बैनाक मैनिफोल्ड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Manifold modeled on Banach spaces}}
{{Short description|Manifold modeled on Banach spaces}}
गणित में, एक बैनाच मैनिफोल्ड एक मैनिफोल्ड है जो कि बनच स्पेस पर आधारित है। इस प्रकार यह एक [[टोपोलॉजिकल स्पेस]] है जिसमें प्रत्येक बिंदु में एक बनच स्पेस में एक खुले सेट के लिए [[होमियोमॉर्फिक]] नेबरहुड (गणित) है (एक अधिक शामिल और औपचारिक परिभाषा नीचे दी गई है)। बैनच मैनिफोल्ड्स मैनिफोल्ड्स को [[अनंतता]] [[आयाम]]ों तक विस्तारित करने की एक संभावना है।
गणित में, एक बैनाच मैनिफोल्ड एक मैनिफोल्ड है | जो कि बनच स्पेस पर आधारित है। इस प्रकार यह एक [[टोपोलॉजिकल स्पेस|सामयिक स्पेस]] है | जिसमें प्रत्येक बिंदु में एक बनच स्पेस में एक खुले समुच्चय के लिए [[होमियोमॉर्फिक]] नेबरहुड (गणित) है (एक अधिक सम्मिलित और औपचारिक परिभाषा नीचे दी गई है)। बैनच मैनिफोल्ड्स मैनिफोल्ड्स को [[अनंतता]] [[आयाम]] तक विस्तारित करने की एक संभावना है।


एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए है, फ़्रेचेट रिक्त स्थान द्वारा [[बनच रिक्त स्थान]] की जगह। दूसरी ओर, एक [[ हिल्बर्ट [[कई गुना]] ]] एक बनच मैनिफोल्ड का एक विशेष मामला है जिसमें कई गुना हिल्बर्ट रिक्त स्थान पर स्थानीय रूप से तैयार किया गया है।
एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए [[बनच रिक्त स्थान|बनच स्पेस]] कों फ़्रेचेट स्पेस द्वारा बदलना है | दूसरी ओर, एक हिल्बर्ट [[कई गुना|मैनिफोल्ड]] एक बनच मैनिफोल्ड की एक विशेष स्थिति है जिसमें मैनिफोल्ड हिल्बर्ट स्पेस पर स्पेसीय रूप से तैयार किया गया है।


'''एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए है, फ़्रेचेट रिक्त स्थान द्वारा [[बनच रिक्त स्थान]] की जगह। दूसरी ओर, एक [[ हिल्बर्ट [[कई गुना]] ]] एक बनच मैनिफोल्ड का एक विशेष मामला है जिसमें कई गुना हिल्बर्ट रिक्त स्थान पर स्थानीय रूप से तैयार किया गया है।'''
'''एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए है, फ़्रेचेट स्पेस द्वारा [[बनच रिक्त स्थान|बनच स्पेस]] की जगह। दूसरी ओर, एक हिल्बर्ट [[कई गुना|मैनिफोल्ड]] एक बनच मैनिफोल्ड का एक विशेष स्थिति है जिसमें मैनिफोल्ड हिल्बर्ट स्पेस पर स्पेसीय रूप से तैयार किया गया है।'''


== परिभाषा ==
== परिभाषा ==


होने देना <math>X</math> एक [[सेट (गणित)]] बनें। कक्षा का एक [[एटलस (टोपोलॉजी)]]<math>C^r,</math> <math>r \geq 0,</math> पर <math>X</math> जोड़ियों का एक संग्रह है (एटलस (टोपोलॉजी)#चार्ट्स कहा जाता है) <math>\left(U_i, \varphi_i\right),</math> <math>i \in I,</math> ऐसा है कि
माना <math>X</math> एक [[सेट (गणित)|समुच्चय (गणित)]] है। जो <math>X</math> पर वर्ग <math>C^r,</math> <math>r \geq 0,</math> का एक [[एटलस (टोपोलॉजी)]] जोड़ियों का एक संग्रह है | (चार्ट्स कहा जाता है) <math>\left(U_i, \varphi_i\right),</math> <math>i \in I,</math> जैसे कि


