ध्वनिक तरंग: Difference between revisions
(Created page with "{{Short description|Type of energy propagation}} {{Multiple issues|{{More citations needed|date=July 2020}} {{Inline citations|date=July 2020}} {{technical|date=November 2021}...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of energy propagation}} | {{Short description|Type of energy propagation}} | ||
ध्वनिक तरंगें माध्यम से [[ स्थिरोष्म ]] लोडिंग और अनलोडिंग के माध्यम से ऊर्जा प्रसार का प्रकार है। ध्वनिक तरंगों का वर्णन करने के लिए महत्वपूर्ण मात्राएँ [[ध्वनिक दबाव]], [[कण वेग]], [[कण विस्थापन]] और [[ध्वनिक तीव्रता]] हैं। ध्वनिक तरंगें विशिष्ट ध्वनिक वेग के साथ यात्रा करती हैं जो उस माध्यम पर निर्भर करता है जिससे वे गुजर रहे हैं। ध्वनिक तरंगों के कुछ उदाहरण वक्ता ([[ध्वनि की गति]] से हवा के माध्यम से यात्रा करने वाली तरंगें), भूकंपीय तरंग (पृथ्वी के माध्यम से यात्रा करने वाली जमीनी कंपन), या चिकित्सा इमेजिंग के लिए उपयोग किए जाने वाले [[अल्ट्रा[[ आवाज़ ]]]] (शरीर के माध्यम से यात्रा करने वाली तरंगें) से श्रव्य ध्वनि हैं। | |||
ध्वनिक तरंगें | |||
== तरंग गुण == | == तरंग गुण == | ||
ध्वनिक तरंग | ध्वनिक तरंग यांत्रिक तरंग है जो परमाणुओं और अणुओं के संचलन के माध्यम से ऊर्जा का संचार करती है। ध्वनिक तरंग तरल पदार्थ के माध्यम से अनुदैर्ध्य तरंग में संचारित होती है (कणों की गति तरंग के प्रसार की दिशा के समानांतर होती है); विद्युत चुम्बकीय तरंग के विपरीत जो [[अनुप्रस्थ तरंग]] में संचारित होती है (तरंग के प्रसार की दिशा में समकोण पर कणों की गति)। हालांकि, ठोस पदार्थों में, ध्वनिक तरंग पदार्थ की ऐसी अवस्था में अपरूपण मापांक की अनुपस्थिति के कारण अनुदैर्ध्य और अनुप्रस्थ दोनों प्रकार से प्रसारित होती है।<ref>{{Cite journal |last=Leisure |first=Robert G. |date=2017-06-09 |title=Ultrasonic Spectroscopy: Applications in Condensed Matter Physics and Materials Science |url=https://www.cambridge.org/core/product/identifier/9781316658901/type/book |publisher=Cambridge University Press |doi=10.1017/9781316658901.004 |isbn=978-1-107-15413-1}}</ref> | ||
=== ध्वनिक तरंग समीकरण === | === ध्वनिक तरंग समीकरण === | ||
{{main|Acoustic wave equation}} | {{main|Acoustic wave equation}} | ||
[[ध्वनिक तरंग समीकरण]] ध्वनि तरंगों के प्रसार का वर्णन करता है। | [[ध्वनिक तरंग समीकरण]] ध्वनि तरंगों के प्रसार का वर्णन करता है। [[आयाम]] में ध्वनि दाब के लिए ध्वनिक तरंग समीकरण किसके द्वारा दिया जाता है | ||
<math display="block"> { \partial^2 p \over \partial x ^2 } - {1 \over c^2} { \partial^2 p \over \partial t ^2 } = 0 </math> | <math display="block"> { \partial^2 p \over \partial x ^2 } - {1 \over c^2} { \partial^2 p \over \partial t ^2 } = 0 </math> | ||
