सममित द्विरेखीय रूप: Difference between revisions

From Vigyanwiki
Line 101: Line 101:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:03, 13 April 2023

गणित में, सदिश स्थान पर सममित द्विरेखीय रूप, में स्थान की दो प्रतियों से अदिश (गणित) के क्षेत्र (गणित) तक द्विरेखीय मानचित्र होता है, जिसमें दो सदिशों का क्रम मानचित्र के मान को प्रभावित नहीं करता है। दूसरे शब्दों में, यह द्विरेखीय मानचित्र फ़ंक्शन है जो प्रत्येक जोड़ी को मैप करता है वेक्टर अंतरिक्ष के तत्वों की अंतर्निहित क्षेत्र के लिए जैसे कि हर के लिए और में है। जब बिलिनियर को समझा जाता है तो उन्हें अधिक संक्षेप में मात्र सममित के रूप में संदर्भित किया जाता है।

परिमित-आयामी वेक्टर रिक्त स्थान पर सममित द्विरेखीय रूप में सममित मैट्रिक्स के अनुरूप होते हैं जिन्हें 'V' के लिए आधार (रैखिक बीजगणित) दिया जाता है। द्विरेखीय रूपों में, सममित महत्वपूर्ण होते हैं क्योंकि वेक्टर स्थान विशेष रूप से सरल प्रकार के आधार को स्वीकार करता है जिसे ऑर्थोगोनल के रूप में जाना जाता है आधार (कम से कम जब क्षेत्र की विशेषता (बीजगणित) 2 नहीं है)।

सममित द्विरेखीय रूप में B'' दिया गया है, फ़ंक्शन q(x) = B(x, x) सदिश स्थान पर संबद्ध द्विघात रूप है। इसके अतिरिक्त, यदि क्षेत्र की विशेषता 2 नहीं है, तो B,q से जुड़ा अद्वितीय सममित द्विरेखीय रूप है।

औपचारिक परिभाषा

मान लीजिए कि V क्षेत्र K पर आयाम n का सदिश स्थान है। फलन (गणित) अंतरिक्ष पर सममित द्विरेखीय रूप है यदि:

अंतिम दो मात्र पूर्वे तर्क में रैखिकता स्थापित करते हैं, किन्तु पूर्वे स्वयं सिद्ध (समरूपता) का तात्पर्य दूसरे तर्क में भी रैखिकता से है।

उदाहरण

मान लीजिए V = Rn, n विमीय वास्तविक सदिश समष्टि है। फिर मानक डॉट उत्पाद सममित द्विरेखीय रूप है, जो B(x, y) = xy है। मानक आधार पर इस बिलिनियर फॉर्म (नीचे देखें) से संबंधित मैट्रिक्स है।

V कोई वेक्टर स्पेस (संभवतः अनंत-आयामी सहित) है, और मान T V से क्षेत्र तक रैखिक कार्य है। तब B(x, y) = T(x)T(y) परिभाषित फलन सममित बिलिनियर का रूप है।

V का निरंतर एकल-चर वास्तविक कार्यों का वेक्टर स्थान है। जो परिभाषित कर सकता है जो है। अभिन्न के गुणों से, यह V पर सममित द्विरेखीय रूप को परिभाषित करता है। यह सममित द्विरेखीय रूप का उदाहरण है जो किसी भी सममित मैट्रिक्स से जुड़ा नहीं है (चूंकि वेक्टर स्थान अनंत-आयामी है)।

मैट्रिक्स प्रतिनिधित्व

मान लीजिये V के लिए आधार है। n × n मैट्रिक्स A परिभाषित के द्वारा है। मैट्रिक्स A बिलिनियर रूप की समरूपता के कारण सममित मैट्रिक्स है। यदि हम n×1 मैट्रिक्स x को इस आधार के संबंध में वेक्टर v का प्रतिनिधित्व करते हैं, और इसी प्रकार n×1 मैट्रिक्स y को वेक्टर w का प्रतिनिधित्व करते हैं, तो द्वारा दिया गया है :

मान लीजिए C' V का आधार है, जिसमें

जो निम्नलिखित है

S के साथ व्युत्क्रमणीय n×n मैट्रिक्स है।

सममित द्विरेखीय रूप के लिए नवीन मैट्रिक्स प्रतिनिधित्व द्वारा दिया गया है


रूढ़िवादिता और विलक्षणता

दो वैक्टर v और w को बिलिनियर फॉर्म B के संबंध में ऑर्थोगोनल के रूप में परिभाषित किया गया है यदि B(v, w) = 0, जो सममित बिलिनियर फॉर्म के लिए, B(w, v) = 0 के समतुल्य है।