# प्रत्येक <math>U_i</math> का उपसमुच्चय है <math>X</math> और [[संघ (सेट सिद्धांत)]]। <math>U_i</math> संपूर्ण है <math>X</math>;
# प्रत्येक <math>U_i</math> <math>X</math> का उपसमुच्चय है और <math>U_i</math> [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] संपूर्ण <math>X</math> है |
# प्रत्येक <math>\varphi_i</math> से आपत्ति है <math>U_i</math> एक खुले उपसमुच्चय पर <math>\varphi_i\left(U_i\right)</math> कुछ बनच स्थान का <math>E_i,</math> और किसी भी सूचकांक के लिए <math>i \text{ and } j,</math> <math>\varphi_i\left(U_i \cap U_j\right)</math> में खुला है <math>E_i;</math>
# प्रत्येक <math>\varphi_i</math><math>U_i</math> से एक खुले उपसमुच्चय <math>\varphi_i\left(U_i\right)</math> पर आपत्ति है | <math>E_i,</math> और किसी भी सूचकांक के लिए <math>i \text{ and } j,</math> <math>\varphi_i\left(U_i \cap U_j\right)</math> <math>E_i;</math> में खुला है |
# क्रॉसओवर नक्शा
# क्रॉसओवर नक्शा एक सरल फलन है |
#:<math display=block>\varphi_j \circ \varphi_i^{-1} : \varphi_i\left(U_i \cap U_j\right) \to \varphi_j\left(U_i \cap U_j\right)</math>
#:<math display="block">\varphi_j \circ \varphi_i^{-1} : \varphi_i\left(U_i \cap U_j\right) \to \varphi_j\left(U_i \cap U_j\right)</math>
#:एक स्मूद फंक्शन है|<math>r</math>प्रत्येक के लिए बार-बार लगातार अलग-अलग कार्य <math>i, j \in I;</math> वह यह है कि <math>r</math>वें फ्रेचेट व्युत्पन्न
#:प्रत्येक <math>i, j \in I;</math> के लिए <math>r</math> निरंतर अवकलनीय कार्य  वह यह है कि <math>r</math>वें फ्रेचेट व्युत्पन्न उपस्थित है |
#:<math display=block>\mathrm{d}^r\left(\varphi_j \circ \varphi_i^{-1}\right) : \varphi_i\left(U_i \cap U_j\right) \to \mathrm{Lin}\left(E_i^r; E_j\right)</math>
#:<math display="block">\mathrm{d}^r\left(\varphi_j \circ \varphi_i^{-1}\right) : \varphi_i\left(U_i \cap U_j\right) \to \mathrm{Lin}\left(E_i^r; E_j\right)</math>
#: मौजूद है और इसके संबंध में एक सतत कार्य है <math>E_i</math>-नॉर्म (गणित) के सबसेट पर [[टोपोलॉजी]] <math>E_i</math> और [[ऑपरेटर मानदंड]] टोपोलॉजी चालू है <math>\operatorname{Lin}\left(E_i^r; E_j\right).</math>
#:<math>E_i</math> इसके संबंध में एक सतत कार्य है | <math>E_i</math>-नॉर्म (गणित) के सबसमुच्चय पर [[टोपोलॉजी]] और <math>\operatorname{Lin}\left(E_i^r; E_j\right).</math> [[ऑपरेटर मानदंड]] टोपोलॉजी चालू है |
कोई तब दिखा सकता है कि एक अद्वितीय टोपोलॉजी चालू है <math>X</math> ऐसा है कि प्रत्येक <math>U_i</math> खुला है और प्रत्येक <math>\varphi_i</math> एक [[ होमियोमोर्फिज्म ]] है। बहुत बार, इस टोपोलॉजिकल स्पेस को [[हॉसडॉर्फ स्पेस]] माना जाता है, लेकिन औपचारिक परिभाषा के दृष्टिकोण से यह आवश्यक नहीं है।
#:<br />⁡
कोई तब दिखा सकता है कि <math>X</math> एक अद्वितीय टोपोलॉजी चालू है जैसे कि प्रत्येक <math>U_i</math> खुला है और प्रत्येक <math>\varphi_i</math> एक [[ होमियोमोर्फिज्म | होमियोमोर्फिज्म]] है। अधिकतर,इस सामयिक स्पेस को [[हॉसडॉर्फ स्पेस]] माना जाता है | किन्तु औपचारिक परिभाषा के दृष्टिकोण से यह आवश्यक नहीं है।


