उपसमूह का सूचकांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 42: Line 42:
== उदाहरण ==
== उदाहरण ==
* [[वैकल्पिक समूह]] <math>A_n</math> [[सममित समूह]] में अनुक्रमणिका 2 है <math>S_n,</math> और इस प्रकार सामान्य है।
* [[वैकल्पिक समूह]] <math>A_n</math> [[सममित समूह]] में अनुक्रमणिका 2 है <math>S_n,</math> और इस प्रकार सामान्य है।
* [[विशेष ऑर्थोगोनल समूह]] <math>\operatorname{SO}(n)</math> [[ऑर्थोगोनल समूह]] में इंडेक्स 2 है <math>\operatorname{O}(n)</math>, और इस प्रकार सामान्य है।
* [[Index.php?title=विशिष्‍ट लांबिक समूह|विशिष्‍ट लांबिक समूह]] <math>\operatorname{SO}(n)</math> [[Index.php?title=लांबिक समूह|लांबिक समूह]] में सूचकांक 2 है <math>\operatorname{O}(n)</math>, और इस प्रकार सामान्य है।
* [[ मुक्त एबेलियन समूह ]] <math>\Z\oplus \Z</math> इंडेक्स 2 के तीन उपसमूह हैं, अर्थात्
* [[ मुक्त एबेलियन समूह ]] <math>\Z\oplus \Z</math> सूचकांक 2 के तीन उपसमूह हैं, अर्थात्
::<math>\{(x,y) \mid x\text{ is even}\},\quad \{(x,y) \mid y\text{ is even}\},\quad\text{and}\quad
::<math>\{(x,y) \mid x\text{ is even}\},\quad \{(x,y) \mid y\text{ is even}\},\quad\text{and}\quad
\{(x,y) \mid x+y\text{ is even}\}</math>.
\{(x,y) \mid x+y\text{ is even}\}</math>.
* अधिक सामान्यतः, यदि p [[अभाज्य संख्या]] है तो <math>\Z^n</math> है <math>(p^n-1)/(p-1)</math> इंडेक्स पी के उपसमूह, के अनुरूप <math>(p^n-1)</math> गैर तुच्छ समरूपता <math>\Z^n \to \Z/p\Z</math>.{{Citation needed|date=January 2010}}
* अधिक सामान्यतः, यदि p [[अभाज्य संख्या]] है तो <math>\Z^n</math> है <math>(p^n-1)/(p-1)</math> सूचकांक P के उपसमूह, के अनुरूप <math>(p^n-1)</math> गैर तुच्छ समरूपता <math>\Z^n \to \Z/p\Z</math>.{{Citation needed|date=January 2010}}
* इसी प्रकार [[मुक्त समूह]] <math>F_n</math> है <math>(p^n-1)</math> इंडेक्स पी के उपसमूह।
* इसी प्रकार [[मुक्त समूह]] <math>F_n</math> है <math>(p^n-1)</math> सूचकांक P के उपसमूह।
* [[अनंत डायहेड्रल समूह]] में सूचकांक 2 का [[चक्रीय समूह]] होता है, जो आवश्यक रूप से सामान्य होता है।
* [[Index.php?title=अनंत द्वितल समूह|अनंत द्वितल समूह]] में सूचकांक 2 का [[चक्रीय समूह]] होता है, जो आवश्यक रूप से सामान्य होता है।


== अनंत सूचकांक ==
== अनंत सूचकांक ==
यदि H में G में अपरिमित संख्या में सहसमुच्चय हैं, तो G में H का सूचकांक अनंत कहा जाता है। इस मामले में, index <math>|G:H|</math> वास्तव में एक कार्डिनल नंबर है। उदाहरण के लिए, G में H का सूचकांक [[ गणनीय सेट ]] या [[बेशुमार सेट]] हो सकता है, यह इस बात पर निर्भर करता है कि H में G में गणनीय संख्या में सह समुच्चय हैं या नहीं। उपसमूह, या वास्तव में G की तुलना में अनंत कार्डिनैलिटी का कोई उपसमूह H।
यदि H, G में अपरिमित संख्या में सहसमुच्चय हैं, तो G में H का सूचकांक अनंत कहा जाता है। इस मामले में, सूचकांक <math>|G:H|</math> वास्तव में एक गणनसंख्या है। उदाहरण के लिए, G में H का सूचकांक [[ गणनीय सेट ]] या [[Index.php?title= अगणनीय सेट|अगणनीय सेट]] हो सकता है, यह इस बात पर निर्भर करता है कि H, G में गणनीय संख्या में सह समुच्चय हैं या नहीं। उपसमूह, या वास्तव में G की तुलना में अनंत गणनांक का कोई उपसमूह H है।


