिए सभी केंद्र केन्द्रक के साथ मेल खाते हैं। इसलिए, वृत्त की तरह, समबाहु त्रिभुज का अद्वितीय केंद्र होता है।
एक्सेंटर्स
इस प्रकार उक्त फलन के अनुसार
यह सरलता से त्रिभुज केंद्र कार्य के रूप में देखा जाता है और (त्रिभुज विषम हो) संबंधित त्रिभुज केंद्र सबसे बड़े शीर्ष कोण के विपरीत एक्सेंटर है। अन्य दो एक्सेंटर्स को समान कार्यों द्वारा चुना जा सकता है। चूंकि, जैसा कि ऊपर बताया गया है कि समद्विबाहु त्रिभुज के केवल एक्सेंटर और समबाहु त्रिभुज का कोई भी एक्सेंटर कभी भी त्रिभुज केंद्र नहीं हो सकता है।
द्विप्रतिमितीय कार्य
एक फलन f 'द्विअतिसममित' होता है यदि f(a,b,c) = −f(a,c,b) सभी a,b,c के लिए उपयोगी हैं। यदि ऐसा फलन गैर-शून्य और सजातीय भी है तो यह आसानी से देखा जा सकता है कि मानचित्रण (a,b,c) → f(a,b,c)2 f(b,c,a) f(c,a,b) त्रिभुज केंद्र फलन है। संगत त्रिभुज केंद्र f(a,b,c) : f(b,c,a) : f(c,a,b) है। इसके कारण त्रिभुज केंद्र फलन की परिभाषा को कभी-कभी गैर-शून्य सजातीय द्विअर्थी सममित कार्यों को सम्मिलित करने के लिए लिया जाता है।
पुराने से नए केंद्र
किसी भी त्रिभुज केंद्र फंक्शन एफ को ए, बी, सी के सममित फंक्शन से गुणा करके 'सामान्यीकृत' किया जा सकता है जिससे कि एन = 0। सामान्यीकृत त्रिभुज केंद्र फंक्शन में मूल के समान त्रिभुज केंद्र होता है, और यह भी मजबूत संपत्ति है कि एफ (ta,tb,tc) = f(a,b,c) सभी t > 0 और सभी (a,b,c) के लिए। शून्य फलन के साथ, सामान्यीकृत त्रिभुज केंद्र फलन जोड़, घटाव और गुणा के अनुसार क्षेत्र पर बीजगणित बनाते हैं। यह नए त्रिभुज केंद्र बनाने का आसान विधि देता है। चूंकि विशिष्ट सामान्यीकृत त्रिभुज केंद्र कार्य अधिकांशतः समान त्रिभुज केंद्र को परिभाषित करेंगे, उदाहरण के लिए f और (abc)−1(a+b+c)3
अरुचिकर केंद्र
मान लें a,b,c वास्तविक चर हैं और α,β,γ को कोई भी तीन वास्तविक स्थिरांक होने दें। होने देना
तब f त्रिभुज केंद्र फलन है और α : β : γ संगत त्रिभुज केंद्र है जब भी संदर्भ त्रिभुज की भुजाओं को लेबल किया जाता है जिससे कि a < b < c। इस प्रकार प्रत्येक बिंदु संभावित रूप से त्रिभुज केंद्र है। चूंकि त्रिभुज केंद्रों का विशाल बहुमत बहुत कम रुचि का है, जिस तरह अधिकांश निरंतर कार्यों में बहुत कम रुचि होती है।
बैरीसेंट्रिक निर्देशांक
यदि एफ त्रिभुज केंद्र फंक्शन है तो ऐसा ही है और संबंधित त्रिभुज केंद्र af(a,b,c) : bf(b,c,a) : cf(c,a,b) है, चूँकि ये f के अनुरूप त्रिभुज केंद्र की त्रुटिहीन रूप से बैरीसेंट्रिक समन्वय प्रणाली हैं, इसलिए त्रिभुज केंद्रों को त्रिरेखीय के अतिरिक्त बैरीसेंट्रिक के संदर्भ में समान रूप से अच्छी तरह से परिभाषित किया जा सकता है। व्यवहार में समन्वय प्रणाली से दूसरे में स्विच करना कठिनाई नहीं है।
बाइनरी सिस्टम
फ़र्मेट बिंदु और प्रथम आइसोगोनिक केंद्र के अतिरिक्त अन्य केंद्र जोड़े भी हैं। अन्य प्रणाली X3 और स्पर्शरेखा त्रिभुज का केंद्र द्वारा बनाई गई है। इसके द्वारा दिए गए त्रिभुज केंद्र फंक्शन पर विचार करें:
संबंधित त्रिभुज केंद्र के लिए चार अलग-अलग संभावनाएँ हैं:
- cos(A) : cos(B) : cos(C) यदि संदर्भ त्रिभुज तीव्र है (यह भी परिकेन्द्र है)।
- [cos(A) + sec(B)sec(C)] : [cos(B) − sec(B)] : [cos(C) − sec(C)] यदि A पर कोण अधिक कोण है।
- [cos(A) − sec(A)] : [cos(B) + sec(C)sec(A)] : [cos(C) − sec(C)] यदि B पर कोण अधिक कोण वाला है।
- [cos(A) − sec(A)] : [cos(B) − sec(B)] : [cos(C) + sec(A)sec(B)] यदि C पर कोण अधिक कोण वाला है।
नियमित गणना से पता चलता है कि हर स्थिति में ये ट्रिलिनियर स्पर्शरेखा त्रिभुज के केंद्र का प्रतिनिधित्व करते हैं। तो यह बिंदु त्रिभुज केंद्र है जो कि परिकेन्द्र का घनिष्ठ साथी है।
द्विसममिति और निश्चरता
किसी त्रिभुज को परावर्तित करने से उसकी भुजाओं का क्रम उलट जाता है। छवि में निर्देशांक (c, b, a) त्रिभुज को संदर्भित करते हैं और (विभाजक के रूप में इसका उपयोग करके) मनमाना बिंदु α का प्रतिबिंब α : β : γ is γ | β | α। यदि एफ त्रिभुज केंद्र कार्य है तो इसके त्रिभुज केंद्र का प्रतिबिंब f(c,a,b) f (b, c,a) | f(a,b,c) है, जो द्विसममिति द्वारा f(c,b,a) या f (b, a, c) या एफ (ए, सी, बी)। चूँकि यह (c,b,a) त्रिभुज के सापेक्ष f के संगत त्रिभुज केंद्र भी है, द्विसममिति यह सुनिश्चित करती है कि सभी त्रिभुज केंद्र परावर्तन के अनुसार अपरिवर्तनीय हैं। चूँकि घुमाव और अनुवाद को दोहरे प्रतिबिंब के रूप में माना जा सकता है, उन्हें भी त्रिभुज केंद्रों को संरक्षित करना चाहिए। ये अचल गुण परिभाषा के लिए औचित्य प्रदान करते हैं।
वैकल्पिक शब्दावली
तनुकरण के लिए कुछ अन्य नाम स्केलिंग (ज्यामिति), स्केलिंग (ज्यामिति), समरूप परिवर्तन और होमोथेटिक ट्रांसफॉर्मेशन हैं।
गैर-यूक्लिडियन और अन्य ज्यामिति
त्रिभुज केंद्रों का अध्ययन परंपरागत रूप से यूक्लिडियन ज्यामिति से संबंधित है, किन्तु त्रिभुज केंद्रों का अध्ययन गैर-यूक्लिडियन ज्यामिति में भी किया जा सकता है।[10] गोलाकार ज्यामिति त्रिभुज केंद्रों को गोलीय त्रिकोणमिति का उपयोग करके परिभाषित किया जा सकता है।[11] यूक्लिडियन और हाइपरबॉलिक ज्यामिति दोनों के लिए समान रूप वाले त्रिभुज केंद्रों को जाइरोट्रिगोनोमेट्री का उपयोग करके व्यक्त किया जा सकता है।[12][13][14] गैर-यूक्लिडियन ज्यामिति में, यह धारणा कि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री है, को छोड़ दिया जाना चाहिए।
चतुर्पाश्वीय या उच्च-आयामी संकेतन के केंद्रों को भी 2-आयामी त्रिकोणों के अनुरूप परिभाषित किया जा सकता है।[14]
कुछ केंद्रों को तीन से अधिक भुजाओं वाले बहुभुजों तक बढ़ाया जा सकता है। उदाहरण के लिए, केन्द्रक किसी भी बहुभुज के लिए पाया जा सकता है। तीन से अधिक भुजाओं वाले बहुभुजों के केंद्रों पर कुछ शोध किए गए हैं।[15][16]
यह भी देखें
- केंद्रीय रेखा (ज्यामिति)
- त्रिभुज केंद्रों का विश्वकोश
- त्रिभुज शंकु
- मध्य त्रिभुज
- आधुनिक त्रिभुज ज्यामिति
टिप्पणियाँ
- ↑ Kimberling, Clark. "त्रिभुज केंद्र". Retrieved 2009-05-23.