यदि सभी बनच रिक्त स्थान <math>E_i</math> समान स्थान के बराबर हैं <math>E,</math> एटलस कहा जाता है <math>E</math>-एटलस। हालाँकि, यह 'विक्षनरी: एक प्राथमिकता' आवश्यक नहीं है कि बनच रिक्त स्थान <math>E_i</math> [[टोपोलॉजिकल वेक्टर स्पेस]] के समान स्थान, या यहां तक ​​​​कि [[ समरूप ]] हो। हालाँकि, यदि दो चार्ट <math>\left(U_i, \varphi_i\right)</math> और <math>\left(U_j, \varphi_j\right)</math> ऐसे हैं <math>U_i</math> और <math>U_j</math> एक गैर-खाली [[चौराहा (सेट सिद्धांत)]] है, क्रॉसओवर मानचित्र के डेरिवेटिव (सामान्यीकरण) की एक त्वरित परीक्षा
यदि सभी बनच स्पेस <math>E_i</math> समान स्पेस <math>E,</math> के समान हैं तो <math>E</math>-एटलस कहा जाता है। चूँकि, यह 'ह प्राथमिक रूप से आवश्यक नहीं है कि बनच स्पेस <math>E_i</math> [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश स्पेस]] के समान स्पेस, या यहां तक ​​​​कि [[ समरूप | समरूप]] हो। चूँकि, यदि दो चार्ट <math>\left(U_i, \varphi_i\right)</math> और <math>\left(U_j, \varphi_j\right)</math> ऐसे हैं <math>U_i</math> और <math>U_j</math> एक गैर-खाली [[चौराहा (सेट सिद्धांत)|प्रतिच्छेदन (समुच्चय सिद्धांत)]] है,जो क्रॉसओवर मानचित्र के डेरिवेटिव (सामान्यीकरण) की एक त्वरित परीक्षा है |
<math display=block>\varphi_j \circ \varphi_i^{-1} : \varphi_i\left(U_i \cap U_j\right) \to \varphi_j\left(U_i \cap U_j\right)</math>
<math display="block">\varphi_j \circ \varphi_i^{-1} : \varphi_i\left(U_i \cap U_j\right) \to \varphi_j\left(U_i \cap U_j\right)</math>
पता चलता है कि <math>E_i</math> और <math>E_j</math> टोपोलॉजिकल वेक्टर स्पेस के रूप में वास्तव में आइसोमोर्फिक होना चाहिए। इसके अलावा, अंक का सेट <math>x \in X</math> जिसके लिए एक चार्ट है <math>\left(U_i, \varphi_i\right)</math> साथ <math>x</math> में <math>U_i</math> और <math>E_i</math> किसी दिए गए बनच स्थान के लिए आइसोमॉर्फिक <math>E</math> खुला और बंद दोनों उपसमुच्चय है। इसलिए, व्यापकता के नुकसान के बिना कोई यह मान सकता है कि, प्रत्येक [[जुड़ा हुआ स्थान]] पर <math>X,</math> एटलस एक है <math>E</math>-एटलस कुछ निश्चित के लिए <math>E.</math>
दिखाता है कि <math>E_i</math> और <math>E_j</math> टोपोलॉजिकल सदिश स्पेस के रूप में वास्तव में समरूपी होना चाहिए। इसके अतिरिक्त, अंक का समुच्चय <math>x \in X</math> जिसके लिए एक चार्ट है <math>\left(U_i, \varphi_i\right)</math> साथ <math>x</math> में <math>U_i</math> और <math>E_i</math> किसी दिए गए बनच स्पेस के लिए आइसोमॉर्फिक <math>E</math> खुला और बंद दोनों उपसमुच्चय है। इसलिए, व्यापकता के नुकसान के बिना कोई यह मान सकता है कि,<math>X,</math> प्रत्येक [[जुड़ा हुआ स्थान|जुड़ा हुआ स्पेस]] पर   <math>E</math>-एटलस कुछ निश्चित <math>E.</math> के लिए एटलस एक है |
एक नया चार्ट <math>(U, \varphi)</math> दिए गए एटलस के साथ संगत कहा जाता है <math>\left\{\left(U_i, \varphi_i\right) : i \in I\right\}</math> यदि क्रॉसओवर मानचित्र
<math display=block>\varphi_i \circ \varphi^{-1} : \varphi\left(U \cap U_i\right) \to \varphi_i\left(U \cap U_i\right)</math>
एक <math>r</math>प्रत्येक के लिए बार-बार लगातार अलग-अलग कार्य <math>i \in I.</math> दो एटलस को संगत कहा जाता है यदि एक में प्रत्येक चार्ट दूसरे एटलस के साथ संगत हो। संगतता सभी संभावित एटलस के वर्ग पर एक समानता संबंध को परिभाषित करती है <math>X.</math>
ए <math>C^r</math>-कई गुना संरचना पर <math>X</math> इसके बाद एटलस के समतुल्य वर्ग के विकल्प के रूप में परिभाषित किया जाता है <math>X</math> कक्षा का <math>C^r.</math> यदि सभी बनच रिक्त स्थान <math>E_i</math> टोपोलॉजिकल वेक्टर रिक्त स्थान के रूप में आइसोमोर्फिक हैं (जो कि मामला होने की गारंटी है <math>X</math> कनेक्टेड स्पेस है), तो एक समतुल्य एटलस पाया जा सकता है, जिसके लिए वे सभी कुछ बनच स्पेस के बराबर हैं <math>E.</math> <math>X</math> फिर एक कहा जाता है <math>E</math>-कई गुना, या कोई ऐसा कहता है <math>X</math> पर प्रतिरूपित किया जाता है <math>E.</math>


