समाधेय समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 208: | Line 208: | ||
{{main|बर्नसाइड प्रमेय}} | {{main|बर्नसाइड प्रमेय}} | ||
बर्नसाइड के प्रमेय में कहा गया है कि यदि G आदेश (समूह सिद्धांत) p का एक [[परिमित समूह]] है जहां p और q अभाज्य संख्याएं | बर्नसाइड के प्रमेय में कहा गया है कि यदि G आदेश (समूह सिद्धांत) p का एक [[परिमित समूह]] है जहां p और q अभाज्य संख्याएं है, और a और b गैर-ऋणात्मक पूर्णांक है, तो G हल करने योग्य है। | ||
== संबंधित अवधारणाएं == | == संबंधित अवधारणाएं == | ||
Line 214: | Line 214: | ||
=== सुपरसोल्वेबल समूह === | === सुपरसोल्वेबल समूह === | ||
{{main|सुपरसॉल्वेबल ग्रुप}} | {{main|सुपरसॉल्वेबल ग्रुप}} | ||
विलेयता के | विलेयता के प्रबल के रूप में, एक समूह G को सुपरसॉल्वेबल कहा जाता है, अगर इसमें एक अपरिवर्तनीय सामान्य श्रृंखला होती है जिसके कारक सभी चक्रीय होते है। चूँकि एक सामान्य श्रृंखला की परिभाषा के अनुसार परिमित लंबाई होती है, असंख्य समूह सुपरसॉल्वेबल नहीं होते है। वास्तव में, सभी सुपरसॉल्वेबल समूह अंतिम रूप से उत्पन्न होते है, और एक एबेलियन समूह सुपरसॉल्वेबल होता है यदि और केवल अगर यह अंतिम रूप से उत्पन्न होता है। वैकल्पिक समूह A4 एक परिमित हल करने योग्य समूह का एक उदाहरण है जो सुपरसॉल्वेबल नहीं है। | ||
यदि हम अपने आप को अंतिम रूप से उत्पन्न समूहों तक सीमित रखते है, तो हम समूहों के वर्गों की निम्नलिखित व्यवस्था पर विचार कर सकते है: | यदि हम अपने आप को अंतिम रूप से उत्पन्न समूहों तक सीमित रखते है, तो हम समूहों के वर्गों की निम्नलिखित व्यवस्था पर विचार कर सकते है: |
Revision as of 08:03, 2 May 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में, अधिक विशेष रूप से समूह सिद्धांत के क्षेत्र में, हल करने योग्य समूह या घुलनशील समूह एक ऐसा समूह है जिसे प्रसार का उपयोग करके एबेलियन समूहों से बनाया जाता है। समतुल्य रूप से, एक हल करने योग्य समूह एक ऐसा समूह होता है जिसकी व्युत्पन्न श्रृंखला तुच्छ उपसमूह में समाप्त होती है।
प्रेरणा
ऐतिहासिक रूप से, हल करने योग्य समूह शब्द गाल्वा सिद्धांत से उत्पन्न हुआ है और क्विंटिक समीकरण की सामान्य अघुलनशीलता का गणितीय प्रमाण है। विशेष रूप से, एक बहुपद समीकरण को मौलिक में हल किया जाता है और केवल तभी संबंधित गैलोज़ समूह हल करने योग्य है[1] (ध्यान दें कि यह प्रमेय केवल विशेषता 0 में है)। इसका मतलब बहुपद से जुड़ा है छेत्र प्रसार का एक उत्तुंग है
ऐसे है कि
- जहाँ , इसलिए समीकरण का हल है जहाँ
- के लिए एक विभाजन क्षेत्र सम्मलित है
उदाहरण
उदाहरण के लिए, सबसे छोटा गैल्वा क्षेत्र विस्तार तत्व युक्त
एक हल करने योग्य समूह देता है। इसमें संबद्ध छेत्र प्रसार है
युक्त एक हल करने योग्य समूह देता है (पर अभिनय ) और (अभिनय करता है ).
