चार गति: Difference between revisions
m (3 revisions imported from alpha:चार_गति) |
No edit summary |
||
Line 199: | Line 199: | ||
*{{cite book|last=Sard|first=R. D.|title=Relativistic Mechanics - Special Relativity and Classical Particle Dynamics|year=1970|publisher=W. A. Benjamin|location=New York|isbn=978-0805384918|url-access=registration|url=https://archive.org/details/relativisticmech0000sard}} | *{{cite book|last=Sard|first=R. D.|title=Relativistic Mechanics - Special Relativity and Classical Particle Dynamics|year=1970|publisher=W. A. Benjamin|location=New York|isbn=978-0805384918|url-access=registration|url=https://archive.org/details/relativisticmech0000sard}} | ||
*{{cite journal|first1=G. N.|last1=Lewis|authorlink1=Gilbert N. Lewis|first2=R. C.|last2=Tolman|authorlink2=Richard C. Tolman|title=The Principle of Relativity, and Non-Newtonian Mechanics|journal=Phil. Mag.|series=6|volume=18|issue=106|doi=10.1080/14786441008636725|pages=510–523|year=1909|url=https://zenodo.org/record/1430872}} [[s:The Principle of Relativity, and Non-Newtonian Mechanics|Wikisource version]] | *{{cite journal|first1=G. N.|last1=Lewis|authorlink1=Gilbert N. Lewis|first2=R. C.|last2=Tolman|authorlink2=Richard C. Tolman|title=The Principle of Relativity, and Non-Newtonian Mechanics|journal=Phil. Mag.|series=6|volume=18|issue=106|doi=10.1080/14786441008636725|pages=510–523|year=1909|url=https://zenodo.org/record/1430872}} [[s:The Principle of Relativity, and Non-Newtonian Mechanics|Wikisource version]] | ||
[[Category:Created On 31/03/2023]] | [[Category:Created On 31/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:गति]] | |||
[[Category:चार-वैक्टर]] |
Latest revision as of 18:03, 15 April 2023
Special relativity |
---|
विशेष सापेक्षता में, चार-संवेग (जिसे संवेग-ऊर्जा या मोमेंर्जी[1] भी कहा जाता है) चार-आयामी दिक्काल के लिए उत्कृष्ट त्रि-आयामी संवेग का सामान्यीकरण है संवेग तीन आयामों में एक सदिश है इसी तरह चार-संवेग दिक्काल में चतुर्विम सदिश है। आपेक्षिक ऊर्जा E और तीन-संवेग p = (px, py, pz) = γmv वाले कण का प्रतिपरिवर्ती सदिश चार-संवेग, जहाँ v कण का तीन-वेग है और γ लोरेंत्ज़ कारक, है
उपरोक्त परिभाषा समन्वय संकेत के अंतर्गत प्रयुक्त होती है जो x0 = ct है। कुछ लेखक संकेत x0 = t का उपयोग करते हैं, जो p0 = E/c2 के साथ एक संशोधित परिभाषा देता है। सहसंयोजक चार-संवेग pμ को परिभाषित करना भी संभव है जहां ऊर्जा का चिन्ह (या चयन किए हुए मापीय संकेत के आधार पर तीन-संवेग का चिन्ह) प्रतिवर्त हो।
मिंकोस्की मानक
चार-संवेग के मिन्कोव्स्की मानक के वर्ग की गणना करने से कण के उपयुक्त द्रव्यमान के वर्ग के समान (प्रकाश c की संवेग के कारकों तक) एक लोरेंत्ज़ अपरिवर्तनीय मात्रा मिलती है:
मिन्कोव्स्की मानक लोरेन्ट्स अचर है, जिसका अर्थ है कि इसका मान लोरेंत्ज़ परिवर्तनों/संदर्भ के विभिन्न विरचना में वृद्धि द्वारा नहीं बदला गया है। अधिक सामान्य रूप से, किसी भी दो चार-चार-आघूर्ण के लिए p और q, के लिए राशि p ⋅ q अपरिवर्तनीय है।
चतुरंग वेग से संबंध
बड़े कण के लिए, चार-संवेग कण के अचर द्रव्यमान m द्वारा कण के चतुरंग वेग से गुणा करके दिया जाता है,