एक नया चार्ट <math>(U, \varphi)</math> दिए गए एटलस <math>\left\{\left(U_i, \varphi_i\right) : i \in I\right\}</math> के साथ संगत कहा जाता है |
<math display="block">\varphi_i \circ \varphi^{-1} : \varphi\left(U \cap U_i\right) \to \varphi_i\left(U \cap U_i\right)</math>
यदि क्रॉसओवर मानचित्र एक <math>r</math>प्रत्येक के लिए बार-बार लगातार अलग-अलग कार्य <math>i \in I.</math> दो एटलस को संगत कहा जाता है | यदि एक में प्रत्येक चार्ट दूसरे एटलस के साथ संगत हो। संगतता सभी संभावित एटलस के वर्ग पर <math>X.</math> एक समानता संबंध को परिभाषित करती है |


== उदाहरण ==
ए <math>C^r</math>-मैनिफोल्ड संरचना पर <math>X</math> इसके बाद एटलस के समतुल्य वर्ग के विकल्प के रूप में परिभाषित किया जाता है | <math>X</math> कक्षा का <math>C^r.</math> यदि सभी बनच स्पेस <math>E_i</math> टोपोलॉजिकल सदिश स्पेस के रूप में समरूपी हैं (जो कि स्थिति होने की गारंटी है <math>X</math> कनेक्टेड स्पेस है), तो एक समतुल्य एटलस पाया जा सकता है,| जिसके लिए वे सभी कुछ बनच स्पेस के समान हैं | <math>E.</math> <math>X</math> फिर <math>E</math>-मैनिफोल्ड, एक कहा जाता है  या <math>X</math> कोई ऐसा कहता है  पर प्रतिरूपित <math>E.</math> पर किया जाता है |


* अगर <math>(X, \|\,\cdot\,\|)</math> एक बनच स्थान है, फिर <math>X</math> एक एकल, विश्व स्तर पर परिभाषित चार्ट ([[पहचान समारोह]]) वाले एटलस के साथ एक बैनाच कई गुना है।
 
* इसी प्रकार यदि <math>U</math> तब कुछ बनच स्थान का एक खुला उपसमुच्चय है <math>U</math> एक बनच कई गुना है। (नीचे वर्गीकरण प्रमेय देखें।)
 