परिभाषा
एक समूह G को 'हल करने योग्य' कहा जाता है यदि इसकी एक उपसामान्य श्रृंखला है जिसके कारक समूह (गुणांक समूह) सभी एबेलियन समूह है, अर्थात, यदि उपसमूह 1 = G0 है < G1 < ⋅⋅⋅ < Gk= G ऐसा है कि Gj−1 G में सामान्य उपसमूह हैj, और Gj/Gj−1 j = 1, 2, ..., k के लिए एक एबेलियन समूह है।
या समकक्ष, यदि इसकी व्युत्पन्न श्रृंखला, अवरोही सामान्य श्रृंखला है
जहां हर उपसमूह पिछले एक का कम्यूटेटर उपसमूह है, अंततः G के तुच्छ उपसमूह तक पहुंचता है। ये दो परिभाषाएँ समतुल्य है, क्योंकि प्रत्येक समूह एच और एच के प्रत्येक सामान्य उपसमूह एन के लिए, भागफल एच / एन एबेलियन है यदि और केवल यदि एन में एच के कम्यूटेटर उपसमूह सम्मलित होते है। कम से कम एन ऐसा है कि G(n) = 1 को हल करने योग्य समूह G को 'व्युत्पन्न लंबाई' कहा जाता है।
परिमित समूहों के लिए, एक समतुल्य परिभाषा यह है कि एक हल करने योग्य समूह एक रचना श्रृंखला वाला एक समूह होता है, जिसके सभी कारक अभाज्य संख्या क्रम (समूह सिद्धांत) के चक्रीय समूह होते है। यह समतुल्य है क्योंकि एक परिमित समूह की परिमित रचना लंबाई होती है, और प्रत्येक सरल समूह एबेलियन समूह प्रधान क्रम का चक्रीय होता है। जॉर्डन-होल्डर प्रमेय गारंटी देते है कि यदि एक रचना श्रृंखला में यह गुण होते है, तो सभी रचना श्रृंखलाओं में भी यह गुण होते है। एक बहुपद के गैलोज़ समूह के लिए, ये चक्रीय समूह किसी क्षेत्र (गणित) पर नवे मूल (कट्टरपंथी) के अनुरूप होती है। तुल्यता आवश्यक रूप से अनंत समूहों के लिए नहीं है: उदाहरण के लिए, चूंकि पूर्णांक के समूह 'Z' का प्रत्येक गैर-उपसमूह है इसके अतिरिक्त 'Z' के लिए समूह समरूपता है, इसकी कोई रचना श्रृंखला नहीं है, लेकिन सामान्य श्रृंखला {0, ' Z'}, अपने एकमात्र कारक समूह के साथ 'Z' के लिए समरूप है, यह सिद्ध करता है कि यह वास्तव में हल करने योग्य है।
उदाहरण
एबेलियन समूह
हल करने योग्य समूहों का मूल उदाहरण एबेलियन समूह है। वे तुच्छ रूप से हल करने योग्य है क्योंकि एक असामान्य श्रृंखला केवल समूह और तुच्छ समूह द्वारा ही बनाई जाती है। लेकिन गैर-अबेलियन समूह हल करने योग्य हो भी सकते है और नहीं भी हो सकते है।
निलपोटेंट समूह
अधिक सामान्यतः, सभी नीलपोटेंट समूह हल करने योग्य होते है। विशेष रूप से, परिमित पी-समूह हल करने योग्य है, क्योंकि सभी परिमित पी-समूह शून्य होते है।
चतुष्कोण समूह
विशेष रूप से, चतुर्धातुक समूह विस्तार द्वारा दिया गया एक हल करने योग्य समूह है
जहां कर्नेल द्वारा उत्पन्न उपसमूह है .
समूह प्रसार
समूह प्रसार हल करने योग्य समूहों के आद्य उदाहरण बनाते है। अर्थात यदि और हल करने योग्य समूह है, तो कोई प्रसार
एक हल करने योग्य समूह को परिभाषित करता है . वास्तव में, ऐसे समूह विस्तार से सभी हल करने योग्य समूह बनाए जाते है।
नॉनबेलियन समूह जो गैर-शून्य है
एक हल करने योग्य, गैर-शून्य समूह का एक छोटा सा उदाहरण सममित समूह एस3 होता है। वास्तव में, सबसे छोटा साधारण गैर-आबेली समूह A5 होता है, (डिग्री 5 का वैकल्पिक समूह) यह इस प्रकार है कि 60 से कम क्रम वाले प्रत्येक समूह को हल किया जा सकता है।
विषम क्रम के परिमित समूह
फीट-थॉम्पसन प्रमेय कहता है कि विषम क्रम का प्रत्येक परिमित समूह हल करने योग्य होता है। विशेष रूप से इसका तात्पर्य यह है कि यदि एक परिमित समूह सरल होता है, तो यह या तो एक प्रधान चक्रीय या सम क्रम का होता है।
गैर उदाहरण
समूह S5 हल करने योग्य नहीं होते है - इसकी रचना श्रृंखला {E, A5, S5} है (और जॉर्डन-होल्डर प्रमेय कहता है कि प्रत्येक अन्य रचना श्रृंखला उसी के बराबर है), कारक समूहों को A5 और C2 के लिए समरूपता देता है, और A5 एबेलियन नहीं है। इस तर्क का सामान्यीकरण करते हुए, इस तथ्य के साथ मिलकर कि An, n> 4 के लिए Sn का एक सामान्य, अधिकतम, गैर-अबेलियन सरल उपसमूह है, हम देखते है कि Sn n> 4 के लिए हल करने योग्य नहीं है। यह प्रमाण एक महत्वपूर्ण कदम है कि प्रत्येक n > 4 में डिग्री n के बहुपद होते है जो कण (एबेल-रफिनी प्रमेय) द्वारा हल नहीं जाता है। इस गुण का उपयोग बैरिंगटन के प्रमेय के प्रमाण में जटिलता सिद्धांत में भी किया जाता है।
Gl2 के उपसमूह
उपसमूहों पर विचार करें
किसी क्षेत्र के लिए . फिर, समूह भागफल मनमानी तत्वों को ले कर पाया जा सकता है , उन्हें एक साथ गुणा करता है, और पता लगता है कि यह क्या संरचना देता है। तो
निर्धारक स्थिति पर ध्यान दें तात्पर्य , इस तरह एक उपसमूह है (जो मैट्रिक्स है जहां ). निश्चित के लिए , रैखिक समीकरण तात्पर्य , जो एक मनमाना तत्व है तब से . चूँकि हम कोई भी आव्यूह ले सकते है और इसे मैट्रिक्स से गुणा करता है
के साथ , हम एक विकर्ण मैट्रिक्स प्राप्त कर सकते है . यह भागफल समूह को दर्शाता है .
