नवीन मूल: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Axiomatic set theory devised by W.V.O. Quine}} | {{Short description|Axiomatic set theory devised by W.V.O. Quine}} | ||
[[गणितीय तर्क]] में, नई नींव (एनएफ) एक सेट सिद्धांत है#औपचारिक रूप से सेट सिद्धांत, जिसे [[विलार्ड वैन ओरमन क्वीन]] द्वारा '' [[प्रिंसिपिया मैथमेटिका]] 'के प्रकार के सिद्धांत के सरलीकरण के रूप में कल्पना की गई है।क्वीन ने पहली बार 1937 के एक लेख में एनएफ प्रस्तावित किया, जिसका शीर्षक था न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक<!--boldface per WP:R#PLA-->;इसके कारण नाम।इस प्रविष्टि में से अधिकांश एनएफयू पर चर्चा करते हैं, जो जेन्सेन (1969) के कारण एनएफ का एक महत्वपूर्ण संस्करण है और होम्स (1998) द्वारा स्पष्ट किया गया है।<ref>Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant.</ref> 1940 में और 1951 में एक संशोधन में, क्वीन ने #सिस्टम एमएल (गणितीय तर्क) को कभी -कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग (सेट सिद्धांत) के साथ -साथ [[सेट (गणित)]] भी | [[गणितीय तर्क]] में, नई नींव (एनएफ) एक सेट सिद्धांत है#औपचारिक रूप से सेट सिद्धांत, जिसे [[विलार्ड वैन ओरमन क्वीन]] द्वारा '' [[प्रिंसिपिया मैथमेटिका]] 'के प्रकार के सिद्धांत के सरलीकरण के रूप में कल्पना की गई है।क्वीन ने पहली बार 1937 के एक लेख में एनएफ प्रस्तावित किया, जिसका शीर्षक था न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक<!--boldface per WP:R#PLA-->;इसके कारण नाम।इस प्रविष्टि में से अधिकांश एनएफयू पर चर्चा करते हैं, जो जेन्सेन (1969) के कारण एनएफ का एक महत्वपूर्ण संस्करण है और होम्स (1998) द्वारा स्पष्ट किया गया है।<ref>Holmes, Randall, 1998. ''[https://randall-holmes.github.io/head.pdf Elementary Set Theory with a Universal Set]''. Academia-Bruylant.</ref> 1940 में और 1951 में एक संशोधन में, क्वीन ने #सिस्टम एमएल (गणितीय तर्क) को कभी -कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग (सेट सिद्धांत) के साथ -साथ [[सेट (गणित)]] भी सम्मलित था।'' | ||
नई नींव में एक सार्वभौमिक सेट है, इसलिए यह एक गैर-अच्छी तरह से स्थापित सेट सिद्धांत है।<ref>[http://plato.stanford.edu/entries/quine-nf/ Quine's New Foundations] - Stanford Encyclopedia of Philosophy</ref> यह कहना है, यह एक स्वयंसिद्ध सेट सिद्धांत है जो सदस्यता की अनंत अवरोही श्रृंखलाओं की अनुमति देता है, जैसे | नई नींव में एक सार्वभौमिक सेट है, इसलिए यह एक गैर-अच्छी तरह से स्थापित सेट सिद्धांत है।<ref>[http://plato.stanford.edu/entries/quine-nf/ Quine's New Foundations] - Stanford Encyclopedia of Philosophy</ref> यह कहना है, यह एक स्वयंसिद्ध सेट सिद्धांत है जो सदस्यता की अनंत अवरोही श्रृंखलाओं की अनुमति देता है, जैसे | ||
Line 11: | Line 11: | ||
* [[विस्तार की स्वच्छता]]: एक ही सदस्यों के साथ समान (सकारात्मक) प्रकार के सेट समान हैं; | * [[विस्तार की स्वच्छता]]: एक ही सदस्यों के साथ समान (सकारात्मक) प्रकार के सेट समान हैं; | ||
* समझ का एक स्वयंसिद्ध स्कीमा, अर्थात्: | * समझ का एक स्वयंसिद्ध स्कीमा, अर्थात्: | ||
:: | ::यदि <math>\phi(x^n)</math>{{Hair space}}एक सूत्र है, फिर सेट <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> उपस्थित । | ||
: दूसरे शब्दों में, किसी भी सूत्र को देखते हुए <math>\phi(x^n)\!</math>, सूत्र <math>\exists A^{n+1} \forall x^n [ x^n \in A^{n+1} \leftrightarrow \phi(x^n) ]</math> एक स्वयंसिद्ध है जहां <math>A^{n+1}\!</math> सेट का प्रतिनिधित्व करता है <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> और [[मुक्त चर और बाध्य चर]] नहीं है <math>\phi(x^n)</math>। | : दूसरे शब्दों में, किसी भी सूत्र को देखते हुए <math>\phi(x^n)\!</math>, सूत्र <math>\exists A^{n+1} \forall x^n [ x^n \in A^{n+1} \leftrightarrow \phi(x^n) ]</math> एक स्वयंसिद्ध है जहां <math>A^{n+1}\!</math> सेट का प्रतिनिधित्व करता है <math>\{x^n \mid \phi(x^n)\}^{n+1}\!</math> और [[मुक्त चर और बाध्य चर]] नहीं है <math>\phi(x^n)</math>। | ||
यह प्रकार सिद्धांत प्रिंसिपिया मैथमेटिक में पहली बार सेट की तुलना में बहुत कम जटिल है, जिसमें [[संबंध (गणित)]] के प्रकार | यह प्रकार सिद्धांत प्रिंसिपिया मैथमेटिक में पहली बार सेट की तुलना में बहुत कम जटिल है, जिसमें [[संबंध (गणित)]] के प्रकार सम्मलित थे, जिनके तर्क आवश्यक नहीं थे कि सभी एक ही प्रकार के थे।1914 में, [[नॉर्बर्ट वीनर]] ने दिखाया कि ऑर्डर की गई जोड़ी को सेट के एक सेट के रूप में कैसे कोड किया जाए, जिससे यहां वर्णित सेटों के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को खत्म करना संभव हो गया। | ||
== क्विनियन सेट थ्योरी == | == क्विनियन सेट थ्योरी == | ||
Line 22: | Line 22: | ||
नई नींव (एनएफ) के अच्छी तरह से गठित सूत्र टीएसटी के अच्छी तरह से गठित सूत्रों के समान हैं, लेकिन प्रकार के एनोटेशन के साथ मिट जाते हैं।एनएफ के स्वयंसिद्ध हैं: | नई नींव (एनएफ) के अच्छी तरह से गठित सूत्र टीएसटी के अच्छी तरह से गठित सूत्रों के समान हैं, लेकिन प्रकार के एनोटेशन के साथ मिट जाते हैं।एनएफ के स्वयंसिद्ध हैं: | ||
* [[विस्तार]]: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट हैं; | * [[विस्तार]]: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट हैं; | ||
* [[पृथक्करण]] का एक स्वयंसिद्ध: टीएसटी समझ के सभी उदाहरण लेकिन प्रकार के साथ, सूचकांकों को गिरा दिया गया (और चर के बीच नई पहचान | * [[पृथक्करण]] का एक स्वयंसिद्ध: टीएसटी समझ के सभी उदाहरण लेकिन प्रकार के साथ, सूचकांकों को गिरा दिया गया (और चर के बीच नई पहचान प्रस्तुत किए बिना)। | ||
कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के स्वयंसिद्ध को [[स्तरीकृत सूत्र]] की अवधारणा का उपयोग करके कहा गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं है।एक सूत्र <math>\phi</math> कहा जाता है कि स्तरीकृत सूत्र है यदि वहाँ एक फ़ंक्शन (गणित) के टुकड़ों से | कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के स्वयंसिद्ध को [[स्तरीकृत सूत्र]] की अवधारणा का उपयोग करके कहा गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं है।एक सूत्र <math>\phi</math> कहा जाता है कि स्तरीकृत सूत्र है यदि वहाँ एक फ़ंक्शन (गणित) के टुकड़ों से उपस्थित है <math>\phi</math>प्राकृतिक संख्याओं के लिए सिंटैक्स, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए <math>x \in y</math> का <math>\phi</math> हमारे पास f (y) = f (x) + 1 है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए <math>x=y</math> का <math>\phi</math>, हमारे पास f (x) = f (y) है।समझ तब बन जाती है: | ||
:<math>\{x \mid \phi \}</math> प्रत्येक स्तरीकृत सूत्र के लिए | :<math>\{x \mid \phi \}</math> प्रत्येक स्तरीकृत सूत्र के लिए उपस्थित है <math>\phi</math>। | ||
यहां तक कि [[स्तरीकरण]] (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जा सकता [[थियोडोर हेल्परिन]] ने 1944 में दिखाया कि समझ इसके उदाहरणों के एक परिमित संयोजन के बराबर है,<ref>{{cite journal | last1 = Hailperin | first1 = T | year = 1944| title = A set of axioms for logic | journal = [[Journal of Symbolic Logic]] | volume = 9 | issue = 1| pages = 1–19 | doi=10.2307/2267307| jstor = 2267307 | s2cid = 39672836 }}</ref> | यहां तक कि [[स्तरीकरण]] (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जा सकता [[थियोडोर हेल्परिन]] ने 1944 में दिखाया कि समझ इसके उदाहरणों के एक परिमित संयोजन के बराबर है,<ref>{{cite journal | last1 = Hailperin | first1 = T | year = 1944| title = A set of axioms for logic | journal = [[Journal of Symbolic Logic]] | volume = 9 | issue = 1| pages = 1–19 | doi=10.2307/2267307| jstor = 2267307 | s2cid = 39672836 }}</ref> जिससे कि NF को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से स्वयंसिद्ध किया जा सके। | ||
समझ में आने वाले सिद्धांत में उन लोगों के समान समस्याओं से दूर चलने के लिए लग सकता है, लेकिन यह | समझ में आने वाले सिद्धांत में उन लोगों के समान समस्याओं से दूर चलने के लिए लग सकता है, लेकिन यह स्थिति ा नहीं है।उदाहरण के लिए, असंभव रसेल के विरोधाभास का अस्तित्व <math>\{x \mid x \not\in x\}</math> एनएफ का स्वयंसिद्ध नहीं है, क्योंकि <math> x \not\in x </math> स्तरीकृत नहीं किया जा सकता है। | ||
=== आदेश जोड़े === | === आदेश जोड़े === | ||
संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के सेट के रूप में TST (और NF और NFU में) में परिभाषित किया गया है।ऑर्डर की गई जोड़ी की सामान्य परिभाषा, पहली बार 1921 में [[संग्रहाध्यक्ष]] द्वारा प्रस्तावित, एनएफ और संबंधित सिद्धांतों के लिए एक गंभीर दोष है: परिणामस्वरूप ऑर्डर की गई जोड़ी आवश्यक रूप से इसके तर्कों के प्रकार की तुलना में एक प्रकार दो अधिक है (यह बाएं और सही प्रक्षेपण है (गणित))एस)।इसलिए स्तरीकरण का निर्धारण करने के प्रयोजनों के लिए, एक फ़ंक्शन इसके क्षेत्र के सदस्यों की तुलना में तीन प्रकार अधिक है। | संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के सेट के रूप में TST (और NF और NFU में) में परिभाषित किया गया है।ऑर्डर की गई जोड़ी की सामान्य परिभाषा, पहली बार 1921 में [[संग्रहाध्यक्ष]] द्वारा प्रस्तावित, एनएफ और संबंधित सिद्धांतों के लिए एक गंभीर दोष है: परिणामस्वरूप ऑर्डर की गई जोड़ी आवश्यक रूप से इसके तर्कों के प्रकार की तुलना में एक प्रकार दो अधिक है (यह बाएं और सही प्रक्षेपण है (गणित))एस)।इसलिए स्तरीकरण का निर्धारण करने के प्रयोजनों के लिए, एक फ़ंक्शन इसके क्षेत्र के सदस्यों की तुलना में तीन प्रकार अधिक है। | ||
यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय '' ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत | यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय '' ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत सामान्यतः [[विलार्ड वैन ओरमन क्वीन]] की ऑर्डर की गई जोड़ी की सेट-थ्योरिटिक परिभाषा को नियोजित करते हैं, जो एक ऑर्डर की गई जोड़ी#क्वीन-रॉसर परिभाषा की पैप्रमाणित र करता है। टाइप-लेवल ऑर्डर की गई जोड़ी।होम्स (1998) ऑर्डर की गई जोड़ी और उसके बाएं और दाएं [[प्रक्षेपण (गणित)]] को आदिम के रूप में लेता है।सौभाग्य से, क्या ऑर्डर की गई जोड़ी परिभाषा के अनुसार प्रकार-स्तरीय है या धारणा द्वारा (अर्थात , आदिम के रूप में लिया गया) सामान्यतः कोई फर्क नहीं पड़ता।'' | ||
एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है '' [[अनंतता]] '', और एनएफयू + '' इन्फिनिटी '' एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे | एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है '' [[अनंतता]] '', और एनएफयू + '' इन्फिनिटी '' एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे बहुत समान सिद्धांत नहीं हैं, लेकिन अंतर अयोग्य हैं)।इसके विपरीत, NFU + '' इन्फिनिटी '' + '' चॉइस '' एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी के अस्तित्व को सिद्ध करता है।{{Citation needed|date=July 2020|reason=I searched for quite a while and was unable to find a source for this statement. It is repeated in several online sources, but without proof or reference.}} | ||
