मिश्रित टेंसर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
प्रकार या वैलेंस का मिश्रित टेंसर <math display="inline">\binom{M}{N}</math>, जिसे "टाइप (M, N)" भी लिखा गया है, M > 0 और N > 0 दोनों के साथ टेन्सर है जिसमें M प्रतिपरिवर्ती सूचकांक और N सहपरिवर्ती सूचकांक हैं। इस प्रकार के टेंसर को  [[रैखिक ऑपरेटर|रैखिक फलन]] के रूप में परिभाषित किया जा सकता है जो M [[एक प्रपत्र|प्रपत्र]] और N [[वेक्टर (ज्यामिति)]] के (M + N) -ट्यूपल को स्केलर (गणित) में मैप करता है।
प्रकार या वैलेंस का मिश्रित टेंसर <math display="inline">\binom{M}{N}</math>, जिसे "टाइप (M, N)" भी लिखा गया है, M > 0 और N > 0 दोनों के साथ टेन्सर है जिसमें M प्रतिपरिवर्ती सूचकांक और N सहपरिवर्ती सूचकांक हैं। इस प्रकार के टेंसर को  [[रैखिक ऑपरेटर|रैखिक फलन]] के रूप में परिभाषित किया जा सकता है जो M [[एक प्रपत्र|प्रपत्र]] और N [[वेक्टर (ज्यामिति)]] के (M + N) -ट्यूपल को स्केलर (गणित) में मैप करता है।


== टेंसर प्रकार बदलना ==
== टेंसर प्रकार परिवर्तन ==
{{main|सूचकांकों को ऊपर उठाना और घटाना}}
{{main|सूचकांकों को ऊपर उठाना और घटाना}}
संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें:
संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें:
Line 11: Line 11:
T_\alpha {}^{\beta \gamma}, \ T^\alpha {}_{\beta \gamma}, \ T^\alpha {}_\beta {}^\gamma, \  
T_\alpha {}^{\beta \gamma}, \ T^\alpha {}_{\beta \gamma}, \ T^\alpha {}_\beta {}^\gamma, \  
T^{\alpha \beta} {}_\gamma, \ T^{\alpha \beta \gamma} .</math>
T^{\alpha \beta} {}_\gamma, \ T^{\alpha \beta \gamma} .</math>
पहला सहपरिवर्ती है, अंतिम प्रतिपरिवर्ती है, और शेष मिश्रित हैं। सांकेतिक रूप से, ये टेन्सर दूसरे से उनके सूचकांकों के सहप्रसरण/प्रतिप्रसरण द्वारा भिन्न होते हैं। टेंसर के दिए गए कॉन्ट्रावेरिएंट इंडेक्स को [[ मीट्रिक टेंसर ]] का उपयोग करके कम किया जा सकता है {{math|''g''<sub>''μν''</sub>}}, और दिए गए सहपरिवर्ती सूचकांक को व्युत्क्रम मीट्रिक टेंसर का उपयोग करके बढ़ाया जा सकता है {{math|''g''<sup>''μν''</sup>}}. इस प्रकार, {{math|''g''<sub>''μν''</sub>}} को इंडेक्स लोअरिंग ऑपरेटर कहा जा सकता है और {{math|''g''<sup>''μν''</sup>}} सूचकांक बढ़ाने वाला ऑपरेटर।
प्रथम सहपरिवर्ती है, अंतिम प्रतिपरिवर्ती है, और शेष मिश्रित हैं। सांकेतिक रूप से, ये टेन्सर एक दूसरे से उनके सूचकांकों के सहप्रसरण/प्रतिप्रसरण द्वारा भिन्न होते हैं। टेंसर के दिए गए प्रतिपरिवर्ती सूचकांक को [[ मीट्रिक टेंसर | मीट्रिक टेंसर]] {{math|''g''<sub>''μν''</sub>}} का उपयोग करके कम किया जा सकता है , और दिए गए सहपरिवर्ती सूचकांक को व्युत्क्रम मीट्रिक टेंसर {{math|''g''<sup>''μν''</sup>}} का उपयोग करके बढ़ाया जा सकता है। इस प्रकार, {{math|''g''<sub>''μν''</sub>}} को इंडेक्स लोअरिंग ऑपरेटर और {{math|''g''<sup>''μν''</sup>}} सूचकांक बढ़ाने वाला ऑपरेटर कहा जा सकता है।