कहाँ | कहाँ | ||
Line 25: | Line 20: | ||
हानिकारक मीडिया के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल मॉडल लागू करने की आवश्यकता है। ऐसे मॉडलों में ध्वनिक तरंग समीकरण शामिल होते हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, [[ध्वनिक क्षीणन]] लेख भी देखें। | हानिकारक मीडिया के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल मॉडल लागू करने की आवश्यकता है। ऐसे मॉडलों में ध्वनिक तरंग समीकरण शामिल होते हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, [[ध्वनिक क्षीणन]] लेख भी देखें। | ||
डी'अलेम्बर्ट ने दोषरहित तरंग समीकरण के लिए सामान्य समाधान दिया। ध्वनि दबाव के लिए, | डी'अलेम्बर्ट ने दोषरहित तरंग समीकरण के लिए सामान्य समाधान दिया। ध्वनि दबाव के लिए, समाधान होगा | ||
<math display="block"> p = R \cos(\omega t - kx) + (1-R) \cos(\omega t+kx) </math> | <math display="block"> p = R \cos(\omega t - kx) + (1-R) \cos(\omega t+kx) </math> | ||
कहाँ | कहाँ | ||
Line 31: | Line 26: | ||
*<math>t</math> सेकंड में समय है | *<math>t</math> सेकंड में समय है | ||
*<math>k</math> रेड·एम में [[तरंग संख्या]] है<sup>-1</sup> | *<math>k</math> रेड·एम में [[तरंग संख्या]] है<sup>-1</sup> | ||
*<math>R</math> इकाई के बिना | *<math>R</math> इकाई के बिना गुणांक है | ||
के लिए <math>R=1</math> लहर | के लिए <math>R=1</math> लहर चलती हुई लहर बन जाती है जो दाईं ओर चलती है <math>R=0</math> लहर बाईं ओर चलती हुई यात्रा तरंग बन जाती है। स्थायी तरंग किसके द्वारा प्राप्त की जा सकती है <math>R=0.5</math>. | ||
=== चरण === | === चरण === | ||
{{main|Phase (waves)}} | {{main|Phase (waves)}} | ||
यात्रा तरंग में दबाव और कण वेग चरण (तरंगों) में होते हैं, जिसका अर्थ है कि दो मात्राओं के बीच चरण कोण शून्य है। | |||
[[आदर्श गैस कानून]] का उपयोग करके इसे आसानी से सिद्ध किया जा सकता है | [[आदर्श गैस कानून]] का उपयोग करके इसे आसानी से सिद्ध किया जा सकता है | ||
Line 46: | Line 41: | ||
*<math>n</math> तिल में राशि है (इकाई) | *<math>n</math> तिल में राशि है (इकाई) | ||
*<math>R</math> मूल्य के साथ [[सार्वभौमिक गैस स्थिरांक]] है <math display="inline">8.314\,472(15)~\frac{\mathrm{J}}{\mathrm{mol~K}}</math> | *<math>R</math> मूल्य के साथ [[सार्वभौमिक गैस स्थिरांक]] है <math display="inline">8.314\,472(15)~\frac{\mathrm{J}}{\mathrm{mol~K}}</math> | ||
मात्रा पर विचार करें <math>V</math>. चूंकि | मात्रा पर विचार करें <math>V</math>. चूंकि ध्वनिक तरंग मात्रा के माध्यम से फैलती है, रुद्धोष्म संपीड़न और विसंपीड़न होता है। रुद्धोष्म परिवर्तन के लिए आयतन के बीच निम्न संबंध बदलिए <math>V</math> तरल पदार्थ और दबाव के पार्सल की <math>p</math> रखती है | ||