टिप्पणी
ध्यान दें कि यह विवरण का अपघटन देता है जैसा जहाँ पर कार्य करता है द्वारा . यह संकेत करता है . साथ ही, फॉर्म का एक मैट्रिक्स
तत्व से मेल खाता है समूह में है।
बोरेल उपसमूह
एक रेखीय बीजगणितीय समूह के लिए इसके बोरेल उपसमूह को एक उपसमूह के रूप में परिभाषित किया गया है जो बंद, जुड़ा हुआ और हल करने योग्य है , और यह इन गुणों के साथ अधिकतम संभव उपसमूह है (ध्यान दें कि दूसरे दो सामयिक गुण है)। उदाहरण के लिए, और ऊपरी-त्रिकोणीय, या निचले-त्रिकोणीय आव्यूहों का समूह बोरेल उपसमूहों में से दो होते है। ऊपर दिया गया उदाहरण, उपसमूह में बोरेल उपसमूह होता है।
Gl3 में बोरेल उपसमूह
उपसमूह है
सूचना , इसलिए बोरेल समूह का रूप है
साधारण रेखीय बीजगणितीय समूहों के गुणनफल में बोरेल उपसमूह
उत्पाद समूह में बोरेल उपसमूह को फॉर्म के मैट्रिसेस द्वारा दर्शाया जा सकता है
जहाँ एक ऊपरी त्रिकोणीय मैट्रिक्स और एक ऊपरी त्रिकोणीय मैट्रिक्स है।
जेड-समूह
कोई भी परिमित समूह जिसका पी-साइलो उपसमूह चक्रीय होता है, दो चक्रीय समूहों का एक अर्ध-प्रत्यक्ष उत्पाद होता है, विशेष रूप से हल करने योग्य होता है। ऐसे समूहों को जेड-समूह कहा जाता है।
ओईआईएस मान
क्रम n के साथ हल करने योग्य समूहों की संख्या है (n = 0 से प्रारंभ करें)
- 0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15 , 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2 , 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 12, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, ... (sequence A201733 in the OEIS)
अघुलनशील समूहों के आदेश है
- 60, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 540, 600, 660, 672, 720, 780, 840, 900, 960, 1008, 1020, 1080, 1092 , 1140 , 1176, 1200, 1260, 1320, 1344, 1380, 1440, 1500, ... (sequence A056866 in the OEIS)
गुण
हल कई संचालनों के अनुसार बंद होता है।
- यदि G हल करने योग्य है, और H, G का एक उपसमूह है, तो H हल करने योग्य है।[2]
- यदि G हल करने योग्य है, और G आक्षेप H से एक समूह समरूपता है, तो H हल करने योग्य है, समकक्ष रूप से (समरूपता प्रमेय द्वारा), यदि G हल करने योग्य है, और एन G का एक सामान्य उपसमूह है, तो G/n हल करने योग्य है।[3]
- पिछली गुण को दो गुण विशेष रूप से, यदि G और H हल करने योग्य है, तो समूह G × H का प्रत्यक्ष उत्पाद हल करने योग्य है।
हल समूह प्रसार के अनुसार बंद है:
- यदि H और G/H हल करने योग्य है, तो G भी हल करने योग्य है, विशेष रूप से, यदि n और H हल करने योग्य है, तो उनका अर्ध प्रत्यक्ष उत्पाद भी हल करने योग्य है।
यह पुष्पांजलि उत्पाद के अनुसार भी बंद है:
- यदि G और H हल करने योग्य है, और x एक G-सेट है, तो x के संबंध में G और H का पुष्पांजलि उत्पाद भी हल करने योग्य है।
किसी भी धनात्मक पूर्णांक N के लिए, अधिकांश N पर व्युत्पन्न लंबाई के हल करने योग्य समूह विभिन्न प्रकार के समूहों की एक विविधता बनाते है, क्योंकि वे समरूपता छवियों, और समूहों के प्रत्यक्ष उत्पाद के अनुसार बंद होते है। असंबद्ध व्युत्पन्न लंबाई के साथ हल करने योग्य समूहों के अनुक्रम का प्रत्यक्ष उत्पाद हल करने योग्य नहीं होता है, इसलिए सभी हल करने योग्य समूहों का वर्ग विविधता नहीं होता है।