=== उपयोगी बड़े सेटों की स्वीकार्यता === | === उपयोगी बड़े सेटों की स्वीकार्यता === | ||
एनएफ (और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत) दो प्रकार के सेटों के निर्माण की अनुमति देते हैं जो कि [[ZFC]] और इसके उचित एक्सटेंशन अस्वीकृत हैं क्योंकि वे बहुत बड़े हैं (कुछ सेट सिद्धांत [[उचित वर्ग]]ों के शीर्षक के | एनएफ (और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत) दो प्रकार के सेटों के निर्माण की अनुमति देते हैं जो कि [[ZFC]] और इसके उचित एक्सटेंशन अस्वीकृत हैं क्योंकि वे बहुत बड़े हैं (कुछ सेट सिद्धांत [[उचित वर्ग]]ों के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं): | ||
* यूनिवर्सल सेट वी। <math>x=x</math> एक स्तरीकृत सूत्र है, सार्वभौमिक सेट v = {x |x = x} समझ से | * यूनिवर्सल सेट वी। <math>x=x</math> एक स्तरीकृत सूत्र है, सार्वभौमिक सेट v = {x |x = x} समझ से उपस्थित है।एक तत्काल परिणाम यह है कि सभी सेटों में पूरक (सेट सिद्धांत) होते हैं, और एनएफ के अनुसार पूरे सेट-थ्योरिटिक ब्रह्मांड में एक [[बूलियन बीजगणित]] (संरचना) संरचना होती है। | ||
* [[बुनियादी संख्या]] और [[क्रमसूचक संख्या]] नंबर।एनएफ (और टीएसटी) में, एन तत्वों वाले सभी सेटों का सेट (यहां का [[परिपत्र तर्क]] केवल स्पष्ट है) | * [[बुनियादी संख्या|मौलिक संख्या]] और [[क्रमसूचक संख्या]] नंबर।एनएफ (और टीएसटी) में, एन तत्वों वाले सभी सेटों का सेट (यहां का [[परिपत्र तर्क]] केवल स्पष्ट है) उपस्थित है।इसलिए कार्डिनल नंबरों की [[फ्रेज]] की परिभाषा एनएफ और एनएफयू में काम करती है: एक कार्डिनल नंबर [[विषमता]] के संबंध (गणित) के अनुसार सेटों की एक समानता वर्ग है: सेट ए और बी विषम हैं यदि उनके बीच एक [[द्विभाजन]] उपस्थित है, तो हम जिस स्थिति में हैंलिखना <math>A \sim B</math>।इसी तरह, एक ऑर्डिनल नंबर अच्छी तरह से ऑर्डर करने का एक समानता वर्ग है। अच्छी तरह से आदेशित सेट। | ||
== परिमित Axiomatizability == | == परिमित Axiomatizability == | ||
Line 52: | Line 52: | ||
== स्थिरता की समस्या और संबंधित आंशिक परिणाम == | == स्थिरता की समस्या और संबंधित आंशिक परिणाम == | ||
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध स्वयंसिद्ध प्रणाली के साथ समरूपता | कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध स्वयंसिद्ध प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के स्वयंसिद्ध को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के स्वयंसिद्ध सिद्ध होता है।लेकिन यह भी जाना जाता है ([[रोनाल्ड जेन्सेन]], 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो सेट सिद्धांत के साथ टाइप थ्योरी के समान स्थिरता की ताकत होती है।(NFU एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में [[urelement]]s हैं, न कि केवल एक खाली सेट।) NF के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं। | ||
एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति सेट ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति सेट ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति सेट | एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति सेट ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति सेट ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति सेट सम्मलित हैकेवल सेट, जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से NFU+ पसंद में स्थिति ा है। | ||
[[अर्नस्ट स्पेकर]] ने दिखाया है कि NF TST + AMB के साथ [[समानता]] है, जहां AMB 'विशिष्ट अस्पष्टता' की स्वयंसिद्ध योजना है जो | [[अर्नस्ट स्पेकर]] ने दिखाया है कि NF TST + AMB के साथ [[समानता]] है, जहां AMB 'विशिष्ट अस्पष्टता' की स्वयंसिद्ध योजना है जो प्रमाणित करता है <math>\phi \leftrightarrow \phi^+</math> किसी भी सूत्र के लिए <math>\phi</math>, <math>\phi^+</math> हर प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते <math>\phi</math> एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो समझ के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं। | ||
उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत | उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ <math>NF_3</math> एक जैसा। <math>NF_3</math> पूर्ण विस्तार (कोई urelements) और समझ के उन उदाहरणों के साथ NF का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक आदेशित जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, <math>NF_3</math> बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे हर मॉडल के लिए, का एक मॉडल है <math>NF_3</math> एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: <math>NF_4</math> एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है। | ||
1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार | 1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके स्वयंसिद्ध अप्रतिबंधित विस्तार हैं और समझ के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो सेट की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के सेट को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक सेटों के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक सेट उसी प्रकार के होते हैं जैसे सेट सेट के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को समझ के एक उदाहरण द्वारा उपस्थित सेट के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है {{date?}} दिखाया गया है कि एनएफपी में समानता के स्वयंसिद्धता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की ताकत है। | ||
2015 के बाद से, ZF के सापेक्ष NF की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटी<sub>λ</sub> - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटी<sub>λ</sub> ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' | 2015 के बाद से, ZF के सापेक्ष NF की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटी<sub>λ</sub> - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटी<sub>λ</sub> ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है। | ||
== कैसे nf (u) सेट-सिद्धांतवादी [[विरोधाभास]]ों से बचता है == | == कैसे nf (u) सेट-सिद्धांतवादी [[विरोधाभास]]ों से बचता है == | ||
Line 69: | Line 69: | ||
रसेल का विरोधाभास: <math>x \not\in x</math> एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व <math>\{x \mid x \not\in x\}</math> समझ के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया। | रसेल का विरोधाभास: <math>x \not\in x</math> एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व <math>\{x \mid x \not\in x\}</math> समझ के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया। | ||
सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक सेट का शोषण करता है।कैंटर का प्रमेय कहता है (ZFC को देखते हुए) कि [[सत्ता स्थापित]] <math>P(A)</math> किसी भी सेट की <math>A</math> से बड़ा है <math>A</math> (से कोई [[इंजेक्टिव फ़ंक्शन]] (एक-से-एक मानचित्र) नहीं हो सकता है <math>P(A)</math> में <math>A</math>)।अब निश्चित रूप से एक इंजेक्शन कार्य है <math>P(V)</math> में <math>V</math>, | सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक सेट का शोषण करता है।कैंटर का प्रमेय कहता है (ZFC को देखते हुए) कि [[सत्ता स्थापित]] <math>P(A)</math> किसी भी सेट की <math>A</math> से बड़ा है <math>A</math> (से कोई [[इंजेक्टिव फ़ंक्शन]] (एक-से-एक मानचित्र) नहीं हो सकता है <math>P(A)</math> में <math>A</math>)।अब निश्चित रूप से एक इंजेक्शन कार्य है <math>P(V)</math> में <math>V</math>, यदि <math>V</math> सार्वभौमिक सेट है!संकल्प के लिए आवश्यक है कि कोई यह देखता है <math>|A| < |P(A)|</math> प्रकार के सिद्धांत में कोई मतलब नहीं है: का प्रकार <math>P(A)</math> के प्रकार से अधिक है <math>A</math>।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल सेट सिद्धांत में काम करता है) <math>|P_1(A)| < |P(A)|</math>, कहाँ <math>P_1(A)</math> एक-तत्व सबसेट का सेट है <math>A</math>।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है <math>|P_1(V)| < |P(V)|</math>: सेट की तुलना में कम एक-तत्व सेट हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व सेट, यदि हम NFU में हैं)।स्पष्ट द्विभाजन <math>x \mapsto \{x\}</math> ब्रह्मांड से एक-तत्व सेट तक एक सेट नहीं है;यह एक सेट नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि NFU के सभी ज्ञात मॉडल में यह स्थिति ा है <math>|P_1(V)| < |P(V)| << |V|</math>;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं <math>|P(V)|</math> और <math>|V|</math>। | ||
अब कुछ उपयोगी धारणाएं | अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक सेट <math>A</math> जो सहज रूप से अपील को संतुष्ट करता है <math>|A| = |P_1(A)|</math> कहा जाता है कि कैंटोरियन: एक कैंटोरियन सेट कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक सेट <math>A</math> जो आगे की स्थिति को संतुष्ट करता है <math>(x \mapsto \{x\})\lceil A</math>, [[सिंगलटन (गणित)]] मानचित्र का [[प्रतिबंध (गणित)]], एक सेट न केवल कैंटोरियन सेट है, बल्कि 'दृढ़ता से कैंटोरियन' है। | ||
सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले सेट सिद्धांत के बाद) ऑर्डिनल को [[समाकृतिकता]] के | सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले सेट सिद्धांत के बाद) ऑर्डिनल को [[समाकृतिकता]] के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से आदेश है <math>\Omega</math>।यह सिद्ध करने के लिए सीधा है ([[ट्रांसफ़िनाइट इंडक्शन]] द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार <math>\alpha</math> है <math>\alpha</math> अपने आप।लेकिन इसका मतलब है कि <math>\Omega</math> ऑर्डर का ऑर्डर प्रकार है <math> < \Omega </math> और इसलिए सभी ऑर्डिनल्स के ऑर्डर प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, <math>\Omega</math> अपने आप! | ||
एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से | एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि ऑर्डर के ऑर्डर प्रकार से कम से कम <math>\alpha</math> की तुलना में एक उच्च प्रकार का है <math>\alpha</math>।इसलिए एक प्रकार का स्तर ऑर्डर की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक ऑर्डर किया है।किसी भी आदेश प्रकार के लिए <math>\alpha</math>, हम एक ऑर्डर प्रकार को परिभाषित कर सकते हैं <math>\alpha</math> एक प्रकार अधिक: यदि <math>W \in \alpha</math>, तब <math>T(\alpha)</math> ऑर्डर का ऑर्डर प्रकार है <math>W^{\iota} = \{(\{x\},\{y\}) \mid xWy\}</math>।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से [[मोनोटोनिक कार्य]] (ऑर्डर-प्रेशरिंग) ऑपरेशन है। | ||