== परिमित सूचकांक ==
== परिमित सूचकांक ==
एक समूह G (परिमित या अनंत) में परिमित सूचकांक के एक उपसमूह H में हमेशा एक सामान्य उपसमूह N (G का) होता है, परिमित सूचकांक का भी। वास्तव में, यदि H का सूचकांक n है, तो N का सूचकांक n का कुछ विभाजक होगा! और n का गुणक; वास्तव में, N को G से H के बाएँ (या दाएँ) सहसमुच्चय के क्रमचय समूह में प्राकृतिक समरूपता के कर्नेल के रूप में लिया जा सकता है।
एक समूह G (परिमित या अनंत) में परिमित सूचकांक के एक उपसमूह H में हमेशा एक सामान्य उपसमूह N (G का) होता है, परिमित सूचकांक का भी। वास्तव में, यदि H का सूचकांक n है, तो N का सूचकांक n का कुछ विभाजक होगा और n का गुणक; वास्तव में, N को G से H के बाएँ (या दाएँ) सहसमुच्चय के क्रमचय समूह में प्राकृतिक समरूपता के कर्नेल के रूप में लिया जा सकता है।
आइए हम इसे अधिक विस्तार से समझाते हैं, सही सह समुच्चय्स का उपयोग करते हुए:
आइए हम इसे अधिक विस्तार से समझाते हैं, सही सह समुच्चय्स का उपयोग करते हुए:


G के तत्व जो सभी सहसमुच्चयों को एक समान छोड़ते हैं, एक समूह बनाते हैं।
G के तत्व जो सभी सहसमुच्चयों को एक समान छोड़ते हैं, एक समूह बनाते हैं।
{{collapse top|Proof}}
{{collapse top|Proof}}
यदि Hca ⊂ Hc ∀ c ∈ G और इसी प्रकार Hcb ⊂ Hc ∀ c ∈ G, तो Hcab ⊂ Hc ∀ c ∈ G. यदि h<sub>1</sub>का = <sub>2</sub>c सबके लिए c ∈ G (साथ h<sub>1</sub>, एच<sub>2</sub> ∈ एच) फिर एच<sub>2</sub>वह<sup>-1</sup> = एच<sub>1</sub>सी, इसलिए एचसीए<sup>−1</sup> ⊂ एच.सी.
यदि Hca ⊂ Hc ∀ c ∈ G और इसी प्रकार Hcb ⊂ Hc ∀ c ∈ G, तो Hcab ⊂ Hc ∀ c ∈ G. यदि h<sub>1</sub>का = h<sub>2</sub>c सबके लिए c ∈ G (साथ h<sub>1</sub>, h<sub>2</sub> ∈ h) फिर h<sub>2</sub>वह<sup>-1</sup> = h<sub>1</sub>c, इसलिए hca<sup>−1</sup> ⊂ h.c.
{{collapse bottom|Proof}}
{{collapse bottom|Proof}}



Revision as of 11:10, 2 May 2023

गणित में, विशेष रूप से समूह सिद्धांत, एक समूह 'G' में एक उपसमूह H का सूचकांक है G में H के बाएं सह समुच्चय की संख्या, या समकक्ष, G में H के दाएं सह समुच्चय की संख्या। सूचकांक को दर्शाया गया है या या . चूँकि G बाएँ सहसमुच्चय का असंयुक्त संघ है और क्योंकि प्रत्येक बाएँ सहसमुच्चय में H के समान ही प्रमुखता है, सूचकांक सूत्र द्वारा दो समूहों के क्रम (समूह सिद्धांत) से संबंधित है

(मात्राओं को गणन संख्या के रूप में व्याख्या करें यदि उनमें से कुछ अनंत हैं)। इस प्रकार सूचकांक G और H के सापेक्ष आकार को मापता है।

उदाहरण के लिए, माना कि जोड़ के तहत पूर्णांकों का समूह बनें, और समानता (गणित) से मिलकर उपसमूह बनें। तब में दो सह समुच्चय हैं, अर्थात् सम पूर्णांकों का समुच्चय और विषम पूर्णांकों का समुच्चय, इसलिए सूचकांक है 2. आमतौर पर, किसी भी धनात्मक पूर्णांक n के लिए है।

जब G परिमित समूह है, तो सूत्र को इस प्रकार लिखा जा सकता है , और इसका तात्पर्य है लैग्रेंज की प्रमेय (समूह सिद्धांत) | लैग्रेंज की प्रमेय कि विभाजित .

