स्प्रे (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 61: | Line 61: | ||
{{main|Geodesic spray}} | {{main|Geodesic spray}} | ||
{{further|Geodesic flow}} | {{further|Geodesic flow}} | ||
[[ रीमैनियन कई गुना ]] और [[फिन्सलर कई गुना]] की स्थानीय लंबाई को कम करने वाले | [[ रीमैनियन कई गुना | रीमैनियन]] और [[फिन्सलर कई गुना|फिन्सलर मैनिफोल्ड]] की स्थानीय लंबाई को कम करने वाले वक्र को [[geodesics|जियोडेसिक्स]] कहा जाता है। लैग्रेंजियन यांत्रिकी के स्वरूप का उपयोग करके स्प्रे संरचनाओं के साथ इन वक्रों का वर्णन किया जा सकता है। TM पर लैग्रैन्जियन फ़ंक्शन को परिभाषित करें- | ||
:<math>L(x,\xi) = \tfrac{1}{2}F^2(x,\xi),</math> | :<math>L(x,\xi) = \tfrac{1}{2}F^2(x,\xi),</math> | ||
जहाँ F:TM→'R' फिन्सलर मैनिफोल्ड है। रीमैनियन स्तिथि में कोई ''F''<sup>2</sup>(''x'',ξ) = ''g<sub>ij</sub>''(''x'')ξ<sup>''i''</sup>ξ<sup>''j''</sup> का उपयोग करता है| अब उपरोक्त अनुभाग से अवधारणाओं का परिचय दें। रीमैनियन स्तिथि में यह ज्ञात होता है कि वास्तविक टेन्सर gij(x,ξ) मात्र रीमैनियन मीट्रिक gij(x) है। एकरूपता की स्थिति <math>F(x,\lambda\xi) = \lambda F(x,\xi), \quad \lambda>0</math> है। | |||
फिन्सलर-फ़ंक्शन का तात्पर्य निम्न सूत्र से है: | फिन्सलर-फ़ंक्शन का तात्पर्य निम्न सूत्र से है: | ||
:<math> \alpha_i=g_{ij}\xi^i, \quad F^2=g_{ij}\xi^i\xi^j, \quad E = \alpha_i\xi^i - L = \tfrac{1}{2}F^2. </math> | :<math> \alpha_i=g_{ij}\xi^i, \quad F^2=g_{ij}\xi^i\xi^j, \quad E = \alpha_i\xi^i - L = \tfrac{1}{2}F^2. </math> | ||
यांत्रिकी के संदर्भ में अंतिम समीकरण बताता है कि प्रणाली में सभी ऊर्जा (''M'',''L'') गतिज रूप में है। इसके अतिरिक्त, समरूपता गुण प्राप्त करता है- | |||
:<math> g_{ij}(\lambda\xi) = g_{ij}(\xi), \quad \alpha_i(x,\lambda\xi) = \lambda \alpha_i(x,\xi), \quad | :<math> g_{ij}(\lambda\xi) = g_{ij}(\xi), \quad \alpha_i(x,\lambda\xi) = \lambda \alpha_i(x,\xi), \quad | ||
G^i(x,\lambda\xi) = \lambda^2 G^i(x,\xi), </math> | G^i(x,\lambda\xi) = \lambda^2 G^i(x,\xi), </math> | ||
जिनमें से | जिनमें से अंतिम का कथन है कि इस यांत्रिक प्रणाली के लिए हैमिल्टनियन सदिश क्षेत्र H पूर्ण स्प्रे है। अंतर्निहित फिन्सलर (या रीमैनियन) मैनिफोल्ड की निरंतर गति जियोडेसिक्स को इस स्प्रे द्वारा निम्नलिखित कारणों से वर्णित किया गया है: | ||