<math display="block"> { \partial V \over V_m } = { -1 \over \ \gamma } {\partial p \over p_m } </math> | <math display="block"> { \partial V \over V_m } = { -1 \over \ \gamma } {\partial p \over p_m } </math> | ||
कहाँ <math>\gamma</math> इकाई और सबस्क्रिप्ट के बिना रुद्धोष्म सूचकांक है <math>m</math> संबंधित चर के माध्य मान को दर्शाता है। | कहाँ <math>\gamma</math> इकाई और सबस्क्रिप्ट के बिना रुद्धोष्म सूचकांक है <math>m</math> संबंधित चर के माध्य मान को दर्शाता है। | ||
ध्वनि तरंग आयतन के माध्यम से फैलती है, कण का क्षैतिज विस्थापन <math>\eta</math> तरंग प्रसार दिशा के साथ होता है। | |||
<math display="block"> { \partial \eta \over V_m } A = { \partial V \over V_m } = { -1 \over \ \gamma } {\partial p \over p_m } </math> | <math display="block"> { \partial \eta \over V_m } A = { \partial V \over V_m } = { -1 \over \ \gamma } {\partial p \over p_m } </math> | ||
कहाँ | कहाँ | ||
Line 67: | Line 62: | ||
=== प्रसार गति === | === प्रसार गति === | ||
{{main|Speed of sound}} | {{main|Speed of sound}} | ||
ध्वनिक तरंगों की प्रसार गति, या ध्वनिक वेग, प्रसार के माध्यम का | ध्वनिक तरंगों की प्रसार गति, या ध्वनिक वेग, प्रसार के माध्यम का कार्य है। सामान्य तौर पर, ध्वनिक वेग सी न्यूटन-लाप्लास समीकरण द्वारा दिया जाता है: | ||
<math display="block">c = \sqrt{\frac{C}{\rho}}</math> | <math display="block">c = \sqrt{\frac{C}{\rho}}</math> | ||
कहाँ | कहाँ | ||
*सी | *सी [[लोचदार मापांक]] है, बल्क मापांक (या गैस माध्यमों के लिए थोक लोच का मापांक), | ||
*<math>\rho</math> किग्रा/मी में [[घनत्व]] है<sup>3</उप> | *<math>\rho</math> किग्रा/मी में [[घनत्व]] है<sup>3</उप> | ||
इस प्रकार सामग्री की कठोरता ( | इस प्रकार सामग्री की कठोरता ( लागू बल द्वारा विरूपण के लिए लोचदार शरीर का प्रतिरोध) के साथ ध्वनिक वेग बढ़ता है, और घनत्व के साथ घट जाती है। | ||
राज्य के सामान्य समीकरणों के लिए, यदि शास्त्रीय यांत्रिकी का उपयोग किया जाता है, तो ध्वनिक वेग <math>c</math> द्वारा दिया गया है | राज्य के सामान्य समीकरणों के लिए, यदि शास्त्रीय यांत्रिकी का उपयोग किया जाता है, तो ध्वनिक वेग <math>c</math> द्वारा दिया गया है | ||
<math display="block">c^2 = \frac{\partial p}{\partial\rho}</math> | <math display="block">c^2 = \frac{\partial p}{\partial\rho}</math> | ||
Line 79: | Line 74: | ||
== घटना == | == घटना == | ||