== उदाप्रत्येकण ==
 
* यदि <math>(X, \|\,\cdot\,\|)</math> एक बनच स्पेस है, फिर <math>X</math> एक एकल, विश्व स्तर पर परिभाषित चार्ट ([[पहचान समारोह]]) वाले एटलस के साथ एक बैनाच मैनिफोल्ड है।
* इसी प्रकार यदि <math>U</math> तब कुछ बनच स्पेस का एक खुला उपसमुच्चय है | <math>U</math> एक बनच मैनिफोल्ड है। (नीचे वर्गीकरण प्रमेय देखें।)


== होमोमोर्फिज्म तक वर्गीकरण ==
== होमोमोर्फिज्म तक वर्गीकरण ==


यह किसी भी तरह से सच नहीं है कि आयाम का परिमित-आयामी कई गुना <math>n</math> है {{em|globally}} होमियोमॉर्फिक से <math>\R^n,</math> या यहां तक ​​कि का एक खुला उपसमुच्चय <math>\R^n.</math> हालांकि, एक अनंत-आयामी सेटिंग में, होमोमोर्फिज्म तक [[अच्छी तरह से व्यवहार]] किए गए बनच मैनिफोल्ड्स को काफी अच्छी तरह से वर्गीकृत करना संभव है। डेविड हेंडरसन के 1969 के प्रमेय में कहा गया है कि हर अनंत-आयामी, वियोज्य अंतरिक्ष, मीट्रिक अंतरिक्ष बनच कई गुना <math>X</math> अनंत-आयामी, वियोज्य हिल्बर्ट अंतरिक्ष के एक खुले उपसमुच्चय के रूप में [[एम्बेडिंग]] हो सकता है, <math>H</math> (रैखिक समरूपता तक, केवल एक ही ऐसा स्थान होता है, जिसे आमतौर पर पहचाना जाता है <math>\ell^2</math>). वास्तव में, हेंडरसन का परिणाम अधिक मजबूत है: एक ही निष्कर्ष किसी भी मीट्रिक मैनिफोल्ड के लिए अलग-अलग अनंत-आयामी फ्रेचेट स्पेस पर आधारित है।
यह किसी भी तरह से सही नहीं है कि आयाम का परिमित-आयामी मैनिफोल्ड <math>n</math> है | विश्व स्तर पर होमियोमॉर्फिक से <math>\R^n,</math> या यहां तक ​​कि का एक खुला उपसमुच्चय <math>\R^n.</math> है | चूँकि, एक अनंत-आयामी समुच्चयिंग में, होमोमोर्फिज्म तक [[अच्छी तरह से व्यवहार]] किए गए बनच मैनिफोल्ड्स को काफी अच्छी तरह से वर्गीकृत करना संभव है। डेविड हेंडरसन के 1969 के प्रमेय में कहा गया है कि प्रत्येक अनंत-आयामी, वियोज्य अंतरिक्ष, आव्युह अंतरिक्ष बनच मैनिफोल्ड <math>X</math> अनंत-आयामी, वियोज्य हिल्बर्ट अंतरिक्ष के एक खुले उपसमुच्चय के रूप में [[एम्बेडिंग]] हो सकता है,| <math>H</math> (रैखिक समरूपता तक, केवल एक ही ऐसा स्पेस होता है, जिसे सामान्यतः पहचाना जाता है <math>\ell^2</math>). वास्तव में, हेंडरसन का परिणाम अधिक शक्तिशाली है | एक ही निष्कर्ष किसी भी आव्युह मैनिफोल्ड के लिए अलग-अलग अनंत-आयामी फ्रेचेट स्पेस पर आधारित है।


एम्बेडिंग होमोमोर्फिज्म का उपयोग वैश्विक चार्ट के रूप में किया जा सकता है <math>X.</math> इस प्रकार, अनंत-आयामी, वियोज्य, मीट्रिक मामले में, केवल बनच मैनिफोल्ड ही हिल्बर्ट अंतरिक्ष के खुले उपसमुच्चय हैं।
एम्बेडिंग होमोमोर्फिज्म का उपयोग वैश्विक चार्ट के रूप में किया जा सकता है इस प्रकार <math>X.</math>, अनंत-आयामी, वियोज्य, आव्युह स्थिति में, केवल बनच मैनिफोल्ड ही हिल्बर्ट अंतरिक्ष के खुले उपसमुच्चय हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 50: Line 54:


{{reflist}}
{{reflist}}
{{reflist|group=note}}
* {{cite journal
* {{cite journal
| last = Henderson
| last = Henderson

Revision as of 11:33, 29 April 2023

गणित में, एक बैनाच मैनिफोल्ड एक मैनिफोल्ड है | जो कि बनच स्पेस पर आधारित है। इस प्रकार यह एक सामयिक स्पेस है | जिसमें प्रत्येक बिंदु में एक बनच स्पेस में एक खुले समुच्चय के लिए होमियोमॉर्फिक नेबरहुड (गणित) है (एक अधिक सम्मिलित और औपचारिक परिभाषा नीचे दी गई है)। बैनच मैनिफोल्ड्स मैनिफोल्ड्स को अनंतता आयाम तक विस्तारित करने की एक संभावना है।

एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए बनच स्पेस कों फ़्रेचेट स्पेस द्वारा बदलना है | दूसरी ओर, एक हिल्बर्ट मैनिफोल्ड एक बनच मैनिफोल्ड की एक विशेष स्थिति है जिसमें मैनिफोल्ड हिल्बर्ट स्पेस पर स्पेसीय रूप से तैयार किया गया है।

एक और सामान्यीकरण फ़्रेचेट मैनिफोल्ड्स के लिए है, फ़्रेचेट स्पेस द्वारा बनच स्पेस की जगह। दूसरी ओर, एक हिल्बर्ट मैनिफोल्ड एक बनच मैनिफोल्ड का एक विशेष स्थिति है जिसमें मैनिफोल्ड हिल्बर्ट स्पेस पर स्पेसीय रूप से तैयार किया गया है।

परिभाषा

माना एक समुच्चय (गणित) है। जो पर वर्ग का एक एटलस (टोपोलॉजी) जोड़ियों का एक संग्रह है | (चार्ट्स कहा जाता है) जैसे कि

  1. प्रत्येक का उपसमुच्चय है और संघ (समुच्चय सिद्धांत) संपूर्ण है |
  2. प्रत्येक से एक खुले उपसमुच्चय पर आपत्ति है | और किसी भी सूचकांक के लिए में खुला है |
  3. क्रॉसओवर नक्शा एक सरल फलन है |
    प्रत्येक के लिए निरंतर अवकलनीय कार्य वह यह है कि वें फ्रेचेट व्युत्पन्न उपस्थित है |
    इसके संबंध में एक सतत कार्य है | -नॉर्म (गणित) के सबसमुच्चय पर टोपोलॉजी और ऑपरेटर मानदंड टोपोलॉजी चालू है |

कोई तब दिखा सकता है कि एक अद्वितीय टोपोलॉजी चालू है जैसे कि प्रत्येक खुला है और प्रत्येक एक होमियोमोर्फिज्म है। अधिकतर,इस सामयिक स्पेस को हॉसडॉर्फ स्पेस माना जाता है | किन्तु औपचारिक परिभाषा के दृष्टिकोण से यह आवश्यक नहीं है।

यदि सभी बनच स्पेस समान स्पेस के समान हैं तो -एटलस कहा जाता है। चूँकि, यह 'ह प्राथमिक रूप से आवश्यक नहीं है कि बनच स्पेस टोपोलॉजिकल सदिश स्पेस के समान स्पेस, या यहां तक ​​​​कि समरूप हो। चूँकि, यदि दो चार्ट और ऐसे हैं और एक गैर-खाली प्रतिच्छेदन (समुच्चय सिद्धांत) है,जो क्रॉसओवर मानचित्र के डेरिवेटिव (सामान्यीकरण) की एक त्वरित परीक्षा है |

दिखाता है कि और टोपोलॉजिकल सदिश स्पेस के रूप में वास्तव में समरूपी होना चाहिए। इसके अतिरिक्त, अंक का समुच्चय जिसके लिए एक चार्ट है साथ में और किसी दिए गए बनच स्पेस के लिए आइसोमॉर्फिक खुला और बंद दोनों उपसमुच्चय है। इसलिए, व्यापकता के नुकसान के बिना कोई यह मान सकता है कि, प्रत्येक जुड़ा हुआ स्पेस पर -एटलस कुछ निश्चित के लिए एटलस एक है |