व्युत्पत्ति
चार-संवेग के लिए सही व्यंजक पर पहुँचने के कई तरीके हैं। एक तरीका यह है कि पहले चतुरंग वेग u = dx/dτ को परिभाषित किया जाए और p = mu सिर्फ परिभाषित करें, संतुष्ट होने के बाद कि यह सही इकाइयों और सही व्यवहार वाला चतुर्विम सदिश है। एक और, अधिक संतोषजनक, दृष्टिकोण न्यूनतम संक्रिया के सिद्धांत के साथ प्रारंभ करना है और ऊर्जा के लिए पद सहित चार-संवेग को प्राप्त करने के लिए लग्रांगियन यांत्रिकी का उपयोग करना है।[2] एक बार में, नीचे दिए गए अवलोकनों का उपयोग करते हुए, संक्रिया (भौतिकी) S एकल सापेक्ष कण से चार-संवेग को परिभाषित कर सकते हैं। यह देखते हुए कि सामान्य रूप से सामान्यीकृत निर्देशांक qi और विहित संवेग pi,[3] के साथ संवृत प्रणाली के लिए
प्रारंभ में स्वतंत्रता q की एक श्रेणी की प्रणाली पर विचार करें। हैमिल्टन के सिद्धांत का उपयोग करते हुए प्रक्रिया से गति के समीकरणों की व्युत्पत्ति में, एक (सामान्य रूप से) प्रक्रिया की भिन्नता के लिए एक मध्यवर्ती चरण में पाता है,
फलन S द्वारा दिया गया है
संक्रिया का रूपांतर है
जहाँ mr विशेष सापेक्षता में अब अप्रचलित द्रव्यमान है सापेक्षतावादी द्रव्यमान, इस प्रकार है। संवेग और ऊर्जा के पदों की प्रत्यक्ष तुलना करके, किसी के पास है
जो द्रव्यमान रहित कणों पर भी प्रयुक्त होता है। ऊर्जा और तीन-संवेग के लिए व्यंजकों का वर्ग करना और उन्हें संबंधित करना ऊर्जा-संवेग संबंध देता है,
प्रतिस्थापन
लाग्रंगियन से प्रत्यक्ष परिणाम प्राप्त करना भी संभव है। परिभाषा से,[5]
लाग्रंगियन संरचना में पृथक प्रणालियों के लिए ऊर्जा और त्रिविम-संवेग अलग-अलग संरक्षित राशियाँ हैं। इसलिए चार-संवेग भी संरक्षित है। इसके बारे में और नीचे अधिक दिया गया है।
अधिक सामान्य दृष्टिकोण में विद्युत्-गतिक में अपेक्षित व्यवहार सम्मिलित है।[6] इस दृष्टिकोण में, प्रारम्भिक बिंदु कण के शेष विरचना में लोरेंत्ज़ बल नियम और न्यूटन के दूसरे नियम का अनुप्रयोग है। विद्युत चुम्बकीय क्षेत्र प्रदिश के परिवर्तन गुण, जिसमें बिजली का आवेश का अप्रसरण सम्मिलित है, का उपयोग तब प्रयोगशाला संरचना में बदलने के लिए किया जाता है, और परिणामी पद (पुनः लोरेंत्ज़ बल नियम) की व्याख्या न्यूटन के दूसरे नियम के विचारधारा से की जाती है, जिससे सापेक्षवादी त्रिविम संवेग के लिए सही अभिव्यक्ति होती है । वास्तव मे, हानि यह है कि यह तुरंत स्पष्ट नहीं है कि परिणाम सभी कणों पर प्रयुक्त होता है, फिर आवेशित किया गया हो या नहीं किया हो, और यह पूर्ण चतुर्विम सदिश नहीं देता है।
विद्युत चुंबकत्व से संरक्षित रहना भी संभव है और अच्छी तरह से प्रशिक्षित भौतिकविदों को बिलियर्ड बॉल को प्रक्षेप करने, वेग के अतिरिक्त सूत्र के ज्ञान का उपयोग करने और संवेग के संरक्षण को संभालने के लिए अच्छी तरह से प्रशिक्षित प्रयोगों का उपयोग करना संभव है।[7][8] यह भी केवल तीन-सदिश भाग देता है।
चार-संवेग का संरक्षण
जैसा कि ऊपर दिखाया गया है, तीन संरक्षण नियम हैं (स्वतंत्र नहीं, अंतिम दो का अर्थ है पहला और इसके विपरीत):
- चार-संवेग p (या तो सहपरिवर्ती या प्रतिपरिवर्ती) संरक्षित है।
- कुल ऊर्जा E = p0c संरक्षित है।
- 3-समष्टि संवेग (उत्कृष्ट गैर-सापेक्षतावादी संवेग के साथ भ्रमित नहीं होना चाहिए ) संरक्षित है।