ध्वनिक तरंगें लोचदार तरंगें हैं जो [[विवर्तन]], परावर्तन (भौतिकी) और हस्तक्षेप (तरंग प्रसार) जैसी घटनाओं को प्रदर्शित करती हैं। ध्यान दें कि हवा में [[ध्वनि तरंगें]] ध्रुवीकरण (तरंगें) नहीं हैं क्योंकि वे जिस दिशा में चलती हैं उसी दिशा में दोलन करती हैं। | ध्वनिक तरंगें लोचदार तरंगें हैं जो [[विवर्तन]], परावर्तन (भौतिकी) और हस्तक्षेप (तरंग प्रसार) जैसी घटनाओं को प्रदर्शित करती हैं। ध्यान दें कि हवा में [[ध्वनि तरंगें]] ध्रुवीकरण (तरंगें) नहीं हैं क्योंकि वे जिस दिशा में चलती हैं उसी दिशा में दोलन करती हैं। | ||
=== हस्तक्षेप === | === हस्तक्षेप === | ||
इंटरफेरेंस (तरंग प्रसार) दो या दो से अधिक तरंगों का योग है जिसके परिणामस्वरूप | इंटरफेरेंस (तरंग प्रसार) दो या दो से अधिक तरंगों का योग है जिसके परिणामस्वरूप नया तरंग पैटर्न बनता है। ध्वनि तरंगों का हस्तक्षेप तब देखा जा सकता है जब दो लाउडस्पीकर ही संकेत प्रसारित करते हैं। कुछ स्थानों पर रचनात्मक हस्तक्षेप होता है, स्थानीय ध्वनि दबाव दोगुना हो जाता है। और अन्य स्थानों पर विनाशकारी हस्तक्षेप होता है, जिससे शून्य पास्कल का स्थानीय ध्वनि दबाव होता है। | ||
=== खड़ी लहर === | === खड़ी लहर === | ||
{{main|Standing wave#Standing wave in a pipe}} | {{main|Standing wave#Standing wave in a pipe}} | ||
स्थायी तरंग विशेष प्रकार की तरंग होती है जो अनुनाद#Resonators में हो सकती है। गुंजयमान यंत्र में घटना के सुपरपोज़िशन सिद्धांत और परावर्तक तरंग होती है, जिससे खड़ी लहर पैदा होती है। स्थायी तरंग में दबाव और कण वेग 90 डिग्री चरण से बाहर हैं। | |||
अनुनादक के रूप में कार्य करने वाले दो बंद सिरों वाली ट्यूब पर विचार करें। गुंजयमान यंत्र द्वारा दी गई आवृत्तियों पर [[सामान्य मोड]] होते हैं | अनुनादक के रूप में कार्य करने वाले दो बंद सिरों वाली ट्यूब पर विचार करें। गुंजयमान यंत्र द्वारा दी गई आवृत्तियों पर [[सामान्य मोड]] होते हैं | ||
Line 98: | Line 92: | ||
=== प्रतिबिंब === | === प्रतिबिंब === | ||
ध्वनिक यात्रा तरंग ठोस सतह द्वारा परावर्तन (भौतिकी) हो सकती है। यदि यात्रा तरंग परावर्तित होती है, तो परावर्तित तरंग घटना तरंग के साथ हस्तक्षेप कर सकती है जिससे निकट और दूर के क्षेत्र में खड़ी लहर पैदा होती है। नतीजतन, निकट क्षेत्र में स्थानीय दबाव दोगुना हो जाता है, और कण वेग शून्य हो जाता है। | |||
क्षीणन परावर्तित तरंग की शक्ति में कमी का कारण बनता है क्योंकि परावर्तक सामग्री से दूरी बढ़ जाती है। जैसे-जैसे आपतित तरंग की शक्ति की तुलना में परावर्तक तरंग की शक्ति घटती जाती है, व्यतिकरण भी कम होता जाता है। और जैसे-जैसे व्यवधान कम होता है, वैसे-वैसे ध्वनि दबाव और कण वेग के बीच का चरण अंतर भी होता है। परावर्तक सामग्री से काफी बड़ी दूरी पर, अब कोई हस्तक्षेप नहीं बचा है। इस दूरी पर सुदूर क्षेत्र की बात की जा सकती है। | क्षीणन परावर्तित तरंग की शक्ति में कमी का कारण बनता है क्योंकि परावर्तक सामग्री से दूरी बढ़ जाती है। जैसे-जैसे आपतित तरंग की शक्ति की तुलना में परावर्तक तरंग की शक्ति घटती जाती है, व्यतिकरण भी कम होता जाता है। और जैसे-जैसे व्यवधान कम होता है, वैसे-वैसे ध्वनि दबाव और कण वेग के बीच का चरण अंतर भी होता है। परावर्तक सामग्री से काफी बड़ी दूरी पर, अब कोई हस्तक्षेप नहीं बचा है। इस दूरी पर सुदूर क्षेत्र की बात की जा सकती है। | ||