* | * चूँकि फिन्सलर रिक्त स्थान के लिए gξ सकारात्मक निश्चित है, कार्यात्मक लंबाई के लिए पर्याप्त स्थिर वक्र लंबाई को कम करता है। | ||
* क्रिया | * समाकलज क्रिया के लिए प्रत्येक स्थिर वक्र स्थिर गति <math>F(\gamma(t),\dot\gamma(t))=\lambda</math> होता है, चूँकि ऊर्जा स्वचालित रूप से गति की स्थिरांक है। | ||
* किसी भी वक्र के लिए <math>\gamma:[a,b]\to M</math> निरंतर गति की क्रिया | * किसी भी वक्र के लिए <math>\gamma:[a,b]\to M</math> निरंतर गति की समाकलज क्रिया और लंबाई कार्यात्मक से संबंधित हैं | ||
:<math> \mathcal S(\gamma) = \frac{(b-a)\lambda^2}{2} = \frac{\ell(\gamma)^2}{2(b-a)}. </math> | :<math> \mathcal S(\gamma) = \frac{(b-a)\lambda^2}{2} = \frac{\ell(\gamma)^2}{2(b-a)}. </math> | ||
इसलिए, | इसलिए, वक्र <math>\gamma:[a,b]\to M</math> समाकलज क्रिया के लिए स्थिर है यदि यह निरंतर गति का है और कार्यात्मक लंबाई के लिए स्थिर है। हैमिल्टनियन सदिश क्षेत्र H को फिन्सलर मैनिफोल्ड (''M'',''F'') का जियोडेसिक स्प्रे कहा जाता है और संबंधित प्रवाह Φ<sub>''H''</sub><sup>t</sup>(ξ) को जियोडेसिक प्रवाह कहा जाता है। | ||
== गैर-रैखिक कनेक्शन के साथ पत्राचार == | == गैर-रैखिक कनेक्शन के साथ पत्राचार == | ||
सेमीस्प्रे <math>H</math> स्मूथ मैनिफोल्ड <math>M</math> पर एह्रेस्मान-कनेक्शन <math>T(TM\setminus 0) = H(TM\setminus 0) \oplus V(TM\setminus 0)</math> को क्षैतिज और ऊर्ध्वाधर अनुमानों के माध्यम से स्लिट स्पर्शरेखा बंडल पर परिभाषित करता है| | |||
:<math> h:T(TM\setminus 0)\to T(TM\setminus 0) \quad ; \quad h = \tfrac{1}{2}\big( I - \mathcal L_H J \big),</math> | :<math> h:T(TM\setminus 0)\to T(TM\setminus 0) \quad ; \quad h = \tfrac{1}{2}\big( I - \mathcal L_H J \big),</math> | ||
:<math> v:T(TM\setminus 0)\to T(TM\setminus 0) \quad ; \quad v = \tfrac{1}{2}\big( I + \mathcal L_H J \big).</math> | :<math> v:T(TM\setminus 0)\to T(TM\setminus 0) \quad ; \quad v = \tfrac{1}{2}\big( I + \mathcal L_H J \big).</math> | ||
TM\0 पर इस | TM\0 पर इस सम्बन्ध में सदैव टॉरशन टेंसर होता है, जिसे फ्रोलिचर-निजेनहुइस ब्रैकेट ''T''=[''J'',''v''] के रूप में परिभाषित किया गया है | ||
प्राथमिक शब्दों में टॉरशन को इस रूप में परिभाषित किया जा सकता है- | |||