Unlike squares and circles, triangles have many centers. The ancient Greeks found four: incenter, centroid, circumcenter, and orthocenter. A fifth center, found much later, is the Fermat point. Thereafter, points now called nine-point center, symmedian point, Gergonne point, and Feuerbach point, to name a few, were added to the literature. In the 1980s, it was noticed that these special points share some general properties that now form the basis for a formal definition of triangle center
- ↑ Kimberling, Clark (11 Apr 2018) [1994]. "त्रिभुज के तल में केंद्रीय बिंदु और केंद्रीय रेखाएँ". Mathematics Magazine. 67 (3): 163–187. doi:10.2307/2690608. JSTOR 2690608.
- ↑ Kimberling, Clark. "This is PART 26: Centers X(50001) – X(52000)". Encyclopedia of Triangle Centers. Retrieved 17 June 2022.
- ↑ Weisstein, Eric W. "त्रिभुज केंद्र". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
- ↑ Weisstein, Eric W. "त्रिकोण केंद्र समारोह". MathWorld–A Wolfram Web Resource. Retrieved 1 July 2009.
- ↑ Bicentric Pairs of Points, Encyclopedia of Triangle Centers, accessed 2012-05-02
- ↑ Oakley, Cletus O.; Baker, Justine C. (November 1978). "The Morley Trisector Theorem". The American Mathematical Monthly. 85 (9): 737–745. doi:10.1080/00029890.1978.11994688. ISSN 0002-9890.
- ↑ Weisstein, Eric W. "किम्बरलिंग सेंटर". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
- ↑ Weisstein, Eric W. "प्रमुख त्रिकोण केंद्र". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
- ↑ Russell, Robert A. (2019-04-18). "गैर-यूक्लिडियन त्रिभुज केंद्र". arXiv:1608.08190 [math.MG].
- ↑ Rob, Johnson. "गोलाकार त्रिकोणमिति" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Ungar, Abraham A. (2009). "अतिशयोक्तिपूर्ण बैरीसेंट्रिक निर्देशांक" (PDF). The Australian Journal of Mathematical Analysis and Applications. 6 (1): 1–35., article #18
- ↑ Ungar, Abraham A. (2010). Hyperbolic triangle centers : the special relativistic approach. Dordrecht: Springer. ISBN 978-90-481-8637-2. OCLC 663096629.
- ↑ 14.0 14.1 Ungar, Abraham Albert (August 2010). यूक्लिडियन और हाइपरबोलिक ज्यामिति में बैरीसेंट्रिक कैलकुलस (in English). WORLD SCIENTIFIC. doi:10.1142/7740. ISBN 978-981-4304-93-1.
- ↑ Al-Sharif, Abdullah; Hajja, Mowaffaq; Krasopoulos, Panagiotis T. (November 2009). "समतल चतुर्भुजों के केंद्रों का संयोग". Results in Mathematics (in English). 55 (3–4): 231–247. doi:10.1007/s00025-009-0417-6. ISSN 1422-6383. S2CID 122725235.
- ↑ Prieto-Martínez, Luis Felipe; Sánchez-Cauce, Raquel (2021-04-02). "अन्य बहुभुजों के लिए त्रिभुज केंद्र की किम्बरलिंग की अवधारणा का सामान्यीकरण". Results in Mathematics (in English). 76 (2): 81. arXiv:2004.01677. doi:10.1007/s00025-021-01388-4. ISSN 1420-9012. S2CID 214795185.
बाहरी संबंध
- Manfred Evers, On Centers and Central Lines of Triangles in the Elliptic Plane
- Manfred Evers, On the geometry of a triangle in the elliptic and in the extended hyperbolic plane
- Clark Kimberling, Triangle Centers from University of Evansville
- Ed Pegg, Triangle Centers in the 2D, 3D, Spherical and Hyperbolic from Wolfram Research.
- Paul Yiu, A Tour of Triangle Geometry from Florida Atlantic University.