Line 104: | Line 98: | ||
परावर्तन की मात्रा परावर्तन गुणांक द्वारा दी जाती है जो कि घटना की तीव्रता पर परावर्तित तीव्रता का अनुपात है | परावर्तन की मात्रा परावर्तन गुणांक द्वारा दी जाती है जो कि घटना की तीव्रता पर परावर्तित तीव्रता का अनुपात है | ||
<math display="block">R = \frac{ I_{\text{reflected}} }{ I_{\text{incident}} }</math> | <math display="block">R = \frac{ I_{\text{reflected}} }{ I_{\text{incident}} }</math> | ||
=== अवशोषण === | === अवशोषण === | ||
ध्वनिक तरंगों को अवशोषित किया जा सकता है। अवशोषण की मात्रा अवशोषण गुणांक द्वारा दी जाती है जो इसके द्वारा दी जाती है | ध्वनिक तरंगों को अवशोषित किया जा सकता है। अवशोषण की मात्रा अवशोषण गुणांक द्वारा दी जाती है जो इसके द्वारा दी जाती है | ||
<math display="block">\alpha = 1 - R^2</math> | <math display="block">\alpha = 1 - R^2</math> | ||
कहाँ | कहाँ | ||
*<math>\alpha</math> | *<math>\alpha</math> इकाई के बिना [[अवशोषण गुणांक]] है | ||
*<math>R</math> | *<math>R</math> इकाई के बिना [[प्रतिबिंब गुणांक]] है | ||
इसके बजाय अक्सर सामग्री का [[अवशोषण (ध्वनिकी)]] डेसिबल में दिया जाता है। | इसके बजाय अक्सर सामग्री का [[अवशोषण (ध्वनिकी)]] डेसिबल में दिया जाता है। | ||
Line 117: | Line 109: | ||
=== स्तरित मीडिया === | === स्तरित मीडिया === | ||
{{Main|Transfer-matrix method (optics)#Acoustic waves}} | {{Main|Transfer-matrix method (optics)#Acoustic waves}} | ||
जब | जब ध्वनिक तरंग गैर-सजातीय माध्यम से फैलती है, तो इसका सामना करने वाली अशुद्धियों पर या विभिन्न सामग्रियों के [[बहुपरत माध्यम]] के बीच इंटरफेस पर विवर्तन से गुजरना होगा। यह परावैद्युत दर्पण में [[विद्युत चुम्बकीय तरंग समीकरण]] के अपवर्तन, अवशोषण और संचरण के समान ही घटना है। आवधिक मीडिया के माध्यम से ध्वनिक तरंग प्रसार की अवधारणा [[ध्वनिक मेटामेट्री]] में बड़ी सफलता के साथ उपयोग की जाती है।<ref>Gorishnyy, Taras, Martin Maldovan, Chaitanya Ullal, and Edwin Thomas. "[https://physicsworld.com/a/sound-ideas/ Sound ideas]." ''Physics World'' 18, no. 12 (2005): 24.</ref> बहुपरत सामग्री में ध्वनिक अवशोषण, प्रतिबिंब और संचरण की गणना ट्रांसफर-मैट्रिक्स विधि (ऑप्टिक्स) # ध्वनिक तरंगों | ट्रांसफर-मैट्रिक्स विधि से की जा सकती है।<ref>{{Cite book |last=Laude|first=Vincent |url=https://books.google.com/books?id=cCmCCgAAQBAJ |title=Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves |date=2015-09-14 |publisher=Walter de Gruyter GmbH & Co KG |isbn=978-3-11-030266-0 |language=en}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