अब ऑर्डर प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार <math> < \alpha</math> है <math>T^2(\alpha)</math> या <math>T^4(\alpha)</math> | अब ऑर्डर प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार <math> < \alpha</math> है <math>T^2(\alpha)</math> या <math>T^4(\alpha)</math> | ||
इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि ऑर्डर टाइप ऑर्डिनल्स पर <math> <\Omega </math> है <math>T^2(\Omega)</math>, और इस तरह <math>T^2(\Omega)<\Omega</math>।इसलिए टी ऑपरेशन एक फ़ंक्शन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन सेट मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है <math>\Omega > T^2(\Omega) > T^4(\Omega)\ldots</math>, ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक सेट नहीं हो सकता है। | इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि ऑर्डर टाइप ऑर्डिनल्स पर <math> <\Omega </math> है <math>T^2(\Omega)</math>, और इस तरह <math>T^2(\Omega)<\Omega</math>।इसलिए टी ऑपरेशन एक फ़ंक्शन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन सेट मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है <math>\Omega > T^2(\Omega) > T^4(\Omega)\ldots</math>, ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक सेट नहीं हो सकता है। | ||
कोई यह | कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से आदेश नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी सेट मॉडल में गैर-अच्छी तरह से ऑर्डर किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक सेट होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है। | ||
NFU में गणित के एक और विकास के लिए, ZFC में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें। | NFU में गणित के एक और विकास के लिए, ZFC में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें। | ||
Line 86: | Line 86: | ||
== सिस्टम एमएल (गणितीय तर्क) == | == सिस्टम एमएल (गणितीय तर्क) == | ||
एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ सेट भी | एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ सेट भी सम्मलित हैं। | ||
विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के सेट सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल सेट सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित समझ का एक स्वयंसिद्ध स्कीमा | विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के सेट सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल सेट सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित समझ का एक स्वयंसिद्ध स्कीमा सम्मलित किया।चूँकि {{harvs|txt|first=J. Barkley|last= Rosser|authorlink=J. Barkley Rosser|year=1942}} यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। {{harvs|txt|authorlink=Hao Wang (academic)|first=Hao |last=Wang|year=1950}} इस समस्या से बचने के लिए एमएल के लिए क्वीन के स्वयंसिद्धों में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी स्वयंसिद्धता को सम्मलित किया। | ||
वांग ने | वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं। | ||
== nfu के मॉडल == | == nfu के मॉडल == | ||
जहां Zermelo-Fraenkel सेट थ्योरी के [[मेटामेथेमाटिक्स]] के लिए | जहां Zermelo-Fraenkel सेट थ्योरी के [[मेटामेथेमाटिक्स]] के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel सेट सिद्धांत [[संचयी पदानुक्रम]] का आसान-से-रूपांतरण अंतर्ज्ञान है, NF और NFU की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित सेटों से एक चरण में सेट बनाने के अंतर्ज्ञान को सभी संभावित सेटों से मिलकर एक चरण में सेट बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित सेट, सेट के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।<ref>Forster (2008).</ref> | ||
थोक में एनएफयू के मॉडल के उत्पादन के लिए एक | थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।[[मॉडल सिद्धांत]] की प्रसिद्ध तकनीकों का उपयोग करते हुए, कोई व्यक्ति [[ज़रमेलो सेट सिद्धांत]] के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल तकनीक के लिए पूर्ण ZFC के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक सेट नहीं)जो एक रैंक (सेट सिद्धांत) को स्थानांतरित करता है <math>V_{\alpha}</math> सेट के संचयी [[पदानुक्रम]] की।हम सामान्यता के नुकसान के बिना मान सकते हैं <math>j(\alpha)<\alpha</math>।हम [[स्वचालितता]] के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है। | ||
NFU के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा <math>V_{\alpha}</math>।NFU के मॉडल की सदस्यता संबंध होगा | NFU के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा <math>V_{\alpha}</math>।NFU के मॉडल की सदस्यता संबंध होगा | ||
* <math>x \in_{NFU} y \equiv_{def} j(x) \in y \wedge y \in V_{j(\alpha)+1}.</math> | * <math>x \in_{NFU} y \equiv_{def} j(x) \in y \wedge y \in V_{j(\alpha)+1}.</math> | ||
अब यह | अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना <math>\phi</math> NFU की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें। | ||
सूत्र का विस्तार करें <math>\phi</math> एक सूत्र में <math>\phi_1</math> एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो सेट सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके [[सत्य मूल्य]] को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक [[परमाणु सूत्र]] में ऐसा आवेदन करें <math>\phi_1</math> इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है <math>N-i</math> जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य <math>(\forall x \in V_{\alpha}.\psi(j^{N-i}(x)))</math> प्रपत्र में परिवर्तित किया जा सकता है <math>(\forall x \in j^{N-i}(V_{\alpha}).\psi(x))</math> (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को हर जगह ले जाएं और एक सूत्र प्राप्त करें <math>\phi_2</math> जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है। | सूत्र का विस्तार करें <math>\phi</math> एक सूत्र में <math>\phi_1</math> एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो सेट सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके [[सत्य मूल्य]] को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक [[परमाणु सूत्र]] में ऐसा आवेदन करें <math>\phi_1</math> इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है <math>N-i</math> जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य <math>(\forall x \in V_{\alpha}.\psi(j^{N-i}(x)))</math> प्रपत्र में परिवर्तित किया जा सकता है <math>(\forall x \in j^{N-i}(V_{\alpha}).\psi(x))</math> (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को हर जगह ले जाएं और एक सूत्र प्राप्त करें <math>\phi_2</math> जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है। | ||
किसी भी मुक्त चर y को चुनें <math>\phi</math> निर्दिष्ट प्रकार i।आवेदन करना <math>j^{i-N}</math> एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से <math>\phi_3</math> जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब <math>\{y \in V_{\alpha} \mid \phi_3\}</math> | किसी भी मुक्त चर y को चुनें <math>\phi</math> निर्दिष्ट प्रकार i।आवेदन करना <math>j^{i-N}</math> एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से <math>\phi_3</math> जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब <math>\{y \in V_{\alpha} \mid \phi_3\}</math> उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है <math>V_{\alpha+1}</math>, और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं | ||
<math>\phi</math> NFU के मॉडल में। <math>j(\{y \in V_{\alpha} \mid \phi_3\})</math> एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत समझ NFU के मॉडल में है। | <math>\phi</math> NFU के मॉडल में। <math>j(\{y \in V_{\alpha} \mid \phi_3\})</math> एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत समझ NFU के मॉडल में है। | ||
Line 108: | Line 108: | ||
मूल विचार यह है कि ऑटोमोर्फिज्म j पावर सेट को कोड करता है <math>V_{\alpha+1}</math> हमारे ब्रह्मांड का <math>V_{\alpha}</math> इसकी बाहरी आइसोमॉर्फिक कॉपी में <math>V_{j(\alpha)+1}</math> हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसेट को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है। | मूल विचार यह है कि ऑटोमोर्फिज्म j पावर सेट को कोड करता है <math>V_{\alpha+1}</math> हमारे ब्रह्मांड का <math>V_{\alpha}</math> इसकी बाहरी आइसोमॉर्फिक कॉपी में <math>V_{j(\alpha)+1}</math> हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसेट को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है। | ||
यदि <math>\alpha</math> एक प्राकृतिक संख्या n है, एक को NFU का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि <math>\alpha</math> अनंत है और [[पसंद का स्वयंसिद्ध]] ZFC के गैर -मानक मॉडल में धारण करता है, एक NFU + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है। | |||
=== NFU में गणितीय नींव की आत्मनिर्भरता === | === NFU में गणितीय नींव की आत्मनिर्भरता === | ||
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के | दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो ZFC सही है।यह TST (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप थ्योरी TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के सेट मॉडल के सिद्धांत पर विचार करें (ये मॉडल सेट के अनुक्रम होंगे <math>T_i</math> (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ <math>P(T_i)</math> में <math>P_1(T_{i+1})</math> के पावर सेट के कोडिंग एम्बेडिंग <math>T_i</math> में <math>T_{i+1}</math> एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए <math>T_0</math> में <math>T_1</math> (आधार प्रकार के सबसेट के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है <math>T_{\alpha}</math> देखभाल के साथ। | ||
ध्यान दें कि सेट के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता | ध्यान दें कि सेट के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक सेट है <math>\beth_{\omega}</math>, जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग NFU के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह NFU का एक मॉडल है, उसी तरह से, साथ ही साथ <math>T_{\alpha}</math>'के स्थान पर उपयोग किया जा रहा है <math>V_{\alpha}</math> सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं। | ||
=== ऑटोमोर्फिज्म के बारे में तथ्य j === | === ऑटोमोर्फिज्म के बारे में तथ्य j === | ||
इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक संचालन से निकटता से संबंधित है।उदाहरण के लिए, यदि डब्ल्यू नॉन-स्टैंडर्ड मॉडल में एक अच्छी तरह से ऑर्डरिंग है (हम यहां मानते हैं कि हम ऑर्डर की गई जोड़ी का उपयोग करते हैं | इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक संचालन से निकटता से संबंधित है।उदाहरण के लिए, यदि डब्ल्यू नॉन-स्टैंडर्ड मॉडल में एक अच्छी तरह से ऑर्डरिंग है (हम यहां मानते हैं कि हम ऑर्डर की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक सहमत होगी) जो एनएफयू में एक अच्छी तरह से आदेश भी है (सभी)एनएफयू के सुव्यवस्थित Zermelo सेट सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से आदेश हैं, लेकिन इसके विपरीत नहीं, मॉडल के निर्माण में urelements के गठन के कारण), और W में NFU में टाइप α है, फिर J (W)NFU में टाइप T (α) का एक अच्छी तरह से आदेश होगा। | ||
वास्तव में, J को NFU के मॉडल में एक फ़ंक्शन द्वारा कोडित किया जाता है।गैर -मानक मॉडल में कार्य जो किसी भी तत्व के सिंगलटन को भेजता है <math>V_{j(\alpha)}</math> इसके एकमात्र तत्व के लिए, NFU में एक फ़ंक्शन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को।इस फ़ंक्शन को कॉल करें एंडो और इसे निम्नलिखित गुण दें: एंडो सिंगलटन के सेट से सेट के सेट में एक इंजेक्टिव फ़ंक्शन है, उस संपत्ति के साथ जो एंडो ({x}) = {एंडो ({y}) |प्रत्येक सेट x के लिए yx}।यह फ़ंक्शन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: | वास्तव में, J को NFU के मॉडल में एक फ़ंक्शन द्वारा कोडित किया जाता है।गैर -मानक मॉडल में कार्य जो किसी भी तत्व के सिंगलटन को भेजता है <math>V_{j(\alpha)}</math> इसके एकमात्र तत्व के लिए, NFU में एक फ़ंक्शन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को।इस फ़ंक्शन को कॉल करें एंडो और इसे निम्नलिखित गुण दें: एंडो सिंगलटन के सेट से सेट के सेट में एक इंजेक्टिव फ़ंक्शन है, उस संपत्ति के साथ जो एंडो ({x}) = {एंडो ({y}) |प्रत्येक सेट x के लिए yx}।यह फ़ंक्शन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है। | ||
== अनंत के | == अनंत के प्रबल स्वयंसिद्ध == | ||
इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न | इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल स्वयंसिद्धों को जोड़ने के लिए माना जाता है।यह आधार सिद्धांत, जिसे सुसंगत जाना जाता है, में TST + INFINITY, या Zermelo सेट सिद्धांत के रूप में समान ताकत है, जो बाध्य सूत्र (मैक लेन सेट सिद्धांत) तक सीमित है। | ||
कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के | कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के प्रबल स्वयंसिद्धों को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल उपस्थित है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन सेटों के बारे में जोर देने के लिए यह अधिक स्वाभाविक है।इस तरह के दावे न केवल सामान्य प्रकार के [[बड़े कार्डिनल]] में लाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर प्रबल करते हैं। | ||
सामान्य | सामान्य प्रबल सिद्धांतों में सबसे कमजोर है: | ||
* 'रोसेर की गिनती का स्वयंसिद्ध'।प्राकृतिक संख्याओं का सेट एक दृढ़ता से कैंटोरियन सेट है। | * 'रोसेर की गिनती का स्वयंसिद्ध'।प्राकृतिक संख्याओं का सेट एक दृढ़ता से कैंटोरियन सेट है। | ||
यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, [[प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा]] देखें।Rosser द्वारा दिए गए इस स्वयंसिद्ध का मूल रूप सेट {m | 1 them mmingn} था, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं।यह सहज स्पष्ट रूप से स्पष्ट रूप से स्पष्ट है: NFU में जो | यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, [[प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा]] देखें।Rosser द्वारा दिए गए इस स्वयंसिद्ध का मूल रूप सेट {m | 1 them mmingn} था, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं।यह सहज स्पष्ट रूप से स्पष्ट रूप से स्पष्ट है: NFU में जो सिद्ध होता है वह सेट है {m | 1 themmingn} है <math>T^2(n)</math> सदस्य (जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है <math>T(|A|) = |P_1(A)|</math>;यह एक कार्डिनल के प्रकार को बढ़ाता है)।किसी भी कार्डिनल नंबर (प्राकृतिक संख्याओं सहित) के लिए जोर देने के लिए <math>T(|A|) = |A|</math> यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के सेट ए कैंटोरियन हैं (भाषा के सामान्य दुरुपयोग से, हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं)।यह दिखाना सीधा है कि प्रत्येक प्राकृतिक संख्या कैंटोरियन है, यह प्रमाणित इस बात के बराबर है कि सभी प्राकृतिक संख्याओं का सेट दृढ़ता से कैंटोरियन है। | ||
गिनती एनएफयू के अनुरूप है, लेकिन इसकी निरंतरता की ताकत बढ़ जाती है;नहीं, जैसा कि कोई उम्मीद करेगा, अंकगणित के क्षेत्र में, लेकिन उच्च सेट सिद्धांत में।Nfu + अनंतता | गिनती एनएफयू के अनुरूप है, लेकिन इसकी निरंतरता की ताकत बढ़ जाती है;नहीं, जैसा कि कोई उम्मीद करेगा, अंकगणित के क्षेत्र में, लेकिन उच्च सेट सिद्धांत में।Nfu + अनंतता सिद्ध करती है कि प्रत्येक <math>\beth_n</math> उपस्थित है, लेकिन ऐसा नहीं है <math>\beth_{\omega}</math> उपस्थित ;NFU + काउंटिंग (आसानी से) अनंत सिद्ध होता है, और आगे अस्तित्व को सिद्ध करता है <math>\beth_{\beth_n}</math> प्रत्येक n के लिए, लेकिन का अस्तित्व नहीं <math>\beth_{\beth_{\omega}}</math>।([[बेथ नंबर]] देखें)। | ||
गिनती का तात्पर्य तुरंत है कि किसी को सेट पर प्रतिबंधित चर को प्रकारों को असाइन करने की आवश्यकता नहीं है <math>N</math> स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्या;यह एक प्रमेय है कि एक दृढ़ता से कैंटोरियन सेट का पावर सेट दृढ़ता से कैंटोरियन है, इसलिए यह आवश्यक नहीं है कि वे प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति सेट पर प्रतिबंधित चर को या वास्तविक संख्याओं के सेट के रूप में इस तरह के परिचित सेटों को निर्दिष्ट करना आवश्यक नहीं है।, रियल से रियल के कार्यों का सेट, और आगे।गिनती की सेट-सैद्धांतिक शक्ति व्यवहार में कम महत्वपूर्ण है, जो कि सिंगलटन ब्रैकेट के साथ प्राकृतिक संख्या मान (या संबंधित प्रकार के मूल्यों) के लिए ज्ञात चर को एनोटेट नहीं करने की सुविधा से कम महत्वपूर्ण है, या स्तरीकृत सेट प्राप्त करने के लिए टी ऑपरेशन को लागू करने के लिएपरिभाषाएँ। | गिनती का तात्पर्य तुरंत है कि किसी को सेट पर प्रतिबंधित चर को प्रकारों को असाइन करने की आवश्यकता नहीं है <math>N</math> स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्या;यह एक प्रमेय है कि एक दृढ़ता से कैंटोरियन सेट का पावर सेट दृढ़ता से कैंटोरियन है, इसलिए यह आवश्यक नहीं है कि वे प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति सेट पर प्रतिबंधित चर को या वास्तविक संख्याओं के सेट के रूप में इस तरह के परिचित सेटों को निर्दिष्ट करना आवश्यक नहीं है।, रियल से रियल के कार्यों का सेट, और आगे।गिनती की सेट-सैद्धांतिक शक्ति व्यवहार में कम महत्वपूर्ण है, जो कि सिंगलटन ब्रैकेट के साथ प्राकृतिक संख्या मान (या संबंधित प्रकार के मूल्यों) के लिए ज्ञात चर को एनोटेट नहीं करने की सुविधा से कम महत्वपूर्ण है, या स्तरीकृत सेट प्राप्त करने के लिए टी ऑपरेशन को लागू करने के लिएपरिभाषाएँ। | ||
गिनती का तात्पर्य अनंत है;नीचे दिए गए स्वयंसिद्धों में से प्रत्येक को अनंत के | गिनती का तात्पर्य अनंत है;नीचे दिए गए स्वयंसिद्धों में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता है;[[अली केयर]] ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ स्वयंसिद्धों की ताकत की जांच की है। | ||
ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म J Zermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है। | ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म J Zermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है। | ||
अगला | अगला प्रबल स्वयंसिद्ध हम मानते हैं | ||
* 'दृढ़ता से कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी दृढ़ता से कैंटोरियन सेट ए और किसी भी सूत्र के लिए <math>\phi</math> ( | * 'दृढ़ता से कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी दृढ़ता से कैंटोरियन सेट ए और किसी भी सूत्र के लिए <math>\phi</math> (आवश्यक नहीं कि स्तरीकृत!) सेट <math>\{x\in A|\;\phi\}</math> उपस्थित । | ||
तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण | तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण सम्मलित हैं (जो गिनती का परिणाम नहीं है; कई लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण नहीं हैं। | ||
यह स्वयंसिद्ध आश्चर्यजनक रूप से | यह स्वयंसिद्ध आश्चर्यजनक रूप से प्रबल है।[[रॉबर्ट सोलोवे]] के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति nfu* = nfu + गिनती + दृढ़ता से कैंटोरियन पृथक्करण Zermelo सेट सिद्धांत + के समान है <math>\Sigma_2</math> प्रतिस्थापन। | ||
यह स्वयंसिद्ध ऊपर निर्मित (पसंद के साथ) के एक मॉडल में है, यदि ऑर्डिनल जो J द्वारा तय किए गए हैं और Jermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए केवल ऑर्डिनल पर हावी हैं, और ऐसे किसी भी क्रम के पावर सेट हैं।मॉडल में भी मानक है।यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है। | यह स्वयंसिद्ध ऊपर निर्मित (पसंद के साथ) के एक मॉडल में है, यदि ऑर्डिनल जो J द्वारा तय किए गए हैं और Jermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए केवल ऑर्डिनल पर हावी हैं, और ऐसे किसी भी क्रम के पावर सेट हैं।मॉडल में भी मानक है।यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है। | ||
Line 150: | Line 150: | ||
* 'कैंटोरियन सेट्स का स्वयंसिद्ध': हर कैंटोरियन सेट दृढ़ता से कैंटोरियन है। | * 'कैंटोरियन सेट्स का स्वयंसिद्ध': हर कैंटोरियन सेट दृढ़ता से कैंटोरियन है। | ||
यह बहुत ही सरल | यह बहुत ही सरल प्रमाणित बेसीमा प्रबल है।सोलोवे ने सिद्धांत की निरंतरता शक्ति के यथार्थ समानता को दिखाया है, nfua = nfu + इन्फिनिटी + कैंटोरियन सेट के साथ ZFC + एक स्कीमा के साथ प्रत्येक कंक्रीट प्राकृतिक संख्या n के लिए एक n-mahlo कार्डिनल के अस्तित्व का प्रमाणित करता है।अली एनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारात्मक संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत (जो ZFC के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है) सीधे एन-महलो कार्डिनल के साथ ZFC के विस्तार की व्याख्या करता है।इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन तकनीक लागू की जा सकती है, जिसमें एक मॉडल देने के लिए वंशानुगत रूप से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ ZFC के प्रबल विस्तार के साथ सेट करता है। | ||
यह स्वयंसिद्ध ऊपर (पसंद के साथ) के रूप में निर्मित प्रकार के एक मॉडल में रखता है, बस | यह स्वयंसिद्ध ऊपर (पसंद के साथ) के रूप में निर्मित प्रकार के एक मॉडल में रखता है, बस स्थिति े में ZFC के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए ऑर्डिनल मॉडल के ऑर्डिनल का एक प्रारंभिक (उचित वर्ग) खंड है। | ||
आगे विचार करें | आगे विचार करें | ||
* 'कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी कैंटोरियन सेट के लिए और किसी भी सूत्र के लिए <math>\phi</math> ( | * 'कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी कैंटोरियन सेट के लिए और किसी भी सूत्र के लिए <math>\phi</math><nowiki> (आवश्यक नहीं कि स्तरीकृत!) सेट {x )आ |}} उपस्थित है।</nowiki> | ||