:<math>\displaystyle T(X,Y) = J[hX,hY] - v[JX,hY) - v[hX,JY]. </math> | :<math>\displaystyle T(X,Y) = J[hX,hY] - v[JX,hY) - v[hX,JY]. </math> | ||
टीएम \ 0 पर कैनोनिकल वेक्टर फ़ील्ड वी का परिचय और प्रेरित कनेक्शन के आसन्न संरचना Θ सेमीस्प्रे के क्षैतिज भाग को एचएच = ΘV के रूप में लिखा जा सकता है। सेमीस्प्रे के ऊर्ध्वाधर भाग ε=vH को 'प्रथम स्प्रे इनवेरिएंट' के रूप में जाना जाता है, और सेमीस्प्रे H स्वयं में विघटित हो जाता है | टीएम \ 0 पर कैनोनिकल वेक्टर फ़ील्ड वी का परिचय और प्रेरित कनेक्शन के आसन्न संरचना Θ सेमीस्प्रे के क्षैतिज भाग को एचएच = ΘV के रूप में लिखा जा सकता है। सेमीस्प्रे के ऊर्ध्वाधर भाग ε=vH को 'प्रथम स्प्रे इनवेरिएंट' के रूप में जाना जाता है, और सेमीस्प्रे H स्वयं में विघटित हो जाता है | ||
Line 95: | Line 96: | ||
\epsilon|_\xi = \int\limits_{-\infty}^0 e^{-s}(\Phi_V^{-s})_*(\tau\Theta V)|_{\Phi_V^s(\xi)} ds. | \epsilon|_\xi = \int\limits_{-\infty}^0 e^{-s}(\Phi_V^{-s})_*(\tau\Theta V)|_{\Phi_V^s(\xi)} ds. | ||
</math> | </math> | ||
इस संबंध से कोई यह भी देखता है कि प्रेरित कनेक्शन सजातीय है | इस संबंध से कोई यह भी देखता है कि प्रेरित कनेक्शन सजातीय है यदि एच पूर्ण स्प्रे है। | ||
== स्प्रे और सेमीस्प्रे के जैकोबी क्षेत्र == | == स्प्रे और सेमीस्प्रे के जैकोबी क्षेत्र == | ||
सेमीस्प्रे के जैकोबी क्षेत्रों के लिए उचित स्रोत धारा 4.4 है, सार्वजनिक रूप से उपलब्ध पुस्तक फिन्सलर-लग्रेंज ज्योमेट्री बाय बुकातारू और मिरॉन के सेमीस्प्रे के जैकोबी समीकरण। विशेष रूप से नोट '[[गतिशील सहसंयोजक व्युत्पन्न]]' की उनकी अवधारणा है। [https://arxiv.org/abs/1011.5799 अन्य पेपर] में बुकातारू, कॉन्स्टेंटिनस्कु और डाहल इस अवधारणा को '[[कौशांबी डेरिवेटिव ऑपरेटर]]' से संबंधित करते हैं। | |||
सेमीस्प्रे के जैकोबी क्षेत्रों के लिए | |||
[[दामोदर धर्मानंद कोसंबी]] के तरीकों के | [[दामोदर धर्मानंद कोसंबी]] के तरीकों के उचित परिचय के लिए, लेख देखें, '[https://math.stackexchange.com/q/166955 कोसंबी-कार्टन-चेर्न सिद्धांत क्या है?]'। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:04, 26 April 2023
अवकल ज्यामिति में, स्प्रे स्पर्शरेखा बंडल TM पर सदिश क्षेत्र H होता है, जो बेस मैनिफोल्ड M पर सामान्य अवकल समीकरण की द्विरेखीय द्वितीय कोटि प्रणाली को एनकोड करता है। सामान्यतः स्प्रे को सजातीय होने की आवश्यकता होती है क्योंकि इसके अभिन्न वक्र t→ΦHt(ξ)∈TM सकारात्मक पुनर्मूल्यांकन में नियम ΦHt(λξ)=ΦHλt(ξ) का पालन करते है। यदि यह आवश्यकता समाप्त हो जाती है, तो H को सेमीस्प्रे कहा जाता है।