{{div col|colwidth=30em}} | {{div col|colwidth=30em}} | ||
Line 160: | Line 150: | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: तरंग यांत्रिकी]] [[Category: ध्वनि-विज्ञान]] [[Category: आवाज़]] | |||
Revision as of 20:57, 3 May 2023
ध्वनिक तरंगें माध्यम से स्थिरोष्म लोडिंग और अनलोडिंग के माध्यम से ऊर्जा प्रसार का प्रकार है। ध्वनिक तरंगों का वर्णन करने के लिए महत्वपूर्ण मात्राएँ ध्वनिक दबाव, कण वेग, कण विस्थापन और ध्वनिक तीव्रता हैं। ध्वनिक तरंगें विशिष्ट ध्वनिक वेग के साथ यात्रा करती हैं जो उस माध्यम पर निर्भर करता है जिससे वे गुजर रहे हैं। ध्वनिक तरंगों के कुछ उदाहरण वक्ता (ध्वनि की गति से हवा के माध्यम से यात्रा करने वाली तरंगें), भूकंपीय तरंग (पृथ्वी के माध्यम से यात्रा करने वाली जमीनी कंपन), या चिकित्सा इमेजिंग के लिए उपयोग किए जाने वाले [[अल्ट्राआवाज़ ]] (शरीर के माध्यम से यात्रा करने वाली तरंगें) से श्रव्य ध्वनि हैं।
तरंग गुण
ध्वनिक तरंग यांत्रिक तरंग है जो परमाणुओं और अणुओं के संचलन के माध्यम से ऊर्जा का संचार करती है। ध्वनिक तरंग तरल पदार्थ के माध्यम से अनुदैर्ध्य तरंग में संचारित होती है (कणों की गति तरंग के प्रसार की दिशा के समानांतर होती है); विद्युत चुम्बकीय तरंग के विपरीत जो अनुप्रस्थ तरंग में संचारित होती है (तरंग के प्रसार की दिशा में समकोण पर कणों की गति)। हालांकि, ठोस पदार्थों में, ध्वनिक तरंग पदार्थ की ऐसी अवस्था में अपरूपण मापांक की अनुपस्थिति के कारण अनुदैर्ध्य और अनुप्रस्थ दोनों प्रकार से प्रसारित होती है।[1]
ध्वनिक तरंग समीकरण
ध्वनिक तरंग समीकरण ध्वनि तरंगों के प्रसार का वर्णन करता है। आयाम में ध्वनि दाब के लिए ध्वनिक तरंग समीकरण किसके द्वारा दिया जाता है
- पास्कल (यूनिट) में ध्वनि दबाव है
- मीटर में तरंग प्रसार की दिशा में स्थिति है
- प्रति सेकंड मीटर में ध्वनि की गति है|एम/एस
- दूसरा में समय है
कण वेग के लिए तरंग समीकरण का आकार समान होता है और इसके द्वारा दिया जाता है
- मीटर प्रति सेकंड|m/s में कण वेग है
हानिकारक मीडिया के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल मॉडल लागू करने की आवश्यकता है। ऐसे मॉडलों में ध्वनिक तरंग समीकरण शामिल होते हैं जो भिन्नात्मक व्युत्पन्न शब्दों को शामिल करते हैं, ध्वनिक क्षीणन लेख भी देखें।
डी'अलेम्बर्ट ने दोषरहित तरंग समीकरण के लिए सामान्य समाधान दिया। ध्वनि दबाव के लिए, समाधान होगा
- रेड/एस में कोणीय आवृत्ति है
- सेकंड में समय है
- रेड·एम में तरंग संख्या है-1
- इकाई के बिना गुणांक है
के लिए लहर चलती हुई लहर बन जाती है जो दाईं ओर चलती है लहर बाईं ओर चलती हुई यात्रा तरंग बन जाती है। स्थायी तरंग किसके द्वारा प्राप्त की जा सकती है .