यह दो पूर्ववर्ती स्वयंसिद्धों के प्रभाव को जोड़ती है और वास्तव में और भी | यह दो पूर्ववर्ती स्वयंसिद्धों के प्रभाव को जोड़ती है और वास्तव में और भी प्रबल है (ठीक है कि कैसे ज्ञात नहीं है)।अप्रतिबंधित गणितीय इंडक्शन यह सिद्ध करने में सक्षम बनाता है कि हर एन के लिए एन-महलो कार्डिनल हैं, जो कि कैंटोरियन सेट दिए गए हैं, जो ZFC का एक विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं (नॉन -स्ट्रैंडर्ड काउंटरएक्सेमल्स की संभावना को खुला छोड़ते हुए)। | ||
यह स्वयंसिद्ध ऊपर वर्णित प्रकार के एक मॉडल में होगा यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है, और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति सेट भी ZFC के अंतर्निहित मॉडल में मानक है।फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है। | यह स्वयंसिद्ध ऊपर वर्णित प्रकार के एक मॉडल में होगा यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है, और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति सेट भी ZFC के अंतर्निहित मॉडल में मानक है।फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है। | ||
Line 166: | Line 166: | ||
* 'बड़े अध्यादेशों का स्वयंसिद्ध': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए <math>\alpha</math>, एक प्राकृतिक संख्या n ऐसा है जैसे कि <math>T^n(\Omega) < \alpha</math>। | * 'बड़े अध्यादेशों का स्वयंसिद्ध': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए <math>\alpha</math>, एक प्राकृतिक संख्या n ऐसा है जैसे कि <math>T^n(\Omega) < \alpha</math>। | ||
याद करें कि <math>\Omega</math> सभी ऑर्डिनल्स पर प्राकृतिक आदेश का ऑर्डर प्रकार है।यह केवल कैंटोरियन सेट का अर्थ है यदि हमारे पास विकल्प है (लेकिन किसी भी | याद करें कि <math>\Omega</math> सभी ऑर्डिनल्स पर प्राकृतिक आदेश का ऑर्डर प्रकार है।यह केवल कैंटोरियन सेट का अर्थ है यदि हमारे पास विकल्प है (लेकिन किसी भी स्थिति े में स्थिरता की ताकत के स्तर पर है)।यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है <math>T^n(\Omega)</math>: यह nth शब्द है <math>s_n</math> लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह <math>s_0 = \Omega</math>, <math>s_{i+1} = T(s_i)</math> प्रत्येक उपयुक्त के लिए मैं।यह परिभाषा पूरी तरह से असंरचित है।की विशिष्टता <math>T^n(\Omega)</math> सिद्ध किया जा सकता है (उन n के लिए जिसके लिए यह उपस्थित है) और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े अध्यादेशों को पसंद की उपस्थिति में कैंटोरियन सेट का अर्थ है।इस स्वयंसिद्ध के नॉट्टी औपचारिक बयान के बावजूद, यह एक बहुत ही स्वाभाविक धारणा है, जो कि टी की कार्रवाई को यथासंभव सरल बनाने के लिए है। | ||
ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करेगा, | ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करेगा, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल हैं जो कुछ हावी हैं <math>j^{-i}(\alpha)</math> ZFC के अंतर्निहित गैर -मानक मॉडल में। | ||
सोलोवे ने NFUB = nfu + '' इन्फिनिटी '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''सभी ऑर्डिनल्स में) एक [[कमजोर कॉम्पैक्ट कार्डिनल]] है।यह वास्तव में बहुत | सोलोवे ने NFUB = nfu + '' इन्फिनिटी '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''सभी ऑर्डिनल्स में) एक [[कमजोर कॉम्पैक्ट कार्डिनल]] है।यह वास्तव में बहुत प्रबल है!इसके अतिरिक्त , nfub-, जो '' कैंटोरियन सेट '' के साथ nfub है, को आसानी से NFUB के समान ताकत के रूप में देखा जाता है। | ||
ऊपर निर्मित प्रकार का एक मॉडल इस स्वयंसिद्ध को संतुष्ट करेगा यदि '' J '' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ सेट का चौराहा है। | ऊपर निर्मित प्रकार का एक मॉडल इस स्वयंसिद्ध को संतुष्ट करेगा यदि '' J '' द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ सेट का चौराहा है। | ||
यहां तक कि | यहां तक कि प्रबल सिद्धांत nfum = nfu + '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '।यह मोर्स-केली सेट थ्योरी के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक [[अल्ट्राफिल्टर]] है;वास्तव में, यह मोर्स -केली सेट थ्योरी है + उचित वर्ग ऑर्डिनल एक औसत अंकित े का कार्डिनल है!'' | ||
यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत | यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत प्रबल स्वयंसिद्धों के लिए शक्ति के बराबर हो जाते हैं।यह तथ्य एनएफयू के मॉडल के अस्तित्व के बीच संबंध से संबंधित है, जो ऊपर वर्णित है और इन स्वयंसिद्धों को संतुष्ट करता है, और विशेष गुणों वाले ऑटोमोर्फिज्म के साथ ZFC के मॉडल के अस्तित्व को संतुष्ट करता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 21:46, 6 April 2023
गणितीय तर्क में, नई नींव (एनएफ) एक सेट सिद्धांत है#औपचारिक रूप से सेट सिद्धांत, जिसे विलार्ड वैन ओरमन क्वीन द्वारा प्रिंसिपिया मैथमेटिका 'के प्रकार के सिद्धांत के सरलीकरण के रूप में कल्पना की गई है।क्वीन ने पहली बार 1937 के एक लेख में एनएफ प्रस्तावित किया, जिसका शीर्षक था न्यू फाउंडेशन फॉर मैथमेटिकल लॉजिक;इसके कारण नाम।इस प्रविष्टि में से अधिकांश एनएफयू पर चर्चा करते हैं, जो जेन्सेन (1969) के कारण एनएफ का एक महत्वपूर्ण संस्करण है और होम्स (1998) द्वारा स्पष्ट किया गया है।[1] 1940 में और 1951 में एक संशोधन में, क्वीन ने #सिस्टम एमएल (गणितीय तर्क) को कभी -कभी गणितीय तर्क या एमएल कहा जाता है, जिसमें वर्ग (सेट सिद्धांत) के साथ -साथ सेट (गणित) भी सम्मलित था।
नई नींव में एक सार्वभौमिक सेट है, इसलिए यह एक गैर-अच्छी तरह से स्थापित सेट सिद्धांत है।[2] यह कहना है, यह एक स्वयंसिद्ध सेट सिद्धांत है जो सदस्यता की अनंत अवरोही श्रृंखलाओं की अनुमति देता है, जैसे … & Nbsp; xn ∈ xn-1 ∈…। x x2 ∈ x1।यह केवल स्तरीकरण (गणित) की अनुमति देकर रसेल के विरोधाभास से बचता है#एक विशिष्ट सेट सिद्धांत अच्छी तरह से गठित सूत्रों को विनिर्देश के स्वयंसिद्ध स्कीमा का उपयोग करके परिभाषित किया जाना है।उदाहरण के लिए, x you Y एक स्ट्रैटिफ़ेबल फॉर्मूला है, लेकिन X। X X नहीं है।
टाइप थ्योरी tst
रसेलियन अप्रकाशित टाइप किए गए सेट थ्योरी (टीएसटी) की आदिम विधेय, प्रकार के सिद्धांत का एक सुव्यवस्थित संस्करण, समानता (गणित) #logical परिभाषाएँ हैं () और सेट (गणित) #membership ()।TST में प्रकारों का एक रैखिक पदानुक्रम होता है: टाइप 0 में व्यक्तियों के अन्यथा अनिर्धारित होते हैं।प्रत्येक (मेटा-) प्राकृतिक संख्या n के लिए, प्रकार n+1 ऑब्जेक्ट टाइप n ऑब्जेक्ट्स के सेट हैं;टाइप एन के सेट में टाइप एन -1 के सदस्य हैं।पहचान से जुड़ी वस्तुओं में एक ही प्रकार होना चाहिए।निम्नलिखित दो परमाणु सूत्रों ने टाइपिंग नियमों का सफलतापूर्वक वर्णन किया है: और ।(क्विनियन सेट सिद्धांत प्रकारों को निरूपित करने के लिए इस तरह के सुपरस्क्रिप्ट की आवश्यकता को समाप्त करना चाहता है।)
TST के स्वयंसिद्ध हैं:
- विस्तार की स्वच्छता: एक ही सदस्यों के साथ समान (सकारात्मक) प्रकार के सेट समान हैं;
- समझ का एक स्वयंसिद्ध स्कीमा, अर्थात्:
- यदि एक सूत्र है, फिर सेट उपस्थित ।
- दूसरे शब्दों में, किसी भी सूत्र को देखते हुए , सूत्र एक स्वयंसिद्ध है जहां सेट का प्रतिनिधित्व करता है और मुक्त चर और बाध्य चर नहीं है ।
यह प्रकार सिद्धांत प्रिंसिपिया मैथमेटिक में पहली बार सेट की तुलना में बहुत कम जटिल है, जिसमें संबंध (गणित) के प्रकार सम्मलित थे, जिनके तर्क आवश्यक नहीं थे कि सभी एक ही प्रकार के थे।1914 में, नॉर्बर्ट वीनर ने दिखाया कि ऑर्डर की गई जोड़ी को सेट के एक सेट के रूप में कैसे कोड किया जाए, जिससे यहां वर्णित सेटों के रैखिक पदानुक्रम के पक्ष में संबंध प्रकारों को खत्म करना संभव हो गया।
क्विनियन सेट थ्योरी
स्वयंसिद्ध और स्तरीकरण
नई नींव (एनएफ) के अच्छी तरह से गठित सूत्र टीएसटी के अच्छी तरह से गठित सूत्रों के समान हैं, लेकिन प्रकार के एनोटेशन के साथ मिट जाते हैं।एनएफ के स्वयंसिद्ध हैं:
- विस्तार: एक ही तत्वों के साथ दो ऑब्जेक्ट एक ही ऑब्जेक्ट हैं;
- पृथक्करण का एक स्वयंसिद्ध: टीएसटी समझ के सभी उदाहरण लेकिन प्रकार के साथ, सूचकांकों को गिरा दिया गया (और चर के बीच नई पहचान प्रस्तुत किए बिना)।
कन्वेंशन द्वारा, एनएफ के पृथक्करण स्कीमा के स्वयंसिद्ध को स्तरीकृत सूत्र की अवधारणा का उपयोग करके कहा गया है और प्रकारों के लिए कोई सीधा संदर्भ नहीं है।एक सूत्र कहा जाता है कि स्तरीकृत सूत्र है यदि वहाँ एक फ़ंक्शन (गणित) के टुकड़ों से उपस्थित है प्राकृतिक संख्याओं के लिए सिंटैक्स, जैसे कि किसी भी परमाणु सबफॉर्मुला के लिए का हमारे पास f (y) = f (x) + 1 है, जबकि किसी भी परमाणु सबफॉर्मुला के लिए का , हमारे पास f (x) = f (y) है।समझ तब बन जाती है:
- प्रत्येक स्तरीकृत सूत्र के लिए उपस्थित है ।
यहां तक कि स्तरीकरण (गणित) की धारणा में निहित प्रकारों के अप्रत्यक्ष संदर्भ को समाप्त किया जा सकता थियोडोर हेल्परिन ने 1944 में दिखाया कि समझ इसके उदाहरणों के एक परिमित संयोजन के बराबर है,[3] जिससे कि NF को किसी भी प्रकार की धारणा के संदर्भ के बिना बारीक रूप से स्वयंसिद्ध किया जा सके।
समझ में आने वाले सिद्धांत में उन लोगों के समान समस्याओं से दूर चलने के लिए लग सकता है, लेकिन यह स्थिति ा नहीं है।उदाहरण के लिए, असंभव रसेल के विरोधाभास का अस्तित्व एनएफ का स्वयंसिद्ध नहीं है, क्योंकि स्तरीकृत नहीं किया जा सकता है।
आदेश जोड़े
संबंध (गणित) और फ़ंक्शन (गणित) को सामान्य तरीके से ऑर्डर किए गए जोड़े के सेट के रूप में TST (और NF और NFU में) में परिभाषित किया गया है।ऑर्डर की गई जोड़ी की सामान्य परिभाषा, पहली बार 1921 में संग्रहाध्यक्ष द्वारा प्रस्तावित, एनएफ और संबंधित सिद्धांतों के लिए एक गंभीर दोष है: परिणामस्वरूप ऑर्डर की गई जोड़ी आवश्यक रूप से इसके तर्कों के प्रकार की तुलना में एक प्रकार दो अधिक है (यह बाएं और सही प्रक्षेपण है (गणित))एस)।इसलिए स्तरीकरण का निर्धारण करने के प्रयोजनों के लिए, एक फ़ंक्शन इसके क्षेत्र के सदस्यों की तुलना में तीन प्रकार अधिक है।
यदि कोई इस तरह से एक जोड़ी को परिभाषित कर सकता है कि इसका प्रकार उसके तर्कों के समान है (जिसके परिणामस्वरूप एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी है), तो एक संबंध या कार्य सदस्यों के प्रकार से केवल एक प्रकार अधिक हैइसके क्षेत्र की।इसलिए एनएफ और संबंधित सिद्धांत सामान्यतः विलार्ड वैन ओरमन क्वीन की ऑर्डर की गई जोड़ी की सेट-थ्योरिटिक परिभाषा को नियोजित करते हैं, जो एक ऑर्डर की गई जोड़ी#क्वीन-रॉसर परिभाषा की पैप्रमाणित र करता है। टाइप-लेवल ऑर्डर की गई जोड़ी।होम्स (1998) ऑर्डर की गई जोड़ी और उसके बाएं और दाएं प्रक्षेपण (गणित) को आदिम के रूप में लेता है।सौभाग्य से, क्या ऑर्डर की गई जोड़ी परिभाषा के अनुसार प्रकार-स्तरीय है या धारणा द्वारा (अर्थात , आदिम के रूप में लिया गया) सामान्यतः कोई फर्क नहीं पड़ता।
एक प्रकार-स्तरीय आदेशित जोड़ी के अस्तित्व का तात्पर्य है अनंतता , और एनएफयू + इन्फिनिटी एनएफयू + की व्याख्या करता है एक टाइप-लेवल ऑर्डर की गई जोड़ी है (वे बहुत समान सिद्धांत नहीं हैं, लेकिन अंतर अयोग्य हैं)।इसके विपरीत, NFU + इन्फिनिटी + चॉइस एक प्रकार-स्तरीय ऑर्डर की गई जोड़ी के अस्तित्व को सिद्ध करता है।[citation needed]
