हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
Line 137: Line 137:
बाहरी सतह सामान्य के साथ <math> \mathbf{\hat{n}}' </math>.
बाहरी सतह सामान्य के साथ <math> \mathbf{\hat{n}}' </math>.


परिभाषित
== '''परिभाषित''' ==


<math display="block">\Phi(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>
== <math display="block">\Phi(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>
<math display="block">\mathbf{A}(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math>
<math display="block">\mathbf{A}(\mathbf{r})\equiv\frac{1}{4\pi}\int_{V}\frac{\nabla'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> ==
हम अंत में प्राप्त करते हैं
हम अंत में प्राप्त करते हैं
<math display="block">\mathbf{F}=-\nabla\Phi+\nabla\times\mathbf{A}.</math>
<math display="block">\mathbf{F}=-\nabla\Phi+\nabla\times\mathbf{A}.</math>

Revision as of 01:59, 10 April 2023

भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ प्रमेय,[1][2] जिसे वेक्टर कैलकुलस के मौलिक प्रमेय के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले वेक्टर क्षेत्र को एक अघूर्णन सदिश क्षेत्र (कर्ल -फ्री) वेक्टर क्षेत्र और परिनालिकीय क्षेत्र (विचलन -फ्री) वेक्टर क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित चिकनाई और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है , कहाँ एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

प्रमेय का कथन

होने देना एक बंधे हुए डोमेन पर एक वेक्टर फ़ील्ड बनें , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

कहाँ
और के संबंध में नाबला संचालिका है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से गायब हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन का।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फ़ंक्शन है जिनमें से हम कर्ल जानते हैं, , और विचलन, , सीमा पर डोमेन और फ़ील्ड में। प्रपत्र में डेल्टा समारोह का उपयोग करके फ़ंक्शन लिखना

कहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फ़ंक्शन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम पाते हैं
विचलन प्रमेय के लिए धन्यवाद समीकरण को फिर से लिखा जा सकता है