रिमेंनियन और फिन्सलर ज्यामिति में स्वाभाविक रूप से जियोडेसिक स्प्रे उत्पन्न होते हैं, जिनके अभिन्न वक्र स्थानीय लंबाई को कम करने वाले स्पर्शरेखा वक्र होते हैं।
सेमिस्प्रे स्वाभाविक रूप से लैग्रैंगियन यांत्रिकी में क्रिया के चरम वक्र के रूप में उत्पन्न होते हैं। इन सभी उदाहरणों को सामान्यीकृत करते हुए, M पर कोई भी (संभवतः अरेखीय) कनेक्शन सेमीस्प्रे H को प्रेरित करता है, और इसके विपरीत, सेमीस्प्रे H, M पर टॉरशन-फ्री अरेखीय कनेक्शन उत्पन्न करता है। यदि मूल कनेक्शन टॉरशन-फ्री है, तो यह H द्वारा प्रेरित कनेक्शन के समान है और सजातीय टॉरशन-फ्री कनेक्शन स्प्रे के अनुरूप हैं।[1]
औपचारिक परिभाषाएँ
मान लीजिए, M अवकलनीय मैनिफोल्ड है और (TM,πTM,M) टेंगेंट बंडल है। TM पर सदिश क्षेत्र H (अर्थात, डबल टेंगेंट बंडल TTM का खंड) M पर 'सेमिस्प्रे' है, यदि निम्नलिखित तीन समकक्ष स्थितियों में से कोई भी हो-
- (πTM)*Hξ = ξ
- JH=V, जहाँ J TM पर टेंगेंट संरचना है और TM\0 पर विहित सदिश क्षेत्र है।
- j∘H=H, जहाँ j:TTM→TTM कैनोनिकल फ्लिप है और H को मैपिंग TM→TTM के रूप में देखा जाता है।
M पर सेमीस्प्रे H '(पूर्ण) स्प्रे' है, यदि निम्न में से कोई भी समतुल्य स्थिति प्रस्तावित होती है-
- Hλξ = λ*(λHξ), जहाँ λ*:TTM→TTM सकारात्मक स्केलर λ>0 द्वारा गुणन λ:TM→TM का पुश-फॉरवर्ड है।
- विहित सदिश क्षेत्र V के साथ H का लाई-व्युत्पन्न [V,H]=H को संतुष्ट करता है।
- H के अभिन्न वक्र t→ΦHt(ξ)∈TM\0 किसी भी λ>0 के लिए ΦHt(λξ)=λΦHλt(ξ) को संतुष्ट करता है।
मान लीजिए , पर स्थानीय निर्देशांक है, जो प्रत्येक स्पर्शरेखा स्थान पर समन्वय के आधार का उपयोग करके पर स्थानीय निर्देशांक ) से जुड़ा हुआ है। तब , पर सेमीस्प्र है यदि इसमें TM पर प्रत्येक संबद्ध समन्वय प्रणाली पर फॉर्म-
का स्थानीय प्रतिनिधित्व है। सेमीस्प्रे H (पूर्ण) स्प्रे है, यदि 'स्प्रे गुणांक' Gi निम्नलिखित समीकरण को संतुष्ट करते हैं-
लैग्रैन्जियन यांत्रिकी में सेमीस्प्रे
लैग्रैन्जियन यांत्रिकी में भौतिक प्रणाली को कुछ विन्यास स्थान के स्पर्शरेखा बंडल पर लैग्रैजियन फ़ंक्शन L:TM→R द्वारा प्रस्तुत किया गया है। गतिशील नियम हैमिल्टनियन सिद्धांत से प्राप्त किया जाता है, जो बताता है कि सिस्टम की स्थिति का समय विकास γ:[a,b]→M समाकलज क्रिया के लिए स्थिर है
- .