ध्यान दें कि कणों की एक प्रणाली का अपरिवर्तनीय द्रव्यमान कणों के शेष द्रव्यमानों के योग से अधिक हो सकता है, क्योंकि प्रणाली के द्रव्यमान केंद्र में गतिज ऊर्जा और कणों के बीच बलों से संभावित ऊर्जा अपरिवर्तनीय द्रव्यमान में योगदान करती है। एक उदाहरण के रूप में, चार-आवेग (5 GeV/c, 4 GeV/c, 0, 0) और (5 GeV/c, −4 GeV/c, 0, 0) वाले दो कणों में से प्रत्येक का (शेष) द्रव्यमान 3 GeV/c2 है। अलग से, लेकिन उनका कुल द्रव्यमान (प्रणाली द्रव्यमान) 10 GeV/c2 है। यदि ये कण आपस में टकराते और आसंजक होते हैं, तो समग्र वस्तु का द्रव्यमान 10 GeV/c2 होगा।
अपरिवर्तनीय द्रव्यमान के संरक्षण के कण भौतिकी से एक व्यावहारिक अनुप्रयोग में भारी कण के द्रव्यमान को खोजने के लिए भारी कण के क्षय में उत्पन्न दो विघटज कण के चार-संवेग pA और pB को चार-संवेग pC के साथ जोड़ना सम्मिलित है। चार-संवेग का संरक्षण pCμ = pAμ + pBμ देता है, जबकि भारी कण का द्रव्यमान M −PC ⋅ PC = M2c2 द्वारा दिया जाता है। विघटज कण की ऊर्जा और तीन-संवेग को मापकर, कोई दो-कण प्रणाली के अपरिवर्तनीय द्रव्यमान का पुनर्निर्माण कर सकता है, जो कि M के बराबर होना चाहिए। इस तकनीक का उपयोग किया जाता है, उदाहरण के लिए, Z' बोसोन के लिए प्रायोगिक शोध में उच्च- ऊर्जा कण कोलाइडर, जहां Z' बोसोन इलेक्ट्रॉन-पॉज़िट्रॉन या म्यूऑन-एंटीमुऑन युग्म के अपरिवर्तनीय द्रव्यमान स्पेक्ट्रम में वृद्धि के रूप में दिखाई देगा।
यदि किसी वस्तु का द्रव्यमान नहीं बदलता है, तो उसके चार-संवेग और इसी चार-त्वरण का मिन्कोव्स्की आंतरिक गुणनफल Aμ सिर्फ शून्य है। चार-त्वरण कण के द्रव्यमान से विभाजित चार-संवेग के उपयुक्त समय व्युत्पन्न के समानुपाती होता है, इसलिए
विद्युत-चुम्बकीय विभव की उपस्थिति में विहित संवेग
विद्युत आवेश के आवेशित कण के लिए q, विद्युत चुम्बकीय चार-विभव द्वारा दिए गए विद्युत चुम्बकीय क्षेत्र में गति कर रहा है:
यह भी देखें
- चतुरंग बल
- चतुरंग-प्रवणता
- पाउली-लुबांस्की छद्म सदिश
संदर्भ
- ↑ Taylor, Edwin; Wheeler, John (1992). स्पेसटाइम भौतिकी विशेष सापेक्षता का परिचय. New York: W. H. Freeman and Company. p. 191. ISBN 978-0-7167-2327-1.
- ↑ Landau & Lifshitz 2002, pp. 25–29
- ↑ Landau & Lifshitz 1975, pp. 139
- ↑ Landau & Lifshitz 1975, p. 30
- ↑ Landau & Lifshitz 1975, pp. 15–16
- ↑ Sard 1970, Section 3.1
- ↑ Sard 1970, Section 3.2
- ↑ Lewis & Tolman 1909 Wikisource version
- Goldstein, Herbert (1980). Classical mechanics (2nd ed.). Reading, Mass.: Addison–Wesley Pub. Co. ISBN 978-0201029185.
- Landau, L. D.; Lifshitz, E. M. (1975) [1939]. Mechanics. Translated from Russian by J. B. Sykes and J. S. Bell. (3rd ed.). Amsterdam: Elsevier. ISBN 978-0-7506-28969.
- Landau, L.D.; Lifshitz, E.M. (2000). The classical theory of fields. 4th rev. English edition, reprinted with corrections; translated from the Russian by Morton Hamermesh. Oxford: Butterworth Heinemann. ISBN 9780750627689.
- Rindler, Wolfgang (1991). Introduction to Special Relativity (2nd ed.). Oxford: Oxford University Press. ISBN 978-0-19-853952-0.
- Sard, R. D. (1970). Relativistic Mechanics - Special Relativity and Classical Particle Dynamics. New York: W. A. Benjamin. ISBN 978-0805384918.
- Lewis, G. N.; Tolman, R. C. (1909). "The Principle of Relativity, and Non-Newtonian Mechanics". Phil. Mag. 6. 18 (106): 510–523. doi:10.1080/14786441008636725. Wikisource version