सामान्यतः, सहपरिवर्ती मीट्रिक टेन्सर, प्रकार (एम, एन) के टेंसर के साथ अनुबंधित होता है, प्रकार (एम -1, एन + 1) का टेंसर उत्पन्न करता है, जबकि इसका प्रतिपरिवर्ती व्युत्क्रम, प्रकार (एम, एन) के टेंसर के साथ अनुबंधित होता है। , प्रकार (M + 1, N − 1) का टेंसर देता है।
सामान्यतः, सहपरिवर्ती मीट्रिक टेन्सर, प्रकार (M, N) के टेंसर के साथ अनुबंधित होता है, प्रकार (M-1, N+ 1) का टेंसर उत्पन्न करता है, जबकि इसका प्रतिपरिवर्ती व्युत्क्रम, प्रकार (M, N) के टेंसर के साथ अनुबंधित होता है। प्रकार (M + 1, N − 1) का टेंसर देता है।


=== उदाहरण ===
=== उदाहरण ===

Revision as of 12:43, 29 April 2023

टेन्सर विश्लेषण में, मिश्रित टेन्सर होता है जो न तो पूर्ण रूप से सहपरिवर्ती है और न ही पूर्ण रूप से विपरीत परिवर्ती है, मिश्रित टेन्सर में कम से कम सूचकांक सबस्क्रिप्ट (सहसंयोजक) और सुपरस्क्रिप्ट (प्रतिपरिवर्ती) होता है।

प्रकार या वैलेंस का मिश्रित टेंसर , जिसे "टाइप (M, N)" भी लिखा गया है, M > 0 और N > 0 दोनों के साथ टेन्सर है जिसमें M प्रतिपरिवर्ती सूचकांक और N सहपरिवर्ती सूचकांक हैं। इस प्रकार के टेंसर को रैखिक फलन के रूप में परिभाषित किया जा सकता है जो M प्रपत्र और N वेक्टर (ज्यामिति) के (M + N) -ट्यूपल को स्केलर (गणित) में मैप करता है।

टेंसर प्रकार परिवर्तन

संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें:

प्रथम सहपरिवर्ती है, अंतिम प्रतिपरिवर्ती है, और शेष मिश्रित हैं। सांकेतिक रूप से, ये टेन्सर एक दूसरे से उनके सूचकांकों के सहप्रसरण/प्रतिप्रसरण द्वारा भिन्न होते हैं। टेंसर के दिए गए प्रतिपरिवर्ती सूचकांक को मीट्रिक टेंसर gμν का उपयोग करके कम किया जा सकता है , और दिए गए सहपरिवर्ती सूचकांक को व्युत्क्रम मीट्रिक टेंसर gμν का उपयोग करके बढ़ाया जा सकता है। इस प्रकार, gμν को इंडेक्स लोअरिंग ऑपरेटर और gμν सूचकांक बढ़ाने वाला ऑपरेटर कहा जा सकता है।

सामान्यतः, सहपरिवर्ती मीट्रिक टेन्सर, प्रकार (M, N) के टेंसर के साथ अनुबंधित होता है, प्रकार (M-1, N+ 1) का टेंसर उत्पन्न करता है, जबकि इसका प्रतिपरिवर्ती व्युत्क्रम, प्रकार (M, N) के टेंसर के साथ अनुबंधित होता है। प्रकार (M + 1, N − 1) का टेंसर देता है।

उदाहरण

उदाहरण के रूप में, प्रकार (1, 2) का मिश्रित टेन्सर प्रकार (0, 3) के सहसंयोजक टेन्सर के सूचकांक को बढ़ाकर प्राप्त किया जा सकता है,

कहाँ के समान टेंसर है , क्योंकि
क्रोनकर के साथ δ यहां आइडेंटिटी मैट्रिक्स की प्रकार काम कर रहा है।

वैसे ही,

मेट्रिक टेन्सर के सूचकांक को ऊपर उठाना इसके व्युत्क्रम के साथ इसे अनुबंधित करने के बराबर है, जो क्रोनकर डेल्टा को प्राप्त करता है,
इसलिए मीट्रिक टेन्सर का कोई भी मिश्रित संस्करण क्रोनकर डेल्टा के बराबर होगा, जिसे भी मिश्रित किया जाएगा।

यह भी देखें

संदर्भ

  • D.C. Kay (1988). Tensor Calculus. Schaum’s Outlines, McGraw Hill (USA). ISBN 0-07-033484-6.
  • Wheeler, J.A.; Misner, C.; Thorne, K.S. (1973). "§3.5 Working with Tensors". Gravitation. W.H. Freeman & Co. pp. 85–86. ISBN 0-7167-0344-0.
  • R. Penrose (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.


बाहरी संबंध