जब G अनंत है, एक गैर-शून्यगणन संख्या है जो परिमित या अनंत हो सकती है। उदाहरण के लिए, , लेकिन अनंत है।

यदि N, G का एक सामान्य उपसमूह है, तब कारक समूह के क्रम के बराबर है , के अंतर्निहित सेट के बाद से G में N के सहसमुच्चय का समुच्चय है।

गुण

  • यदि H, G का एक उपसमूह है और K, H का एक उपसमूह है, तो
  • यदि H और के G के उपसमूह हैं, तो
समानता के साथ अगर . (अगर परिमित है, तो समानता धारण करती है यदि .)
  • समतुल्य रूप से, यदि H और K, G के उपसमूह हैं, तो
समानता के साथ अगर . (अगर परिमित है, तो समानता धारण करती है यदि .)
  • यदि G और H समूह हैं और एक समरूपता है, तो कर्नेल (बीजगणित) का सूचकांक G में छवि के क्रम के बराबर है:
इसे कक्षा स्थिरीकरण प्रमेय के रूप में जाना जाता है।
  • कक्षा स्थिरीकरण प्रमेय के एक विशेष मामले के रूप में, संयुग्मन वर्ग की संख्या एक तत्व का G में x के केंद्रक के सूचकांक के बराबर है।
  • इसी प्रकार, संयुग्मों की संख्या G में एक उपसमूह H का G में H के सामान्यक के सूचकांक के बराबर है।
  • यदि H, G का एक उपसमूह है, तो H के कोर (समूह) का सूचकांक निम्नलिखित असमानता को संतुष्ट करता है:
जहां कारक फलन को दर्शाता है, यह नीचे आगे चर्चा की गई है।
* एक परिणाम के रूप में, यदि G में H का सूचकांक 2 है, या एक परिमित समूह के लिए निम्नतम अभाज्य p है जो G के क्रम को विभाजित करता है, तो H सामान्य है, क्योंकि इसके मूल का सूचकांक भी p होना चाहिए, और इस प्रकार H इसके कोर के बराबर है, यानी यह सामान्य है।
  • ध्यान दें कि निम्नतम प्रधान सूचकांक का एक उपसमूह मौजूद नहीं हो सकता है, जैसे कि गैर-प्रधान आदेश के किसी भी साधारण समूह में, या अधिक सामान्य रूप से किसी भी पूर्ण समूह में।

उदाहरण

.
  • अधिक सामान्यतः, यदि p अभाज्य संख्या है तो है सूचकांक P के उपसमूह, के अनुरूप गैर तुच्छ समरूपता .[citation needed]
  • इसी प्रकार मुक्त समूह है सूचकांक P के उपसमूह।
  • अनंत द्वितल समूह में सूचकांक 2 का चक्रीय समूह होता है, जो आवश्यक रूप से सामान्य होता है।

अनंत सूचकांक

यदि H, G में अपरिमित संख्या में सहसमुच्चय हैं, तो G में H का सूचकांक अनंत कहा जाता है। इस मामले में, सूचकांक वास्तव में एक गणनसंख्या है। उदाहरण के लिए, G में H का सूचकांक गणनीय सेट या अगणनीय सेट हो सकता है, यह इस बात पर निर्भर करता है कि H, G में गणनीय संख्या में सह समुच्चय हैं या नहीं। उपसमूह, या वास्तव में G की तुलना में अनंत गणनांक का कोई उपसमूह H है।

परिमित सूचकांक

एक समूह G (परिमित या अनंत) में परिमित सूचकांक के एक उपसमूह H में हमेशा एक सामान्य उपसमूह N (G का) होता है, परिमित सूचकांक का भी। वास्तव में, यदि H का सूचकांक n है, तो N का सूचकांक n का कुछ विभाजक होगा और n का गुणक; वास्तव में, N को G से H के बाएँ (या दाएँ) सहसमुच्चय के क्रमचय समूह में प्राकृतिक समरूपता के कर्नेल के रूप में लिया जा सकता है। आइए हम इसे अधिक विस्तार से समझाते हैं, सही सह समुच्चय्स का उपयोग करते हुए:

G के तत्व जो सभी सहसमुच्चयों को एक समान छोड़ते हैं, एक समूह बनाते हैं।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " |
Proof

यदि Hca ⊂ Hc ∀ c ∈ G और इसी प्रकार Hcb ⊂ Hc ∀ c ∈ G, तो Hcab ⊂ Hc ∀ c ∈ G. यदि h1का = h2c सबके लिए c ∈ G (साथ h1, h2 ∈ h) फिर h2वह-1 = h1c, इसलिए hca−1 ⊂ h.c.

आइए हम इस समूह को ए कहते हैं। माना कि बी G के तत्वों का सेट है जो H के सह समुच्चय पर दिए गए क्रमपरिवर्तन को निष्पादित करता है। फिर बी ए का सही सह समुच्चय है।

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " |
Proof

पहले हम दिखा दें कि यदि b1∈B, तो कोई अन्य तत्व b{{sub|2}B का } ab के बराबर है1 कुछ a∈A के लिए। मान लें कि बी के तत्वों द्वारा कोसेट एचसी को गुणा करने से कोसेट एचडी के तत्व मिलते हैं। अगर सी.बी1 = डी और सीबी2 = एचडी, फिर सीबी2b1−1 = hc ∈ Hc, या दूसरे शब्दों में b2=अब1 कुछ a∈A के लिए, इच्छानुसार। अब हम दिखाते हैं कि किसी भी b∈B और a∈A के लिए, ab, B का एक अवयव होगा। ऐसा इसलिए है क्योंकि coset Hc, Hca के समान है, इसलिए Hcb = Hcab। चूँकि यह किसी भी c के लिए सत्य है (अर्थात्, किसी सहसमुच्चय के लिए), यह दर्शाता है कि दाईं ओर ab से गुणा करने पर सहसमुच्चयों का वही क्रमपरिवर्तन होता है जो b से गुणा करने पर होता है, और इसलिए ab∈B।

हमने अब तक जो कहा है वह लागू होता है चाहे H का सूचकांक परिमित हो या अनंत। अब मान लीजिए कि यह परिमित संख्या n है। चूंकि सहसमुच्चयों के संभावित क्रमपरिवर्तन की संख्या परिमित है, अर्थात् n!, तो केवल B जैसे समुच्चय की परिमित संख्या हो सकती है। (यदि G अनंत है, तो ऐसे सभी समुच्चय अनंत हैं।) इन समुच्चयों का समुच्चय एक बनाता है क्रमपरिवर्तन के समूह के एक उपसमुच्चय के लिए समूह समरूपी है, इसलिए इन समुच्चयों की संख्या को n! विभाजित करना चाहिए। इसके अलावा, यह n का गुणक होना चाहिए क्योंकि H के प्रत्येक सहसमुच्चय में A के समान सहसमुच्चय होते हैं। अंत में, यदि कुछ c ∈ G और a ∈ A के लिए हमारे पास ca = xc है, तो किसी d ∈ G dca = dxc के लिए , लेकिन कुछ h ∈ H (A की परिभाषा के अनुसार) के लिए dca = hdc भी, इसलिए hd = dx। चूंकि यह किसी भी डी के लिए सच है, एक्स को ए का सदस्य होना चाहिए, इसलिए सीए = एक्ससी का मतलब है कि सीएसी−1 ∈ A और इसलिए A एक प्रसामान्य उपसमूह है।

सामान्य उपसमूह के सूचकांक को न केवल n! का विभाजक होना चाहिए, बल्कि अन्य मानदंडों को भी पूरा करना चाहिए। चूँकि सामान्य उपसमूह H का एक उपसमूह है, G में इसका सूचकांक H के अंदर इसके सूचकांक का n गुना होना चाहिए। G में इसका सूचकांक भी सममित समूह S के एक उपसमूह के अनुरूप होना चाहिए।n, n वस्तुओं के क्रमपरिवर्तन का समूह। इसलिए उदाहरण के लिए यदि n 5 है, तो सूचकांक 15 नहीं हो सकता है, भले ही यह 5 को विभाजित करता हो!, क्योंकि S में क्रम 15 का कोई उपसमूह नहीं है5.