उपयोगी बड़े सेटों की स्वीकार्यता
एनएफ (और एनएफयू + इन्फिनिटी + चॉइस, नीचे वर्णित और ज्ञात सुसंगत) दो प्रकार के सेटों के निर्माण की अनुमति देते हैं जो कि ZFC और इसके उचित एक्सटेंशन अस्वीकृत हैं क्योंकि वे बहुत बड़े हैं (कुछ सेट सिद्धांत उचित वर्गों के शीर्षक के अनुसार इन संस्थाओं को स्वीकार करते हैं):
- यूनिवर्सल सेट वी। एक स्तरीकृत सूत्र है, सार्वभौमिक सेट v = {x |x = x} समझ से उपस्थित है।एक तत्काल परिणाम यह है कि सभी सेटों में पूरक (सेट सिद्धांत) होते हैं, और एनएफ के अनुसार पूरे सेट-थ्योरिटिक ब्रह्मांड में एक बूलियन बीजगणित (संरचना) संरचना होती है।
- मौलिक संख्या और क्रमसूचक संख्या नंबर।एनएफ (और टीएसटी) में, एन तत्वों वाले सभी सेटों का सेट (यहां का परिपत्र तर्क केवल स्पष्ट है) उपस्थित है।इसलिए कार्डिनल नंबरों की फ्रेज की परिभाषा एनएफ और एनएफयू में काम करती है: एक कार्डिनल नंबर विषमता के संबंध (गणित) के अनुसार सेटों की एक समानता वर्ग है: सेट ए और बी विषम हैं यदि उनके बीच एक द्विभाजन उपस्थित है, तो हम जिस स्थिति में हैंलिखना ।इसी तरह, एक ऑर्डिनल नंबर अच्छी तरह से ऑर्डर करने का एक समानता वर्ग है। अच्छी तरह से आदेशित सेट।
परिमित Axiomatizability
नई नींव Axiom स्कीमा#परिमित स्वयंसिद्धता हो सकती है।[4][5]
कार्टेशियन क्लोजर
श्रेणी जिसकी वस्तुएं एनएफ के सेट हैं और जिनके तीर उन सेटों के बीच के कार्य हैं, कार्टेशियन बंद श्रेणी नहीं है;[6] चूंकि NF में कार्टेशियन बंद होने का अभाव है, इसलिए हर फ़ंक्शन को न्यूरिंग नहीं किया जा सकता है क्योंकि कोई भी सहज रूप से उम्मीद कर सकता है, और NF एक Topos नहीं है।
स्थिरता की समस्या और संबंधित आंशिक परिणाम
कई वर्षों के लिए, एनएफ के साथ बड़ी समस्या यह रही है कि यह किसी भी अन्य प्रसिद्ध स्वयंसिद्ध प्रणाली के साथ समरूपता सिद्ध नहीं हुआ है जिसमें अंकगणित को मॉडल किया जा सकता है।एनएफ पसंद के स्वयंसिद्ध को रोक देता है, और इस तरह अनंत (स्पेकर, 1953) के स्वयंसिद्ध सिद्ध होता है।लेकिन यह भी जाना जाता है (रोनाल्ड जेन्सेन, 1969) जो कि यूरेलमेंट्स (कई अलग -अलग वस्तुओं की कमी वाले सदस्यों की कमी) की अनुमति देता है, एनएफयू की पैप्रमाणित र करता है, एक सिद्धांत जो मीनो अंकगणित के सापेक्ष सुसंगत है;यदि अनंत और पसंद को जोड़ा जाता है, तो परिणामी सिद्धांत में अनंत या बंधे हुए ज़रमेलो सेट सिद्धांत के साथ टाइप थ्योरी के समान स्थिरता की ताकत होती है।(NFU एक प्रकार के सिद्धांत TSTU से मेल खाती है, जहां टाइप 0 में urelements हैं, न कि केवल एक खाली सेट।) NF के अन्य अपेक्षाकृत सुसंगत वेरिएंट हैं।
एनएफयू, मोटे तौर पर बोल रहा है, एनएफ की तुलना में कमजोर है, क्योंकि एनएफ में, ब्रह्मांड का शक्ति सेट ही ब्रह्मांड है, जबकि एनएफयू में, ब्रह्मांड का शक्ति सेट ब्रह्मांड की तुलना में सख्ती से छोटा हो सकता है (ब्रह्मांड का शक्ति सेट सम्मलित हैकेवल सेट, जबकि ब्रह्मांड में urelements हो सकते हैं)।यह आवश्यक रूप से NFU+ पसंद में स्थिति ा है।
अर्नस्ट स्पेकर ने दिखाया है कि NF TST + AMB के साथ समानता है, जहां AMB 'विशिष्ट अस्पष्टता' की स्वयंसिद्ध योजना है जो प्रमाणित करता है किसी भी सूत्र के लिए , हर प्रकार के सूचकांक को बढ़ाकर प्राप्त सूत्र होने के नाते एक - एक करके।एनएफ एक प्रकार के शिफ्टिंग ऑटोमोर्फिज्म के साथ संवर्धित सिद्धांत के साथ भी समानतापूर्ण है, एक ऑपरेशन जो एक द्वारा एक प्रकार को बढ़ाता है, अगले उच्च प्रकार पर प्रत्येक प्रकार की मैपिंग करता है, और समानता और सदस्यता संबंधों को संरक्षित करता है (और जो समझ के उदाहरणों में उपयोग नहीं किया जा सकता है: यहसिद्धांत के लिए बाहरी है)।एनएफ के संबंधित टुकड़ों के बारे में टीएसटी के विभिन्न टुकड़ों के लिए समान परिणाम हैं।
उसी वर्ष (1969) में कि रोनाल्ड जेन्सेन ने एनएफयू सुसंगत सिद्ध किया, ग्रिशिन सिद्ध हुआ एक जैसा। पूर्ण विस्तार (कोई urelements) और समझ के उन उदाहरणों के साथ NF का टुकड़ा है जो केवल तीन प्रकारों का उपयोग करके स्तरीकृत किया जा सकता है।यह सिद्धांत गणित के लिए एक बहुत ही अजीब माध्यम है (चूंकि इस अजीबता को कम करने के लिए प्रयास किए गए हैं), मोटे तौर पर क्योंकि एक आदेशित जोड़ी के लिए कोई स्पष्ट परिभाषा नहीं है।इस अजीबता के बावजूद, बहुत रोचक है क्योंकि टीएसटी के प्रत्येक अनंत मॉडल को तीन प्रकारों तक सीमित कर दिया गया है जो एएमबी को संतुष्ट करता है।इसलिए ऐसे हर मॉडल के लिए, का एक मॉडल है एक ही सिद्धांत के साथ।यह चार प्रकारों के लिए नहीं है: एनएफ के रूप में एक ही सिद्धांत है, और हमें पता नहीं है कि चार प्रकारों के साथ टीएसटी का एक मॉडल कैसे प्राप्त किया जाए जिसमें एएमबी धारण करता है।
1983 में, मार्सेल क्रेबी ने एनएफआई नामक एक प्रणाली को लगातार सिद्ध किया, जिनके स्वयंसिद्ध अप्रतिबंधित विस्तार हैं और समझ के उन उदाहरणों में जिसमें कोई भी चर नहीं दिया गया है, जो सेट की तुलना में अधिक प्रकार से अधिक नहीं है।यह एक प्रभावशाली प्रतिबंध है, चूंकि एनएफआई एक विधेय सिद्धांत नहीं है: यह प्राकृतिक संख्याओं के सेट को परिभाषित करने के लिए पर्याप्त प्रभाव को स्वीकार करता है (सभी आगमनात्मक सेटों के चौराहे के रूप में परिभाषित किया गया है; ध्यान दें कि आगमनात्मक सेट उसी प्रकार के होते हैं जैसे सेट सेट के रूप में होता है।प्राकृतिक संख्याओं को परिभाषित किया गया है)।Crabbé ने NFI के एक उप सिद्धांत पर भी चर्चा की, जिसमें केवल पैरामीटर (मुक्त चर और बाध्य चर) को समझ के एक उदाहरण द्वारा उपस्थित सेट के प्रकार को निर्धारित करने की अनुमति दी जाती है।उन्होंने परिणाम विधेय एनएफ (एनएफपी) कहा;यह निश्चित रूप से, संदेह है कि क्या स्व-सदस्यीय ब्रह्मांड के साथ कोई भी सिद्धांत वास्तव में भविष्य कहनेवाला है।क्या होम्स है [date missing] दिखाया गया है कि एनएफपी में समानता के स्वयंसिद्धता के बिना प्रिंसिपिया मैथेमेटिका के प्रकारों के विधेय सिद्धांत के रूप में एक ही स्थिरता की ताकत है।
2015 के बाद से, ZF के सापेक्ष NF की स्थिरता के रान्डेल होम्स द्वारा कई उम्मीदवार प्रमाण Arxiv और तर्कशास्त्री के होम पेज पर उपलब्ध हैं।होम्स टीएसटी के एक 'अजीब' संस्करण की समानता को प्रदर्शित करता है, अर्थात् टीटीटीλ - 'λ- प्रकारों के साथ पेचीदा प्रकार का सिद्धांत' - एनएफ के साथ।होम्स नेक्स्ट से पता चलता है कि टीटीटीλ ZFA के सापेक्ष सुसंगत है, अर्थात्, परमाणुओं के साथ ZF लेकिन पसंद के बिना।होम्स ZFA+C, अर्थात्, ZF के साथ परमाणुओं और पसंद के साथ, ZFA के एक वर्ग मॉडल में निर्माण करके इसे प्रदर्शित करता है, जिसमें 'कार्डिनल्स के पेचीदा जाले' सम्मलित हैं।उम्मीदवार के प्रमाण सभी लंबे हैं, लेकिन अभी तक एनएफ समुदाय द्वारा किसी भी अपूरणीय दोषों की पहचान नहीं की गई है।
कैसे nf (u) सेट-सिद्धांतवादी विरोधाभासों से बचता है
एनएफ सेट सिद्धांत के तीन प्रसिद्ध विरोधाभासों से स्पष्ट है।वह एनएफयू, एक स्थिरता (मीनो अंकगणित के सापेक्ष) सिद्धांत, भी विरोधाभासों से बचता है इस तथ्य में किसी का विश्वास बढ़ा सकता है।
रसेल का विरोधाभास: एक स्तरीकृत सूत्र नहीं है, इसलिए का अस्तित्व समझ के किसी भी उदाहरण द्वारा मुखर नहीं है।क्वीन ने कहा कि उन्होंने इस विरोधाभास के साथ एनएफ का निर्माण किया।
सबसे बड़े कार्डिनल नंबर के कैंटर के विरोधाभास में कैंटर के प्रमेय के आवेदन को सार्वभौमिक सेट का शोषण करता है।कैंटर का प्रमेय कहता है (ZFC को देखते हुए) कि सत्ता स्थापित किसी भी सेट की से बड़ा है (से कोई इंजेक्टिव फ़ंक्शन (एक-से-एक मानचित्र) नहीं हो सकता है में )।अब निश्चित रूप से एक इंजेक्शन कार्य है में , यदि सार्वभौमिक सेट है!संकल्प के लिए आवश्यक है कि कोई यह देखता है प्रकार के सिद्धांत में कोई मतलब नहीं है: का प्रकार के प्रकार से अधिक है ।सही ढंग से टाइप किया गया संस्करण (जो अनिवार्य रूप से समान कारणों के लिए प्रकारों के सिद्धांत में एक प्रमेय है कि कैंटर के प्रमेय का मूल रूप ज़रमेलो -फ्रेनकेल सेट सिद्धांत में काम करता है) , कहाँ एक-तत्व सबसेट का सेट है ।ब्याज के इस प्रमेय का विशिष्ट उदाहरण है : सेट की तुलना में कम एक-तत्व सेट हैं (और सामान्य वस्तुओं की तुलना में बहुत कम एक-तत्व सेट, यदि हम NFU में हैं)।स्पष्ट द्विभाजन ब्रह्मांड से एक-तत्व सेट तक एक सेट नहीं है;यह एक सेट नहीं है क्योंकि इसकी परिभाषा अप्रतिबंधित है।ध्यान दें कि NFU के सभी ज्ञात मॉडल में यह स्थिति ा है ;च्वाइस किसी को न केवल यह सिद्ध करने की अनुमति देता है कि urelements हैं, बल्कि इसके बीच कई कार्डिनल हैं और ।
अब कुछ उपयोगी धारणाएं प्रस्तुत कर सकते हैं।एक सेट जो सहज रूप से अपील को संतुष्ट करता है कहा जाता है कि कैंटोरियन: एक कैंटोरियन सेट कैंटर के प्रमेय के सामान्य रूप को संतुष्ट करता है।एक सेट जो आगे की स्थिति को संतुष्ट करता है , सिंगलटन (गणित) मानचित्र का प्रतिबंध (गणित), एक सेट न केवल कैंटोरियन सेट है, बल्कि 'दृढ़ता से कैंटोरियन' है।
सबसे बड़ी क्रमिक संख्या का ब्यूरली-फ़ॉर्टी विरोधाभास निम्नानुसार है।परिभाषित करें (भोले सेट सिद्धांत के बाद) ऑर्डिनल को समाकृतिकता के अनुसार कल्याण के समतुल्य वर्गों के रूप में।ऑर्डिनल्स पर एक स्पष्ट प्राकृतिक सुव्यवस्थित है;चूंकि यह एक अच्छी तरह से आदेश है ।यह सिद्ध करने के लिए सीधा है (ट्रांसफ़िनाइट इंडक्शन द्वारा) कि किसी दिए गए ऑर्डिनल से कम ऑर्डिनल पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार है अपने आप।लेकिन इसका मतलब है कि ऑर्डर का ऑर्डर प्रकार है और इसलिए सभी ऑर्डिनल्स के ऑर्डर प्रकार की तुलना में कड़ाई से कम है - लेकिन बाद वाला, परिभाषा के अनुसार है, अपने आप!
एनएफ (यू) में विरोधाभास का समाधान इस अवलोकन से प्रारंभ होता है कि ऑर्डर के ऑर्डर प्रकार से कम से कम की तुलना में एक उच्च प्रकार का है ।इसलिए एक प्रकार का स्तर ऑर्डर की गई जोड़ी इसके तर्कों के प्रकार से दो प्रकार अधिक है और सामान्य कुरातोव्स्की ने जोड़ी को चार प्रकारों अधिक से अधिक ऑर्डर किया है।किसी भी आदेश प्रकार के लिए , हम एक ऑर्डर प्रकार को परिभाषित कर सकते हैं एक प्रकार अधिक: यदि , तब ऑर्डर का ऑर्डर प्रकार है ।टी ऑपरेशन की तुच्छता केवल एक प्रतीत होती है;यह दिखाना आसान है कि टी ऑर्डिनल्स पर एक कड़ाई से मोनोटोनिक कार्य (ऑर्डर-प्रेशरिंग) ऑपरेशन है।
अब ऑर्डर प्रकारों पर लेम्मा को एक स्तरीकृत तरीके से बहाल किया जा सकता है: ऑर्डिनल्स पर प्राकृतिक ऑर्डर का ऑर्डर प्रकार है या इस आधार पर किस जोड़ी का उपयोग किया जाता है (हम इसके बाद के स्तर की जोड़ी मानते हैं)।इससे कोई यह अनुमान लगा सकता है कि ऑर्डर टाइप ऑर्डिनल्स पर है , और इस तरह ।इसलिए टी ऑपरेशन एक फ़ंक्शन नहीं है;ऑर्डिनल्स से ऑर्डिनल्स के लिए एक कड़ाई से मोनोटोन सेट मैप नहीं हो सकता है जो एक ऑर्डिनल नीचे की ओर भेजता है!चूंकि टी मोनोटोन है, इसलिए हमारे पास है , ऑर्डिनल्स में एक अवरोही अनुक्रम जो एक सेट नहीं हो सकता है।
कोई यह प्रमाणित कर सकता है कि इस परिणाम से पता चलता है कि एनएफ (यू) का कोई भी मॉडल मानक नहीं है, क्योंकि एनएफयू के किसी भी मॉडल में ऑर्डिनल्स बाहरी रूप से अच्छी तरह से आदेश नहीं हैं।किसी को इस पर एक स्थिति लेने की आवश्यकता नहीं है, लेकिन यह ध्यान दे सकता है कि यह एनएफयू का एक प्रमेय भी है कि एनएफयू के किसी भी सेट मॉडल में गैर-अच्छी तरह से ऑर्डर किए गए ऑर्डिनल हैं;एनएफयू यह निष्कर्ष नहीं निकालता है कि ब्रह्मांड वी एक सेट होने के बावजूद एनएफयू का एक मॉडल है, क्योंकि सदस्यता संबंध एक निर्धारित संबंध नहीं है।
