हेल्महोल्ट्ज़ अपघटन: Difference between revisions
Line 1: | Line 1: | ||
{{Short description|Certain vector fields are the sum of an irrotational and a solenoidal vector field}} | {{Short description|Certain vector fields are the sum of an irrotational and a solenoidal vector field}} | ||
भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />See also: [[Method of Fluxions]].</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />See also: [[Green's Theorem]].</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले [[वेक्टर क्षेत्र]] को एक [[अघूर्णन सदिश क्षेत्र]] ([[कर्ल (गणित)|कर्ल]] -फ्री) | भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />See also: [[Method of Fluxions]].</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />See also: [[Green's Theorem]].</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले [[वेक्टर क्षेत्र|सदिश क्षेत्र]] को एक [[अघूर्णन सदिश क्षेत्र]] ([[कर्ल (गणित)|कर्ल]] -फ्री) सदिश क्षेत्र और [[ solenoidal |परिनालिकीय क्षेत्र]] ([[ विचलन ]]-फ्री) सदिश क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम [[हरमन वॉन हेल्महोल्ट्ज़]] के नाम पर रखा गया है।<ref>See: | ||
* H. Helmholtz (1858) [https://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25 "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25–55. On page 38, the components of the fluid's velocity (''u'', ''v'', ''w'') are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (''L'', ''M'', ''N''). | * H. Helmholtz (1858) [https://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25 "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25–55. On page 38, the components of the fluid's velocity (''u'', ''v'', ''w'') are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (''L'', ''M'', ''N''). | ||
* However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849; published: 1856) [https://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1 "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1–62; see pages 9–10.</ref> | * However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849; published: 1856) [https://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1 "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1–62; see pages 9–10.</ref> | ||
Line 9: | Line 9: | ||
== सिद्धांत का कथन == | == सिद्धांत का कथन == | ||
लेट <math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक | लेट <math>\mathbf{F}</math> एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर <math>V\subseteq\mathbb{R}^3</math>, जो अंदर से दो बार लगातार भिन्न होता है <math>V</math>, और जाने <math>S</math> वह सतह हो जो डोमेन को घेरती है <math>V</math>. तब <math>\mathbf{F}</math> कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:<ref>{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=हेल्महोल्ट्ज प्रमेय|publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref> | ||
<math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math> | <math display="block">\mathbf{F}=-\nabla \Phi+\nabla\times\mathbf{A},</math> | ||
Line 200: | Line 200: | ||
=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' === | === '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' === | ||
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल हैं और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्त हो जाते हैं। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math> | शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल हैं और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्त हो जाते हैं। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math> | ||
यदि अतिरिक्त | यदि अतिरिक्त सदिश क्षेत्र {{math|'''F'''}} के रूप में लुप्त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" /> | ||
दूसरे शब्दों में, एक | दूसरे शब्दों में, एक सदिश क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। स्थिर वैद्युत विक्षेप में इस सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के हैं।<ref name="griffiths" /> प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते हैं। | ||
<math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math> | <math display="block">\mathbf{F} = - \nabla(\mathcal{G} (d)) + \nabla \times (\mathcal{G}(\mathbf{C})),</math> | ||
Line 232: | Line 232: | ||
== विभेदक रूप == | == विभेदक रूप == | ||
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर | हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर सदिश क्षेत्र ों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह ]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। हालांकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है। | ||
== कमजोर सूत्रीकरण == | == कमजोर सूत्रीकरण == | ||
Line 246: | Line 246: | ||
== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र == | == अनुदैर्ध्य और अनुप्रस्थ क्षेत्र == | ||
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अनुप्रस्थ घटक के रूप में | भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करें <math>\hat\mathbf{F}</math> सदिश क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है | ||
<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math> | <math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math> |
Revision as of 10:11, 11 April 2023
भौतिकी और गणित में, सदिश कलन के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] बताता है कि तीन आयामों में किसी भी पर्याप्त रूप से चिकनी, सड़ने वाले सदिश क्षेत्र को एक अघूर्णन सदिश क्षेत्र (कर्ल -फ्री) सदिश क्षेत्र और परिनालिकीय क्षेत्र (विचलन -फ्री) सदिश क्षेत्र के योग में हल किया जा सकता है; इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]
जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक सोलनॉइडल सदिश क्षेत्र में एक सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि एक सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को रूप के योग के रूप में विघटित किया जा सकता है ,
जहाँ एक अदिश क्षेत्र है जिसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।
सिद्धांत का कथन
लेट एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]
अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्त हो जाता है जैसा , तो एक है[12]
व्युत्पत्ति
मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते हैं, , और विचलन, , सीमा पर डोमेन और क्षेत्र में। प्रपत्र में डेल्टा फलन का उपयोग करके फलन लिखना