द्विरेखीय रूप B का मूलांक V में प्रत्येक सदिश के साथ सदिश ओर्थोगोनल का समुच्चय है। यह V की उपसमष्टि है, इसके प्रत्येक तर्क में B की रैखिकता से अनुसरण करती है। निश्चित आधार के संबंध में मैट्रिक्स प्रतिनिधित्व A के साथ काम करते समय, v, x, द्वारा प्रतिनिधित्व किया जाता है, यदि

मैट्रिक्स A है यदि कट्टरपंथी गैर-तुच्छ है।

यदि W, V का उपसमुच्चय है, तो इसका लांबिक पूरक W V में सभी सदिशों का समुच्चय है जो W के प्रत्येक सदिश के लिए लम्बवत हैं; यह V का एक उप-स्थान है। जब B गैर-पतित होता है, तो B का रेडिकल तुच्छ होता है और W का का आयाम dim(W) = dim(V) − dim(W) होता है।

ऑर्थोगोनल आधार

आधार B के संबंध में ऑर्थोगोनल है यदि

जब क्षेत्र की विशेषता (बीजगणित) दो नहीं होती है, तो V का हमेशा लंबकोणीय आधार होता है। यह गणितीय प्रेरण द्वारा सिद्ध किया जा सकता है।

आधार C ऑर्थोगोनल है यदि मैट्रिक्स प्रतिनिधित्व A विकर्ण मैट्रिक्स है।

हस्ताक्षर और सिल्वेस्टर का जड़त्व का नियम

सामान्य रूप में, सिल्वेस्टर का जड़त्व का नियम कहता है कि, आदेशित क्षेत्र पर कार्य करते समय, मैट्रिक्स के विकर्ण रूप में विकर्ण तत्वों की संख्या जो क्रमशः सकारात्मक, नकारात्मक और शून्य हैं, ऑर्थोगोनल आधार से स्वतंत्र हैं। ये तीन अंक द्विरेखीय रूप के हस्ताक्षर (द्विघात रूप) बनाते हैं।

असली मामला

वास्तविक स्थान पर काम करते समय, व्यक्ति थोड़ा और आगे जा सकता है। मान लीजिये ऑर्थोगोनल आधार बनें।

हम नवीन आधार परिभाषित करते हैं

अब, नवीन मैट्रिक्स प्रतिनिधित्व A विकर्ण परमात्र 0, 1 और -1 के साथ विकर्ण मैट्रिक्स होगा। शून्य प्रकट होगा यदि रेडिकल गैर-तुच्छ है।

जटिल मामला

जटिल संख्याओं पर किसी स्थान पर काम करते समय, व्यक्ति आगे भी जा सकता है और यह और भी आसान है।

मान लीजिये ऑर्थोगोनल आधार बनें।

हम नवीन आधार परिभाषित करते हैं

अब नवीन मैट्रिक्स प्रतिनिधित्व A विकर्ण पर मात्र 0 और 1 के साथ विकर्ण मैट्रिक्स होगा। शून्य प्रकट होगा यदि रेडिकल गैर-तुच्छ है।

ऑर्थोगोनल ध्रुवताएं

मान लो B सममित द्विरेखीय रूप है जो अंतरिक्ष V पर तुच्छ कट्टरपंथी के साथ क्षेत्र में विशेषता (बीजगणित) के साथ नहीं है। D(V) से मानचित्र परिभाषित कर सकता है, जो V के सभी उप-स्थानों का सेट है:

यह मानचित्र प्रक्षेपण स्थान PG(W) पर ऑर्थोगोनल पोलरिटी है। इसके विपरीत, कोई यह प्रमाणित कर सकता है कि सभी ऑर्थोगोनल ध्रुवीकरण इस प्रकार से प्रेरित होते हैं, और यह कि दो सममित द्विरेखीय रूपों के साथ तुच्छ मूलक ही ध्रुवीयता को प्रेरित करते हैं यद्यपि वे स्केलर गुणन के बराबर हैं।

संदर्भ

  • Adkins, William A.; Weintraub, Steven H. (1992). Algebra: An Approach via Module Theory. Graduate Texts in Mathematics. Vol. 136. Springer-Verlag. ISBN 3-540-97839-9. Zbl 0768.00003.
  • Milnor, J.; Husemoller, D. (1973). Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 73. Springer-Verlag. ISBN 3-540-06009-X. Zbl 0292.10016.
  • Weisstein, Eric W. "Symmetric Bilinear Form". MathWorld.