NFU में गणित के एक और विकास के लिए, ZFC में उसी के विकास की तुलना के साथ, SET सिद्धांत में गणित के कार्यान्वयन को देखें।
सिस्टम एमएल (गणितीय तर्क)
एमएल एनएफ का एक विस्तार है जिसमें उचित कक्षाएं के साथ -साथ सेट भी सम्मलित हैं। विलार्ड वैन ओरमन क्वीन के गणितीय तर्क के 1940 के पहले संस्करण के सेट सिद्धांत ने एनएफ से वॉन न्यूमैन-बर्नेज़-गॉडल सेट सिद्धांत के उचित वर्गों से शादी की और उचित वर्गों के लिए अप्रतिबंधित समझ का एक स्वयंसिद्ध स्कीमा सम्मलित किया।चूँकि J. Barkley Rosser (1942) यह सिद्ध हुआ कि गणितीय तर्क में प्रस्तुत प्रणाली Burali-Forti विरोधाभास के अधीन थी।यह परिणाम एनएफ पर लागू नहीं होता है। Hao Wang (1950) इस समस्या से बचने के लिए एमएल के लिए क्वीन के स्वयंसिद्धों में संशोधन करने का विधि दिखाया, और क्वीन ने 1951 में गणितीय तर्क के दूसरे और अंतिम संस्करण में परिणामी स्वयंसिद्धता को सम्मलित किया।
वांग ने सिद्ध किया कि यदि एनएफ संगत है तो संशोधित एमएल है, और यह भी दिखाया कि संशोधित एमएल की स्थिरता एनएफ की स्थिरता का अर्थ है।अर्थात्, एनएफ और संशोधित एमएल समान हैं।
nfu के मॉडल
जहां Zermelo-Fraenkel सेट थ्योरी के मेटामेथेमाटिक्स के लिए प्रारंभिक बिंदु | Zermelo-Fraenkel सेट सिद्धांत संचयी पदानुक्रम का आसान-से-रूपांतरण अंतर्ज्ञान है, NF और NFU की गैर-अच्छी तरह से-संस्थापक इस अंतर्ज्ञान को सीधे लागू नहीं करता है।चूंकि , पहले के चरणों में विकसित सेटों से एक चरण में सेट बनाने के अंतर्ज्ञान को सभी संभावित सेटों से मिलकर एक चरण में सेट बनाने की अनुमति देने के लिए संवर्धित किया जा सकता है, लेकिन पहले के चरणों में गठित सेट, सेट के एक अनुरूप पुनरावृत्ति गर्भाधान देते हैं।[7] थोक में एनएफयू के मॉडल के उत्पादन के लिए एक बहुत सरल विधि है।मॉडल सिद्धांत की प्रसिद्ध तकनीकों का उपयोग करते हुए, कोई व्यक्ति ज़रमेलो सेट सिद्धांत के एक गैर-मानक मॉडल का निर्माण कर सकता है (मूल तकनीक के लिए पूर्ण ZFC के रूप में लगभग प्रबल कुछ भी नहीं है) जिस पर एक बाहरी ऑटोमोर्फिज्म j है (मॉडल का एक सेट नहीं)जो एक रैंक (सेट सिद्धांत) को स्थानांतरित करता है सेट के संचयी पदानुक्रम की।हम सामान्यता के नुकसान के बिना मान सकते हैं ।हम स्वचालितता के बारे में बात करते हैं कि वे क्रमिक के अतिरिक्त रैंक को आगे बढ़ाते हैं क्योंकि हम यह नहीं मानना चाहते हैं कि मॉडल में प्रत्येक क्रमिक एक रैंक का सूचकांक है।
NFU के मॉडल का डोमेन नॉन -स्टैंडर्ड रैंक होगा ।NFU के मॉडल की सदस्यता संबंध होगा
अब यह सिद्ध हो सकता है कि यह वास्तव में एनएफयू का एक मॉडल है।होने देना NFU की भाषा में एक स्तरीकृत सूत्र बनें।सूत्र में सभी चर के प्रकारों का एक असाइनमेंट चुनें जो इस तथ्य को गवाह है कि यह स्तरीकृत है।इस स्तरीकरण द्वारा चर को सौंपे गए सभी प्रकार की तुलना में एक प्राकृतिक संख्या n चुनें।
सूत्र का विस्तार करें एक सूत्र में एनएफयू के मॉडल में सदस्यता की परिभाषा का उपयोग करके ऑटोमोर्फिज्म जे के साथ ज़रमेलो सेट सिद्धांत के गैर -मानक मॉडल की भाषा में।एक समीकरण या सदस्यता कथन के दोनों किनारों पर J की किसी भी शक्ति का अनुप्रयोग इसके सत्य मूल्य को संरक्षित करता है क्योंकि J एक स्वचालितता है।प्रत्येक परमाणु सूत्र में ऐसा आवेदन करें इस तरह से कि प्रत्येक चर x असाइन किया गया प्रकार मैं बिल्कुल के साथ होता है जे के आवेदन।यह एनएफयू सदस्यता बयानों से प्राप्त परमाणु सदस्यता बयानों के रूप के लिए संभव है, और सूत्र को स्तरीकृत किया जा रहा है।प्रत्येक परिमाणित वाक्य प्रपत्र में परिवर्तित किया जा सकता है (और इसी तरह अस्तित्वगत क्वांटिफायर के लिए)।इस परिवर्तन को हर जगह ले जाएं और एक सूत्र प्राप्त करें जिसमें j को एक बाध्य चर पर कभी भी लागू नहीं किया जाता है।
किसी भी मुक्त चर y को चुनें निर्दिष्ट प्रकार i।आवेदन करना एक सूत्र प्राप्त करने के लिए पूरे सूत्र के लिए समान रूप से जिसमें y j के किसी भी आवेदन के बिना दिखाई देता है।अब उपस्थित है (क्योंकि j केवल मुक्त चर और स्थिरांक के लिए लागू होता है), संबंधित है , और वास्तव में वे y सम्मलित हैं जो मूल सूत्र को संतुष्ट करते हैं NFU के मॉडल में। एनएफयू के मॉडल में यह एक्सटेंशन है (एनएफयू के मॉडल में सदस्यता की विभिन्न परिभाषा के लिए जे का अनुप्रयोग सही है)।यह स्थापित करता है कि स्तरीकृत समझ NFU के मॉडल में है।
यह देखने के लिए कि कमजोर एक्सटेंशनलिटी होल्ड सीधी है: प्रत्येक गैर -रिक्त तत्व का नॉन -स्टैंडर्ड मॉडल से एक अद्वितीय विस्तार विरासत में मिला, खाली सेट अपने सामान्य विस्तार को भी विरासत में मिला है, और अन्य सभी ऑब्जेक्ट्स urelements हैं।
मूल विचार यह है कि ऑटोमोर्फिज्म j पावर सेट को कोड करता है हमारे ब्रह्मांड का इसकी बाहरी आइसोमॉर्फिक कॉपी में हमारे ब्रह्मांड के अंदर।ब्रह्मांड के सबसेट को कोडिंग नहीं करने वाली शेष वस्तुओं को urelements के रूप में माना जाता है।
यदि एक प्राकृतिक संख्या n है, एक को NFU का एक मॉडल मिलता है जो प्रमाणित करता है कि ब्रह्मांड परिमित है (यह बाहरी रूप से अनंत है, निश्चित रूप से)।यदि अनंत है और पसंद का स्वयंसिद्ध ZFC के गैर -मानक मॉडल में धारण करता है, एक NFU + इन्फिनिटी + पसंद का एक मॉडल प्राप्त करता है।
NFU में गणितीय नींव की आत्मनिर्भरता
दार्शनिक कारणों से, यह ध्यान रखना महत्वपूर्ण है कि इस प्रमाण को पूरा करने के लिए ZFC या किसी भी संबंधित प्रणाली में काम करना आवश्यक नहीं है।गणित के लिए एक नींव के रूप में एनएफयू के उपयोग के विरुद्ध एक सामान्य तर्क यह है कि इस पर भरोसा करने के कारणों को उस अंतर्ज्ञान के साथ करना है जो ZFC सही है।यह TST (वास्तव में TSTU) को स्वीकार करने के लिए पर्याप्त है।रूपरेखा में: टाइप थ्योरी TSTU (प्रत्येक पॉजिटिव टाइप में urelements की अनुमति) को एक मेटाथेरी के रूप में लें और TSTU में TSTU के सेट मॉडल के सिद्धांत पर विचार करें (ये मॉडल सेट के अनुक्रम होंगे (मेटाथेरी में एक ही प्रकार के सभी) प्रत्येक के एम्बेडिंग के साथ में के पावर सेट के कोडिंग एम्बेडिंग में एक प्रकार के प्रतिष्ठित तरीके से)।एक एम्बेडिंग को देखते हुए में (आधार प्रकार के सबसेट के साथ आधार प्रकार के तत्वों की पहचान करना), एम्बेडिंग को प्रत्येक प्रकार से अपने उत्तराधिकारी में प्राकृतिक तरीके से परिभाषित किया जा सकता है।इसे ट्रांसफ़िनेट अनुक्रमों के लिए सामान्यीकृत किया जा सकता है देखभाल के साथ।
ध्यान दें कि सेट के ऐसे अनुक्रमों का निर्माण उस प्रकार के आकार तक सीमित है जिसमें उनका निर्माण किया जा रहा है;यह TSTU को अपनी स्वयं की स्थिरता सिद्ध करने से रोकता है (TSTU + INFINITY TSTU की स्थिरता सिद्ध कर सकता है; TSTU + INFINITY की स्थिरता को सिद्ध करने के लिए एक प्रकार का एक प्रकार की आवश्यकता है जिसमें कार्डिनलिटी का एक सेट है , जो कि प्रबल मान्यताओं के बिना TSTU+अनंत में उपस्थित नहीं हो सकता है)।अब मॉडल सिद्धांत के समान परिणामों का उपयोग NFU के एक मॉडल के निर्माण के लिए किया जा सकता है और यह सत्यापित किया जा सकता है कि यह NFU का एक मॉडल है, उसी तरह से, साथ ही साथ 'के स्थान पर उपयोग किया जा रहा है सामान्य निर्माण में।अंतिम कदम यह देखना है कि चूंकि एनएफयू सुसंगत है, इसलिए हम अपने मेटाथेरी में पूर्ण प्रकारों के उपयोग को छोड़ सकते हैं, टीएसटीयू से एनएफयू तक मेटाथेरी को बूटस्ट्रैप कर सकते हैं।
ऑटोमोर्फिज्म के बारे में तथ्य j
इस तरह के एक मॉडल का ऑटोमोर्फिज्म जे एनएफयू में कुछ प्राकृतिक संचालन से निकटता से संबंधित है।उदाहरण के लिए, यदि डब्ल्यू नॉन-स्टैंडर्ड मॉडल में एक अच्छी तरह से ऑर्डरिंग है (हम यहां मानते हैं कि हम ऑर्डर की गई जोड़ी का उपयोग करते हैं जिससे कि दो सिद्धांतों में कार्यों की कोडिंग कुछ सीमा तक सहमत होगी) जो एनएफयू में एक अच्छी तरह से आदेश भी है (सभी)एनएफयू के सुव्यवस्थित Zermelo सेट सिद्धांत के गैर-मानक मॉडल में अच्छी तरह से आदेश हैं, लेकिन इसके विपरीत नहीं, मॉडल के निर्माण में urelements के गठन के कारण), और W में NFU में टाइप α है, फिर J (W)NFU में टाइप T (α) का एक अच्छी तरह से आदेश होगा।
वास्तव में, J को NFU के मॉडल में एक फ़ंक्शन द्वारा कोडित किया जाता है।गैर -मानक मॉडल में कार्य जो किसी भी तत्व के सिंगलटन को भेजता है इसके एकमात्र तत्व के लिए, NFU में एक फ़ंक्शन बन जाता है जो प्रत्येक सिंगलटन {x} को भेजता है, जहां x ब्रह्मांड में कोई भी वस्तु है, J (x) को।इस फ़ंक्शन को कॉल करें एंडो और इसे निम्नलिखित गुण दें: एंडो सिंगलटन के सेट से सेट के सेट में एक इंजेक्टिव फ़ंक्शन है, उस संपत्ति के साथ जो एंडो ({x}) = {एंडो ({y}) |प्रत्येक सेट x के लिए yx}।यह फ़ंक्शन ब्रह्मांड पर एक प्रकार के स्तर की सदस्यता संबंध को परिभाषित कर सकता है, एक मूल गैर -मानक मॉडल की सदस्यता संबंध को पुन: प्रस्तुत करता है।
अनंत के प्रबल स्वयंसिद्ध
इस खंड में, प्रभाव को हमारे सामान्य आधार सिद्धांत, एनएफयू + इन्फिनिटी + चॉइस में अनंत के विभिन्न प्रबल स्वयंसिद्धों को जोड़ने के लिए माना जाता है।यह आधार सिद्धांत, जिसे सुसंगत जाना जाता है, में TST + INFINITY, या Zermelo सेट सिद्धांत के रूप में समान ताकत है, जो बाध्य सूत्र (मैक लेन सेट सिद्धांत) तक सीमित है।
कोई इस आधार सिद्धांत को ZFC संदर्भ से परिचित अनंत के प्रबल स्वयंसिद्धों को जोड़ सकता है, जैसे कि एक दुर्गम कार्डिनल उपस्थित है, लेकिन कैंटोरियन और दृढ़ता से कैंटोरियन सेटों के बारे में जोर देने के लिए यह अधिक स्वाभाविक है।इस तरह के दावे न केवल सामान्य प्रकार के बड़े कार्डिनल में लाते हैं, बल्कि सिद्धांत को अपनी शर्तों पर प्रबल करते हैं।
सामान्य प्रबल सिद्धांतों में सबसे कमजोर है:
- 'रोसेर की गिनती का स्वयंसिद्ध'।प्राकृतिक संख्याओं का सेट एक दृढ़ता से कैंटोरियन सेट है।
यह देखने के लिए कि एनएफयू में प्राकृतिक संख्याओं को कैसे परिभाषित किया गया है, प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा देखें।Rosser द्वारा दिए गए इस स्वयंसिद्ध का मूल रूप सेट {m | 1 them mmingn} था, प्रत्येक प्राकृतिक संख्या n के लिए n सदस्य हैं।यह सहज स्पष्ट रूप से स्पष्ट रूप से स्पष्ट है: NFU में जो सिद्ध होता है वह सेट है {m | 1 themmingn} है सदस्य (जहां कार्डिनल्स पर टी ऑपरेशन द्वारा परिभाषित किया गया है ;यह एक कार्डिनल के प्रकार को बढ़ाता है)।किसी भी कार्डिनल नंबर (प्राकृतिक संख्याओं सहित) के लिए जोर देने के लिए यह प्रमाणित करने के लिए बराबर है कि उस कार्डिनलिटी के सेट ए कैंटोरियन हैं (भाषा के सामान्य दुरुपयोग से, हम ऐसे कार्डिनल्स को कैंटोरियन कार्डिनल्स के रूप में संदर्भित करते हैं)।यह दिखाना सीधा है कि प्रत्येक प्राकृतिक संख्या कैंटोरियन है, यह प्रमाणित इस बात के बराबर है कि सभी प्राकृतिक संख्याओं का सेट दृढ़ता से कैंटोरियन है।
गिनती एनएफयू के अनुरूप है, लेकिन इसकी निरंतरता की ताकत बढ़ जाती है;नहीं, जैसा कि कोई उम्मीद करेगा, अंकगणित के क्षेत्र में, लेकिन उच्च सेट सिद्धांत में।Nfu + अनंतता सिद्ध करती है कि प्रत्येक उपस्थित है, लेकिन ऐसा नहीं है उपस्थित ;NFU + काउंटिंग (आसानी से) अनंत सिद्ध होता है, और आगे अस्तित्व को सिद्ध करता है प्रत्येक n के लिए, लेकिन का अस्तित्व नहीं ।(बेथ नंबर देखें)।