n = 2 के मामले में यह बल्कि स्पष्ट परिणाम देता है कि सूचकांक 2 का एक उपसमूह H एक सामान्य उपसमूह है, क्योंकि H के सामान्य उपसमूह में G में सूचकांक 2 होना चाहिए और इसलिए H के समान होना चाहिए। (हम इस पर पहुंच सकते हैं तथ्य यह भी ध्यान देकर कि G के सभी तत्व जो H में नहीं हैं, H के दाएं सह समुच्चय और बाएं सह समुच्चय भी बनाते हैं, इसलिए दोनों समान हैं।) अधिक आम तौर पर, इंडेक्स पी का एक उपसमूह जहां पी सबसे छोटा प्रमुख कारक है G का क्रम (यदि G परिमित है) आवश्यक रूप से सामान्य है, क्योंकि N का सूचकांक p को विभाजित करता है! और इस प्रकार p के बराबर होना चाहिए, कोई अन्य अभाज्य गुणनखण्ड नहीं होना चाहिए। उदाहरण के लिए, उपसमूह Z{{sub|7}क्रम 21 के गैर-अबेलियन समूह का } सामान्य है (देखें छोटे समूहों की सूची#छोटे गैर-अबेलियन समूहों की सूची|छोटे गैर-अबेलियन समूहों की सूची और फ्रोबेनियस समूह#उदाहरण)।

परिणाम का एक वैकल्पिक प्रमाण है कि इंडेक्स सबसे कम प्राइम पी का उपसमूह सामान्य है, और प्राइम इंडेक्स के उपसमूहों के अन्य गुण दिए गए हैं (Lam 2004).

उदाहरण

चिरल अष्टफलकीय सममिति के समूह 0 में 24 तत्व हैं। इसमें एक डायहेड्रल समरूपता डी है4 उपसमूह (वास्तव में इसमें तीन ऐसे हैं) क्रम 8 के, और इस प्रकार ओ में सूचकांक 3, जिसे हम 'H' कहेंगे। इस डायहेड्रल समूह में 4 सदस्यीय डी है2 उपसमूह, जिसे हम ए कह सकते हैं। ए के एक तत्व द्वारा H के दाएं सह समुच्चय के किसी भी तत्व को गुणा करने से H (Hसीए = Hसी) के समान सह समुच्चय का सदस्य मिलता है। A 'O' में सामान्य है। सममित समूह S के छह तत्वों के संगत A के छह सहसमुच्चय हैं3. A के किसी विशेष सहसमुच्चय से सभी तत्व H के सहसमुच्चय का समान क्रमपरिवर्तन करते हैं।

वहीं, ग्रुप टीh पाइरिटोहेड्रल समरूपता में भी 24 सदस्य होते हैं और सूचकांक 3 का एक उपसमूह होता है (इस बार यह एक डी है2h प्रिज्मीय समरूपता समूह, तीन आयामों में बिंदु समूह देखें), लेकिन इस मामले में संपूर्ण उपसमूह एक सामान्य उपसमूह है। किसी विशेष सहसमुच्चय के सभी सदस्य इन सहसमुच्चयों का समान क्रमपरिवर्तन करते हैं, लेकिन इस मामले में वे 6-सदस्यीय S में केवल 3-तत्व वैकल्पिक समूह का प्रतिनिधित्व करते हैं3 सममित समूह।

== सर्वोच्च शक्ति इंडेक्स == के सामान्य उपसमूह प्राइम पावर इंडेक्स के सामान्य उपसमूह पी-समूह | पी-समूहों के विशेषण मानचित्रों के गुठली हैं और दिलचस्प संरचना है, जैसा कि फोकल उपसमूह प्रमेय # उपसमूह | फोकल उपसमूह प्रमेय में वर्णित है: उपसमूह और फोकल उपसमूह प्रमेय में विस्तृत।

प्राइम पावर इंडेक्स के तीन महत्वपूर्ण सामान्य उपसमूह हैं, प्रत्येक एक निश्चित वर्ग में सबसे छोटा सामान्य उपसमूह है:

  • 'इ'p(G) सभी अनुक्रमणिका p सामान्य उपसमूहों का प्रतिच्छेदन है; G/'ई'p(G) एक प्राथमिक आबेली समूह है, और सबसे बड़ा प्राथमिक आबेली पी-समूह है जिस पर G अध्यारोपित है।
  • 'ए'p(G) सभी सामान्य उपसमूह K का प्रतिच्छेदन है जैसे कि G/K एक एबेलियन p-समूह है (अर्थात, K एक सूचकांक है सामान्य उपसमूह जिसमें व्युत्पन्न समूह होता है ): G/'ए'p(G) सबसे बड़ा एबेलियन पी-ग्रुप (जरूरी नहीं कि प्रारंभिक) है जिस पर G अनुमान लगाता है।
  • 'ओ'p(G) G के सभी सामान्य उपसमूह K का प्रतिच्छेदन है जैसे कि G/K एक (संभवतः गैर-अबेलियन) p-समूह है (अर्थात, K एक सूचकांक है सामान्य उपसमूह): G/'O'p(G) सबसे बड़ा p-समूह है (आवश्यक रूप से एबेलियन नहीं) जिस पर G अनुमान लगाता है। 'ओ'p(G) के रूप में भी जाना जाता है पी-अवशिष्ट उपसमूह।

चूँकि ये समूह K पर कमज़ोर स्थितियाँ हैं, इसलिए व्यक्ति सम्‍मिलन प्राप्त करता है

इन समूहों के सिलो उपसमूहों और स्थानांतरण समरूपता से महत्वपूर्ण संबंध हैं, जैसा कि वहां चर्चा की गई है।

ज्यामितीय संरचना

एक प्रारंभिक अवलोकन यह है कि सूचकांक 2 के बिल्कुल 2 उपसमूह नहीं हो सकते हैं, क्योंकि उनके सममित अंतर के पूरक (सेट सिद्धांत) से एक तिहाई प्राप्त होता है। यह उपरोक्त चर्चा का एक सरल परिणाम है (अर्थात् प्राथमिक एबेलियन समूह के वेक्टर अंतरिक्ष संरचना का प्रक्षेपण

,

और आगे, G इस ज्यामिति पर कार्य नहीं करता है, न ही यह किसी गैर-अबेलियन संरचना को दर्शाता है (दोनों मामलों में क्योंकि भागफल एबेलियन है)।

हालाँकि, यह एक प्रारंभिक परिणाम है, जिसे ठोस रूप से निम्नानुसार देखा जा सकता है: किसी दिए गए इंडेक्स p के सामान्य उपसमूहों का सेट एक प्रक्षेपण स्थान बनाता है, अर्थात् प्रोजेक्टिव स्पेस

विस्तार से, G से ऑर्डर पी के (चक्रीय) समूह के समरूपता का स्थान, परिमित क्षेत्र पर एक सदिश स्थान है एक गैर-तुच्छ ऐसे मानचित्र में कर्नेल के रूप में इंडेक्स p का एक सामान्य उपसमूह होता है, और मानचित्र को एक तत्व से गुणा करता है (एक गैर-शून्य संख्या मॉड पी) कर्नेल को नहीं बदलता है; इस प्रकार से एक नक्शा प्राप्त करता है

सामान्य सूचकांक पी उपसमूहों के लिए। इसके विपरीत, इंडेक्स पी का एक सामान्य उपसमूह एक गैर-तुच्छ नक्शा निर्धारित करता है एक विकल्प तक कि कौन सा सह समुच्चय मैप करता है जिससे पता चलता है कि यह नक्शा एक आक्षेप है।

परिणामस्वरूप, सूचकांक p के सामान्य उपसमूहों की संख्या है

कुछ के लिए; इंडेक्स पी के कोई सामान्य उपसमूह से मेल नहीं खाता है। इसके अलावा, इंडेक्स पी के दो अलग-अलग सामान्य उपसमूह दिए गए हैं, जिनमें से एक प्रक्षेपण रेखा प्राप्त होती है ऐसे उपसमूह।

के लिए दो अलग-अलग इंडेक्स 2 उपसमूहों (जो आवश्यक रूप से सामान्य हैं) का सममित अंतर इन उपसमूहों वाली प्रक्षेप्य रेखा पर तीसरा बिंदु देता है, और एक समूह में शामिल होना चाहिए अनुक्रमणिका 2 उपसमूह - उदाहरण के लिए, इसमें ठीक 2 या 4 अनुक्रमणिका 2 उपसमूह नहीं हो सकते।

यह भी देखें

संदर्भ

  • Lam, T. Y. (March 2004), "On Subgroups of Prime Index", The American Mathematical Monthly, 111 (3): 256–258, JSTOR 4145135


बाहरी संबंध