चरण
यात्रा तरंग में दबाव और कण वेग चरण (तरंगों) में होते हैं, जिसका अर्थ है कि दो मात्राओं के बीच चरण कोण शून्य है।
आदर्श गैस कानून का उपयोग करके इसे आसानी से सिद्ध किया जा सकता है
- पास्कल (यूनिट) में दबाव है
- मी में मात्रा है3</उप>
- तिल में राशि है (इकाई)
- मूल्य के साथ सार्वभौमिक गैस स्थिरांक है
मात्रा पर विचार करें . चूंकि ध्वनिक तरंग मात्रा के माध्यम से फैलती है, रुद्धोष्म संपीड़न और विसंपीड़न होता है। रुद्धोष्म परिवर्तन के लिए आयतन के बीच निम्न संबंध बदलिए तरल पदार्थ और दबाव के पार्सल की रखती है
ध्वनि तरंग आयतन के माध्यम से फैलती है, कण का क्षैतिज विस्थापन तरंग प्रसार दिशा के साथ होता है।
- मी में पार के अनुभागीय क्षेत्र है2</उप>
इस समीकरण से यह देखा जा सकता है कि जब दबाव अपने अधिकतम पर होता है, तो औसत स्थिति से कण विस्थापन शून्य तक पहुँच जाता है। जैसा कि पहले उल्लेख किया गया है, दाहिनी ओर यात्रा करने वाली लहर के लिए दोलन दबाव द्वारा दिया जा सकता है
कण वेग कण विस्थापन का पहला व्युत्पन्न है: . साइन का विभेदन फिर से कोसाइन देता है
प्रसार गति
ध्वनिक तरंगों की प्रसार गति, या ध्वनिक वेग, प्रसार के माध्यम का कार्य है। सामान्य तौर पर, ध्वनिक वेग सी न्यूटन-लाप्लास समीकरण द्वारा दिया जाता है:
- सी लोचदार मापांक है, बल्क मापांक (या गैस माध्यमों के लिए थोक लोच का मापांक),
- किग्रा/मी में घनत्व है3</उप>
इस प्रकार सामग्री की कठोरता ( लागू बल द्वारा विरूपण के लिए लोचदार शरीर का प्रतिरोध) के साथ ध्वनिक वेग बढ़ता है, और घनत्व के साथ घट जाती है। राज्य के सामान्य समीकरणों के लिए, यदि शास्त्रीय यांत्रिकी का उपयोग किया जाता है, तो ध्वनिक वेग द्वारा दिया गया है
घटना
ध्वनिक तरंगें लोचदार तरंगें हैं जो विवर्तन, परावर्तन (भौतिकी) और हस्तक्षेप (तरंग प्रसार) जैसी घटनाओं को प्रदर्शित करती हैं। ध्यान दें कि हवा में ध्वनि तरंगें ध्रुवीकरण (तरंगें) नहीं हैं क्योंकि वे जिस दिशा में चलती हैं उसी दिशा में दोलन करती हैं।
हस्तक्षेप
इंटरफेरेंस (तरंग प्रसार) दो या दो से अधिक तरंगों का योग है जिसके परिणामस्वरूप नया तरंग पैटर्न बनता है। ध्वनि तरंगों का हस्तक्षेप तब देखा जा सकता है जब दो लाउडस्पीकर ही संकेत प्रसारित करते हैं। कुछ स्थानों पर रचनात्मक हस्तक्षेप होता है, स्थानीय ध्वनि दबाव दोगुना हो जाता है। और अन्य स्थानों पर विनाशकारी हस्तक्षेप होता है, जिससे शून्य पास्कल का स्थानीय ध्वनि दबाव होता है।
खड़ी लहर
स्थायी तरंग विशेष प्रकार की तरंग होती है जो अनुनाद#Resonators में हो सकती है। गुंजयमान यंत्र में घटना के सुपरपोज़िशन सिद्धांत और परावर्तक तरंग होती है, जिससे खड़ी लहर पैदा होती है। स्थायी तरंग में दबाव और कण वेग 90 डिग्री चरण से बाहर हैं।
अनुनादक के रूप में कार्य करने वाले दो बंद सिरों वाली ट्यूब पर विचार करें। गुंजयमान यंत्र द्वारा दी गई आवृत्तियों पर सामान्य मोड होते हैं
- प्रति सेकंड मीटर में ध्वनि की गति है|m/s
- मीटर में ट्यूब की लंबाई है