बर्नसाइड प्रमेय
बर्नसाइड के प्रमेय में कहा गया है कि यदि G आदेश (समूह सिद्धांत) p का एक परिमित समूह है जहां p और q अभाज्य संख्याएं है, और a और b गैर-ऋणात्मक पूर्णांक है, तो G हल करने योग्य है।
संबंधित अवधारणाएं
सुपरसोल्वेबल समूह
विलेयता के प्रबल के रूप में, एक समूह G को सुपरसॉल्वेबल कहा जाता है, अगर इसमें एक अपरिवर्तनीय सामान्य श्रृंखला होती है जिसके कारक सभी चक्रीय होते है। चूँकि एक सामान्य श्रृंखला की परिभाषा के अनुसार परिमित लंबाई होती है, असंख्य समूह सुपरसॉल्वेबल नहीं होते है। वास्तव में, सभी सुपरसॉल्वेबल समूह अंतिम रूप से उत्पन्न होते है, और एक एबेलियन समूह सुपरसॉल्वेबल होता है यदि और केवल अगर यह अंतिम रूप से उत्पन्न होता है। वैकल्पिक समूह A4 एक परिमित हल करने योग्य समूह का एक उदाहरण है जो सुपरसॉल्वेबल नहीं है।
यदि हम अपने आप को अंतिम रूप से उत्पन्न समूहों तक सीमित रखते है, तो हम समूहों के वर्गों की निम्नलिखित व्यवस्था पर विचार कर सकते है:
- चक्रीय समूह <एबेलियन समूह <शून्यक्षम समूह <सुपरहल करने योग्य समूह समूह <पॉलीसाइक्लिक समूह <विलय करने योग्य <परिमित रूप से उत्पन्न समूह।
वस्तुतः हल करने योग्य समूह
एक समूह G को 'वस्तुतः हल करने योग्य' कहा जाता है यदि उसके पास परिमित सूचकांक का एक हल करने योग्य उपसमूह है। यह वस्तुतः एबेलियन के समान है। स्पष्ट रूप से सभी हल करने योग्य समूह वास्तव में हल करने योग्य है, क्योंकि कोई केवल समूह को ही चुन सकता है, जिसका इंडेक्स 1 है।
हाइपोबेलियन
एक हल करने योग्य समूह वह है जिसकी व्युत्पन्न श्रृंखला एक परिमित अवस्था में तुच्छ उपसमूह तक पहुँचती है। एक अनंत समूह के लिए, परिमित व्युत्पन्न श्रृंखला स्थिर नहीं हो सकती है, लेकिन ट्रांसफिनिट व्युत्पन्न श्रृंखला हमेशा स्थिर होती है। एक समूह जिसकी ट्रांसफ़िनेटेड व्युत्पन्न श्रृंखला तुच्छ समूह तक पहुँचती है, उसे 'पूर्ण कोर' कहा जाता है, और प्रत्येक हल करने योग्य समूह एक हाइपोबेलियन समूह होता है। पहला क्रमिक α ऐसा है कि G(ए) </सुप> = G(α+1) को समूह G की व्युत्पन्न लंबाई कहा जाता है, और यह दिखाया गया है कि प्रत्येक क्रमसूचक किसी समूह की व्युत्पन्न लंबाई है (Malcev 1949).
यह भी देखें
टिप्पणियाँ
- ↑ Milne. फील्ड थ्योरी (PDF). p. 45.
- ↑ Rotman (1995), Theorem 5.15, p. 102, at Google Books
- ↑ Rotman (1995), Theorem 5.16, p. 102, at Google Books
संदर्भ
This article needs additional citations for verification. (January 2008) (Learn how and when to remove this template message) |
- Malcev, A. I. (1949), "Generalized nilpotent algebras and their associated groups", Mat. Sbornik, New Series, 25 (67): 347–366, MR 0032644
- Rotman, Joseph J. (1995), An Introduction to the Theory of Groups, Graduate Texts in Mathematics, vol. 148 (4 ed.), Springer, ISBN 978-0-387-94285-8