एक नया चार्ट दिए गए एटलस के साथ संगत कहा जाता है |

यदि क्रॉसओवर मानचित्र एक प्रत्येक के लिए बार-बार लगातार अलग-अलग कार्य दो एटलस को संगत कहा जाता है | यदि एक में प्रत्येक चार्ट दूसरे एटलस के साथ संगत हो। संगतता सभी संभावित एटलस के वर्ग पर एक समानता संबंध को परिभाषित करती है |

-मैनिफोल्ड संरचना पर इसके बाद एटलस के समतुल्य वर्ग के विकल्प के रूप में परिभाषित किया जाता है | कक्षा का यदि सभी बनच स्पेस टोपोलॉजिकल सदिश स्पेस के रूप में समरूपी हैं (जो कि स्थिति होने की गारंटी है कनेक्टेड स्पेस है), तो एक समतुल्य एटलस पाया जा सकता है,| जिसके लिए वे सभी कुछ बनच स्पेस के समान हैं | फिर -मैनिफोल्ड, एक कहा जाता है या कोई ऐसा कहता है पर प्रतिरूपित पर किया जाता है |


उदाप्रत्येकण

  • यदि एक बनच स्पेस है, फिर एक एकल, विश्व स्तर पर परिभाषित चार्ट (पहचान समारोह) वाले एटलस के साथ एक बैनाच मैनिफोल्ड है।
  • इसी प्रकार यदि तब कुछ बनच स्पेस का एक खुला उपसमुच्चय है | एक बनच मैनिफोल्ड है। (नीचे वर्गीकरण प्रमेय देखें।)

होमोमोर्फिज्म तक वर्गीकरण

यह किसी भी तरह से सही नहीं है कि आयाम का परिमित-आयामी मैनिफोल्ड है | विश्व स्तर पर होमियोमॉर्फिक से या यहां तक ​​कि का एक खुला उपसमुच्चय है | चूँकि, एक अनंत-आयामी समुच्चयिंग में, होमोमोर्फिज्म तक अच्छी तरह से व्यवहार किए गए बनच मैनिफोल्ड्स को काफी अच्छी तरह से वर्गीकृत करना संभव है। डेविड हेंडरसन के 1969 के प्रमेय में कहा गया है कि प्रत्येक अनंत-आयामी, वियोज्य अंतरिक्ष, आव्युह अंतरिक्ष बनच मैनिफोल्ड अनंत-आयामी, वियोज्य हिल्बर्ट अंतरिक्ष के एक खुले उपसमुच्चय के रूप में एम्बेडिंग हो सकता है,| (रैखिक समरूपता तक, केवल एक ही ऐसा स्पेस होता है, जिसे सामान्यतः पहचाना जाता है ). वास्तव में, हेंडरसन का परिणाम अधिक शक्तिशाली है | एक ही निष्कर्ष किसी भी आव्युह मैनिफोल्ड के लिए अलग-अलग अनंत-आयामी फ्रेचेट स्पेस पर आधारित है।

एम्बेडिंग होमोमोर्फिज्म का उपयोग वैश्विक चार्ट के रूप में किया जा सकता है इस प्रकार , अनंत-आयामी, वियोज्य, आव्युह स्थिति में, केवल बनच मैनिफोल्ड ही हिल्बर्ट अंतरिक्ष के खुले उपसमुच्चय हैं।

यह भी देखें

संदर्भ

  • Henderson, David W. (1969). "Infinite-dimensional manifolds are open subsets of Hilbert space". Bull. Amer. Math. Soc. 75 (4): 759–762. doi:10.1090/S0002-9904-1969-12276-7. MR 0247634.
  • Lang, Serge (1972). Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc.
  • Zeidler, Eberhard (1997). Nonlinear functional analysis and its Applications. Vol.4. Springer-Verlag New York Inc.
  • Abraham, Ralph; Marsden, J. E.; Ratiu, Tudor (1988). Manifolds, Tensor Analysis, and Applications. New York: Springer. ISBN 0-387-96790-7.