TM पर संबंधित निर्देशांक में समाकलज क्रिया की प्रथम भिन्नता को इस रूप में अध्यन्न किया जाता है-
जहाँ X:[a,b]→R, γs:[a,b]→M के निकट γ(t) = γ0(t) से सम्बंधित वेरिएशन सदिश क्षेत्र है| निम्नलिखित अवधारणाओं को प्रस्तुत करके प्रथम भिन्नता सूत्र को शैक्षिक रूप में पुनर्गठित किया जा सकता है:
- कोवेक्टर , के साथ संयुग्मी संवेग है|
- के साथ संगत रूप लैग्रैंगियन से जुड़ा हिल्बर्ट-रूप है।
- के साथ द्विरेखीय रूप , पर लैग्रैंगियन का वास्तविक टेंसर है|
- लैग्रेंजियन लेजेंड्रे स्थिति को संतुष्ट करता है यदि वास्तविक टेन्सर प्रत्येक पर गैर-पतित है, तो के व्युत्क्रम मैट्रिक्स को द्वारा निरूपित किया जाता है|
- लैग्रेंजियन से सम्बंधित ऊर्जा है।
यदि लीजेंड्रे स्थिति संतुष्ट होती है, तो dα∈Ω2(TM) सिम्प्लेटिक रूप है, और हैमिल्टनियन फ़ंक्शन E के अनुरूप TM पर अद्वितीय हैमिल्टनियन वेक्टर क्षेत्र H उपस्थित है जैसे कि
मान लीजिए (Xi,Yi) TM पर सम्बंधित निर्देशांकों में हेमिल्टनियन सदिश क्षेत्र H के घटक है। तब
और
इसलिए हम देखते हैं कि हैमिल्टनियन सदिश क्षेत्र H स्प्रे गुणांक वाले विन्यास स्थान M पर सेमीस्प्रे है-
अब पूर्व परिवर्तनशील सूत्र को पुनः अंकित किया जा सकता है-
γ[a,b]→M निश्चित अंत बिंदुओं के साथ समाकलज क्रिया के लिए स्थिर है यदि इसकी स्पर्शरेखा वक्र γ':[a,b]→TM हैमिल्टन सदिश क्षेत्र H के लिए अभिन्न वक्र है। इसलिए यांत्रिक प्रणालियों की गतिशीलता का वर्णन समाकलज क्रिया से उत्पन्न होने वाले सेमीस्प्रे द्वारा किया जाता है।
जियोडेसिक स्प्रे
रीमैनियन और फिन्सलर मैनिफोल्ड की स्थानीय लंबाई को कम करने वाले वक्र को जियोडेसिक्स कहा जाता है। लैग्रेंजियन यांत्रिकी के स्वरूप का उपयोग करके स्प्रे संरचनाओं के साथ इन वक्रों का वर्णन किया जा सकता है। TM पर लैग्रैन्जियन फ़ंक्शन को परिभाषित करें-
जहाँ F:TM→'R' फिन्सलर मैनिफोल्ड है। रीमैनियन स्तिथि में कोई F2(x,ξ) = gij(x)ξiξj का उपयोग करता है| अब उपरोक्त अनुभाग से अवधारणाओं का परिचय दें। रीमैनियन स्तिथि में यह ज्ञात होता है कि वास्तविक टेन्सर gij(x,ξ) मात्र रीमैनियन मीट्रिक gij(x) है। एकरूपता की स्थिति है।
फिन्सलर-फ़ंक्शन का तात्पर्य निम्न सूत्र से है:
यांत्रिकी के संदर्भ में अंतिम समीकरण बताता है कि प्रणाली में सभी ऊर्जा (M,L) गतिज रूप में है। इसके अतिरिक्त, समरूपता गुण प्राप्त करता है-
जिनमें से अंतिम का कथन है कि इस यांत्रिक प्रणाली के लिए हैमिल्टनियन सदिश क्षेत्र H पूर्ण स्प्रे है। अंतर्निहित फिन्सलर (या रीमैनियन) मैनिफोल्ड की निरंतर गति जियोडेसिक्स को इस स्प्रे द्वारा निम्नलिखित कारणों से वर्णित किया गया है:
- चूँकि फिन्सलर रिक्त स्थान के लिए gξ सकारात्मक निश्चित है, कार्यात्मक लंबाई के लिए पर्याप्त स्थिर वक्र लंबाई को कम करता है।
- समाकलज क्रिया के लिए प्रत्येक स्थिर वक्र स्थिर गति होता है, चूँकि ऊर्जा स्वचालित रूप से गति की स्थिरांक है।
- किसी भी वक्र के लिए निरंतर गति की समाकलज क्रिया और लंबाई कार्यात्मक से संबंधित हैं
इसलिए, वक्र समाकलज क्रिया के लिए स्थिर है यदि यह निरंतर गति का है और कार्यात्मक लंबाई के लिए स्थिर है। हैमिल्टनियन सदिश क्षेत्र H को फिन्सलर मैनिफोल्ड (M,F) का जियोडेसिक स्प्रे कहा जाता है और संबंधित प्रवाह ΦHt(ξ) को जियोडेसिक प्रवाह कहा जाता है।
गैर-रैखिक कनेक्शन के साथ पत्राचार
सेमीस्प्रे स्मूथ मैनिफोल्ड पर एह्रेस्मान-कनेक्शन को क्षैतिज और ऊर्ध्वाधर अनुमानों के माध्यम से स्लिट स्पर्शरेखा बंडल पर परिभाषित करता है|
TM\0 पर इस सम्बन्ध में सदैव टॉरशन टेंसर होता है, जिसे फ्रोलिचर-निजेनहुइस ब्रैकेट T=[J,v] के रूप में परिभाषित किया गया है
प्राथमिक शब्दों में टॉरशन को इस रूप में परिभाषित किया जा सकता है-
टीएम \ 0 पर कैनोनिकल वेक्टर फ़ील्ड वी का परिचय और प्रेरित कनेक्शन के आसन्न संरचना Θ सेमीस्प्रे के क्षैतिज भाग को एचएच = ΘV के रूप में लिखा जा सकता है। सेमीस्प्रे के ऊर्ध्वाधर भाग ε=vH को 'प्रथम स्प्रे इनवेरिएंट' के रूप में जाना जाता है, और सेमीस्प्रे H स्वयं में विघटित हो जाता है
पहला स्प्रे इनवेरिएंट तनाव से संबंधित है
साधारण अंतर समीकरण के माध्यम से प्रेरित गैर-रैखिक कनेक्शन का
इसलिए, पहला स्प्रे इनवेरिएंट ε (और इसलिए पूरे अर्ध-स्प्रे एच) को गैर-रैखिक कनेक्शन से पुनर्प्राप्त किया जा सकता है
इस संबंध से कोई यह भी देखता है कि प्रेरित कनेक्शन सजातीय है यदि एच पूर्ण स्प्रे है।
स्प्रे और सेमीस्प्रे के जैकोबी क्षेत्र
सेमीस्प्रे के जैकोबी क्षेत्रों के लिए उचित स्रोत धारा 4.4 है, सार्वजनिक रूप से उपलब्ध पुस्तक फिन्सलर-लग्रेंज ज्योमेट्री बाय बुकातारू और मिरॉन के सेमीस्प्रे के जैकोबी समीकरण। विशेष रूप से नोट 'गतिशील सहसंयोजक व्युत्पन्न' की उनकी अवधारणा है। अन्य पेपर में बुकातारू, कॉन्स्टेंटिनस्कु और डाहल इस अवधारणा को 'कौशांबी डेरिवेटिव ऑपरेटर' से संबंधित करते हैं।
दामोदर धर्मानंद कोसंबी के तरीकों के उचित परिचय के लिए, लेख देखें, 'कोसंबी-कार्टन-चेर्न सिद्धांत क्या है?'।
संदर्भ
- ↑ I. Bucataru, R. Miron, Finsler-Lagrange Geometry, Editura Academiei Române, 2007.
- Sternberg, Shlomo (1964), Lectures on Differential Geometry, Prentice-Hall.
- Lang, Serge (1999), Fundamentals of Differential Geometry, Springer-Verlag.