गिनती का तात्पर्य तुरंत है कि किसी को सेट पर प्रतिबंधित चर को प्रकारों को असाइन करने की आवश्यकता नहीं है स्तरीकरण के प्रयोजनों के लिए प्राकृतिक संख्या;यह एक प्रमेय है कि एक दृढ़ता से कैंटोरियन सेट का पावर सेट दृढ़ता से कैंटोरियन है, इसलिए यह आवश्यक नहीं है कि वे प्राकृतिक संख्याओं के किसी भी पुनरावृत्त शक्ति सेट पर प्रतिबंधित चर को या वास्तविक संख्याओं के सेट के रूप में इस तरह के परिचित सेटों को निर्दिष्ट करना आवश्यक नहीं है।, रियल से रियल के कार्यों का सेट, और आगे।गिनती की सेट-सैद्धांतिक शक्ति व्यवहार में कम महत्वपूर्ण है, जो कि सिंगलटन ब्रैकेट के साथ प्राकृतिक संख्या मान (या संबंधित प्रकार के मूल्यों) के लिए ज्ञात चर को एनोटेट नहीं करने की सुविधा से कम महत्वपूर्ण है, या स्तरीकृत सेट प्राप्त करने के लिए टी ऑपरेशन को लागू करने के लिएपरिभाषाएँ।
गिनती का तात्पर्य अनंत है;नीचे दिए गए स्वयंसिद्धों में से प्रत्येक को अनंत के प्रबल वेरिएंट के प्रभाव को प्राप्त करने के लिए एनएफयू + इन्फिनिटी से जुड़ने की आवश्यकता है;अली केयर ने एनएफयू + ब्रह्मांड के मॉडल में इनमें से कुछ स्वयंसिद्धों की ताकत की जांच की है।
ऊपर निर्मित प्रकार का एक मॉडल केवल इस स्थिति में गिनती करता है कि ऑटोमोर्फिज्म J Zermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में सभी प्राकृतिक संख्याओं को ठीक करता है।
अगला प्रबल स्वयंसिद्ध हम मानते हैं
- 'दृढ़ता से कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी दृढ़ता से कैंटोरियन सेट ए और किसी भी सूत्र के लिए (आवश्यक नहीं कि स्तरीकृत!) सेट उपस्थित ।
तत्काल परिणामों में अस्थिर परिस्थितियों के लिए गणितीय प्रेरण सम्मलित हैं (जो गिनती का परिणाम नहीं है; कई लेकिन सभी प्राकृतिक संख्याओं पर प्रेरण के सभी अस्थिर उदाहरण नहीं हैं।
यह स्वयंसिद्ध आश्चर्यजनक रूप से प्रबल है।रॉबर्ट सोलोवे के अप्रकाशित कार्य से पता चलता है कि सिद्धांत की निरंतरता शक्ति nfu* = nfu + गिनती + दृढ़ता से कैंटोरियन पृथक्करण Zermelo सेट सिद्धांत + के समान है प्रतिस्थापन।
यह स्वयंसिद्ध ऊपर निर्मित (पसंद के साथ) के एक मॉडल में है, यदि ऑर्डिनल जो J द्वारा तय किए गए हैं और Jermelo सेट सिद्धांत के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए केवल ऑर्डिनल पर हावी हैं, और ऐसे किसी भी क्रम के पावर सेट हैं।मॉडल में भी मानक है।यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।
अगला है
- 'कैंटोरियन सेट्स का स्वयंसिद्ध': हर कैंटोरियन सेट दृढ़ता से कैंटोरियन है।
यह बहुत ही सरल प्रमाणित बेसीमा प्रबल है।सोलोवे ने सिद्धांत की निरंतरता शक्ति के यथार्थ समानता को दिखाया है, nfua = nfu + इन्फिनिटी + कैंटोरियन सेट के साथ ZFC + एक स्कीमा के साथ प्रत्येक कंक्रीट प्राकृतिक संख्या n के लिए एक n-mahlo कार्डिनल के अस्तित्व का प्रमाणित करता है।अली एनायत ने दिखाया है कि अच्छी तरह से स्थापित विस्तारात्मक संबंधों के कैंटोरियन तुल्यता वर्गों का सिद्धांत (जो ZFC के संचयी पदानुक्रम के प्रारंभिक खंड की एक प्राकृतिक तस्वीर देता है) सीधे एन-महलो कार्डिनल के साथ ZFC के विस्तार की व्याख्या करता है।इस सिद्धांत के एक मॉडल पर एक क्रमपरिवर्तन तकनीक लागू की जा सकती है, जिसमें एक मॉडल देने के लिए वंशानुगत रूप से कैंटोरियन सामान्य सदस्यता संबंध मॉडल के साथ ZFC के प्रबल विस्तार के साथ सेट करता है।
यह स्वयंसिद्ध ऊपर (पसंद के साथ) के रूप में निर्मित प्रकार के एक मॉडल में रखता है, बस स्थिति े में ZFC के अंतर्निहित गैर -मानक मॉडल में J द्वारा तय किए गए ऑर्डिनल मॉडल के ऑर्डिनल का एक प्रारंभिक (उचित वर्ग) खंड है।
आगे विचार करें
- 'कैंटोरियन पृथक्करण का स्वयंसिद्ध': किसी भी कैंटोरियन सेट के लिए और किसी भी सूत्र के लिए (आवश्यक नहीं कि स्तरीकृत!) सेट {x )आ |}} उपस्थित है।
यह दो पूर्ववर्ती स्वयंसिद्धों के प्रभाव को जोड़ती है और वास्तव में और भी प्रबल है (ठीक है कि कैसे ज्ञात नहीं है)।अप्रतिबंधित गणितीय इंडक्शन यह सिद्ध करने में सक्षम बनाता है कि हर एन के लिए एन-महलो कार्डिनल हैं, जो कि कैंटोरियन सेट दिए गए हैं, जो ZFC का एक विस्तार देता है जो पिछले एक की तुलना में भी अधिक प्रबल है, जो केवल यह प्रमाणित करता है कि प्रत्येक ठोस प्राकृतिक संख्या के लिए एन-माह्लोस हैं (नॉन -स्ट्रैंडर्ड काउंटरएक्सेमल्स की संभावना को खुला छोड़ते हुए)।
यह स्वयंसिद्ध ऊपर वर्णित प्रकार के एक मॉडल में होगा यदि J द्वारा तय किया गया प्रत्येक क्रमिक मानक है, और J द्वारा तय किए गए एक क्रमिक का प्रत्येक शक्ति सेट भी ZFC के अंतर्निहित मॉडल में मानक है।फिर, यह स्थिति पर्याप्त है लेकिन आवश्यक नहीं है।
एक अध्यादेश को कैंटोरियन कहा जाता है यदि यह टी द्वारा तय किया जाता है, और दृढ़ता से कैंटोरियन यदि यह केवल कैंटोरियन ऑर्डिनल्स पर हावी है (इसका मतलब है कि यह स्वयं कैंटोरियन है)।ऊपर निर्मित प्रकार के मॉडल में, एनएफयू के कैंटोरियन ऑर्डिनल्स जे द्वारा तय किए गए ऑर्डिनल्स के अनुरूप हैं (वे एक ही वस्तु नहीं हैं क्योंकि दो सिद्धांतों में क्रमिक संख्याओं की विभिन्न परिभाषाओं का उपयोग किया जाता है)।
कैंटोरियन सेट के लिए ताकत के बराबर है
- 'बड़े अध्यादेशों का स्वयंसिद्ध': प्रत्येक गैर-कैटलरियन ऑर्डिनल के लिए , एक प्राकृतिक संख्या n ऐसा है जैसे कि ।
याद करें कि सभी ऑर्डिनल्स पर प्राकृतिक आदेश का ऑर्डर प्रकार है।यह केवल कैंटोरियन सेट का अर्थ है यदि हमारे पास विकल्प है (लेकिन किसी भी स्थिति े में स्थिरता की ताकत के स्तर पर है)।यह उल्लेखनीय है कि कोई भी परिभाषित कर सकता है : यह nth शब्द है लंबाई n के क्रम के किसी भी परिमित अनुक्रम की तरह , प्रत्येक उपयुक्त के लिए मैं।यह परिभाषा पूरी तरह से असंरचित है।की विशिष्टता सिद्ध किया जा सकता है (उन n के लिए जिसके लिए यह उपस्थित है) और इस धारणा के बारे में एक निश्चित मात्रा में सामान्य ज्ञान के तर्क को बाहर किया जा सकता है, यह दिखाने के लिए पर्याप्त है कि बड़े अध्यादेशों को पसंद की उपस्थिति में कैंटोरियन सेट का अर्थ है।इस स्वयंसिद्ध के नॉट्टी औपचारिक बयान के बावजूद, यह एक बहुत ही स्वाभाविक धारणा है, जो कि टी की कार्रवाई को यथासंभव सरल बनाने के लिए है।
ऊपर निर्मित प्रकार का एक मॉडल बड़े ऑर्डिनल्स को संतुष्ट करेगा, यदि J द्वारा स्थानांतरित किए गए ऑर्डिनल्स वास्तव में ऑर्डिनल हैं जो कुछ हावी हैं ZFC के अंतर्निहित गैर -मानक मॉडल में।
सोलोवे ने NFUB = nfu + इन्फिनिटी सभी ऑर्डिनल्स में) एक कमजोर कॉम्पैक्ट कार्डिनल है।यह वास्तव में बहुत प्रबल है!इसके अतिरिक्त , nfub-, जो कैंटोरियन सेट के साथ nfub है, को आसानी से NFUB के समान ताकत के रूप में देखा जाता है।
ऊपर निर्मित प्रकार का एक मॉडल इस स्वयंसिद्ध को संतुष्ट करेगा यदि J द्वारा तय किए गए ऑर्डिनल्स का प्रत्येक संग्रह ZFC के अंतर्निहित नॉन -स्टैंडर्ड मॉडल में 'J' 'द्वारा तय किए गए ऑर्डिनल के साथ ऑर्डिनल्स के कुछ सेट का चौराहा है।
यहां तक कि प्रबल सिद्धांत nfum = nfu + '।यह मोर्स-केली सेट थ्योरी के बराबर है, जो कक्षाओं पर एक विधेय के साथ है, जो उचित वर्ग के अध्यादेश पर एक पूर्ण गैर-व्यावहारिक अल्ट्राफिल्टर है;वास्तव में, यह मोर्स -केली सेट थ्योरी है + उचित वर्ग ऑर्डिनल एक औसत अंकित े का कार्डिनल है!
यहां तकनीकी विवरण मुख्य बिंदु नहीं हैं, जो कि उचित और स्वाभाविक है (एनएफयू के संदर्भ में) दावे ZFC संदर्भ में अनंतता के बहुत प्रबल स्वयंसिद्धों के लिए शक्ति के बराबर हो जाते हैं।यह तथ्य एनएफयू के मॉडल के अस्तित्व के बीच संबंध से संबंधित है, जो ऊपर वर्णित है और इन स्वयंसिद्धों को संतुष्ट करता है, और विशेष गुणों वाले ऑटोमोर्फिज्म के साथ ZFC के मॉडल के अस्तित्व को संतुष्ट करता है।
यह भी देखें
- वैकल्पिक सेट सिद्धांत
- स्वयंसिद्ध सेट सिद्धांत
- सेट सिद्धांत में गणित का कार्यान्वयन
- सकारात्मक सेट सिद्धांत
- प्राकृतिक संख्याओं की सेट-सिद्धांतीय परिभाषा
टिप्पणियाँ
- ↑ Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant.
- ↑ Quine's New Foundations - Stanford Encyclopedia of Philosophy
- ↑ Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
- ↑ Hailperin, T (1944). "A set of axioms for logic". Journal of Symbolic Logic. 9 (1): 1–19. doi:10.2307/2267307. JSTOR 2267307. S2CID 39672836.
- ↑ Fenton, Scott, 2015. New Foundations Explorer Home Page.
- ↑ Forster, Thomas (October 14, 2007). "Why the Sets of NF do not form a Cartesian-closed Category" (PDF). www.dpmms.cam.ac.uk.
- ↑ Forster (2008).
संदर्भ
- Crabbé, Marcel (1982). "On the consistency of an impredicative fragment of Quine's NF". The Journal of Symbolic Logic. 47 (1): 131–136. doi:10.2307/2273386. JSTOR 2273386. S2CID 42174966.
- Forster, T. E. (2008). "The iterative conception of set" (PDF). The Review of Symbolic Logic. 1: 97–110. doi:10.1017/S1755020308080064. S2CID 15231169.
- Forster, T. E. (1992), Set theory with a universal set. Exploring an untyped universe, Oxford Science Publications, Oxford Logic Guides, vol. 20, New York: The Clarendon Press, Oxford University Press, ISBN 0-19-853395-0, MR 1166801
- Holmes, M. Randall (1998), Elementary set theory with a universal set (PDF), Cahiers du Centre de Logique, vol. 10, Louvain-la-Neuve: Université Catholique de Louvain, Département de Philosophie, ISBN 2-87209-488-1, MR 1759289
- Jensen, R. B. (1969), "On the Consistency of a Slight(?) Modification of Quine's NF", Synthese, 19 (1/2): 250–63, doi:10.1007/bf00568059, JSTOR 20114640, S2CID 46960777 With discussion by Quine.
- Quine, W. V. (1937), "New Foundations for Mathematical Logic", The American Mathematical Monthly, Mathematical Association of America, 44 (2): 70–80, doi:10.2307/2300564, JSTOR 2300564
- Quine, Willard Van Orman (1940), Mathematical Logic (first ed.), New York: W. W. Norton & Co., Inc., MR 0002508
- Quine, Willard Van Orman (1951), Mathematical logic (Revised ed.), Cambridge, Mass.: Harvard University Press, ISBN 0-674-55451-5, MR 0045661
- Quine, W. V., 1980, "New Foundations for Mathematical Logic" in From a Logical Point of View, 2nd ed., revised. Harvard Univ. Press: 80-101. The definitive version of where it all began, namely Quine's 1937 paper in the American Mathematical Monthly.
- Rosser, Barkley (1942), "The Burali-Forti paradox", Journal of Symbolic Logic, 7 (1): 1–17, doi:10.2307/2267550, JSTOR 2267550, MR 0006327, S2CID 13389728
- Wang, Hao (1950), "A formal system of logic", Journal of Symbolic Logic, 15 (1): 25–32, doi:10.2307/2268438, JSTOR 2268438, MR 0034733, S2CID 42852449
- Holmes, M. Randall (2008). "Symmetry as a Criterion for Comprehension Motivating Quine's 'New Foundations'". Studia Logica. 88 (2): 195–213. doi:10.1007/s11225-008-9107-8. S2CID 207242273.
बाहरी संबंध
- "Enriched Stratified systems for the Foundations of Category Theory" by Solomon Feferman (2011)
- Stanford Encyclopedia of Philosophy:
- Quine's New Foundations — by Thomas Forster.
- Alternative axiomatic set theories — by Randall Holmes.
- Randall Holmes: New Foundations Home Page.
- Randall Holmes: Bibliography of Set Theory with a Universal Set.
- Randall Holmes: A new pass at the NF consistency proof