अंत में कण वेग शून्य हो जाता है क्योंकि कोई कण विस्थापन नहीं हो सकता। तथापि परावर्तक तरंग के साथ आपतित तरंग के व्यतिकरण के कारण सिरों पर दाब दोगुना हो जाता है। चूंकि सिरों पर दबाव अधिकतम होता है जबकि वेग शून्य होता है, उनके बीच 90 डिग्री का चरण अंतर होता है।
प्रतिबिंब
ध्वनिक यात्रा तरंग ठोस सतह द्वारा परावर्तन (भौतिकी) हो सकती है। यदि यात्रा तरंग परावर्तित होती है, तो परावर्तित तरंग घटना तरंग के साथ हस्तक्षेप कर सकती है जिससे निकट और दूर के क्षेत्र में खड़ी लहर पैदा होती है। नतीजतन, निकट क्षेत्र में स्थानीय दबाव दोगुना हो जाता है, और कण वेग शून्य हो जाता है।
क्षीणन परावर्तित तरंग की शक्ति में कमी का कारण बनता है क्योंकि परावर्तक सामग्री से दूरी बढ़ जाती है। जैसे-जैसे आपतित तरंग की शक्ति की तुलना में परावर्तक तरंग की शक्ति घटती जाती है, व्यतिकरण भी कम होता जाता है। और जैसे-जैसे व्यवधान कम होता है, वैसे-वैसे ध्वनि दबाव और कण वेग के बीच का चरण अंतर भी होता है। परावर्तक सामग्री से काफी बड़ी दूरी पर, अब कोई हस्तक्षेप नहीं बचा है। इस दूरी पर सुदूर क्षेत्र की बात की जा सकती है।
परावर्तन की मात्रा परावर्तन गुणांक द्वारा दी जाती है जो कि घटना की तीव्रता पर परावर्तित तीव्रता का अनुपात है
अवशोषण
ध्वनिक तरंगों को अवशोषित किया जा सकता है। अवशोषण की मात्रा अवशोषण गुणांक द्वारा दी जाती है जो इसके द्वारा दी जाती है
- इकाई के बिना अवशोषण गुणांक है
- इकाई के बिना प्रतिबिंब गुणांक है
इसके बजाय अक्सर सामग्री का अवशोषण (ध्वनिकी) डेसिबल में दिया जाता है।
स्तरित मीडिया
जब ध्वनिक तरंग गैर-सजातीय माध्यम से फैलती है, तो इसका सामना करने वाली अशुद्धियों पर या विभिन्न सामग्रियों के बहुपरत माध्यम के बीच इंटरफेस पर विवर्तन से गुजरना होगा। यह परावैद्युत दर्पण में विद्युत चुम्बकीय तरंग समीकरण के अपवर्तन, अवशोषण और संचरण के समान ही घटना है। आवधिक मीडिया के माध्यम से ध्वनिक तरंग प्रसार की अवधारणा ध्वनिक मेटामेट्री में बड़ी सफलता के साथ उपयोग की जाती है।[2] बहुपरत सामग्री में ध्वनिक अवशोषण, प्रतिबिंब और संचरण की गणना ट्रांसफर-मैट्रिक्स विधि (ऑप्टिक्स) # ध्वनिक तरंगों | ट्रांसफर-मैट्रिक्स विधि से की जा सकती है।[3]
यह भी देखें
- ध्वनिकी
- ध्वनिक क्षीणन
- ध्वनिक मेटामेट्री
- श्रवण कल्पना
- ऑडियो सिग्नल प्रोसेसिंग
- मारो (ध्वनिकी)
- बायोट-टॉलस्टॉय-मेडविन_विवर्तन_मॉडल
- विवर्तन
- डॉपलर प्रभाव
- इको (घटना)
- गुरुत्व तरंग
- संगीत
- संगीत नोट
- संगीतमय स्वर
- फोनन
- संगीत की भौतिकी
- पिच (संगीत)
- मनोध्वनिकी
- प्रतिध्वनि
- अपवर्तन
- प्रतिबिंब (भौतिकी)
- प्रतिध्वनि
- सिग्नल टोन
- आवाज़
- ध्वनि स्थानीयकरण
- ध्वनिरोधन
- स्टीरियो इमेजिंग
- संरचनात्मक ध्वनिकी
- समय
- अल्ट्रासाउंड
- तरंग समीकरण
- एक तरफ़ा तरंग समीकरण
- अस्पष्टीकृत ध्वनियों की सूची
संदर्भ
- ↑ Leisure, Robert G. (2017-06-09). "Ultrasonic Spectroscopy: Applications in Condensed Matter Physics and Materials Science". Cambridge University Press. doi:10.1017/9781316658901.004. ISBN 978-1-107-15413-1.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Gorishnyy, Taras, Martin Maldovan, Chaitanya Ullal, and Edwin Thomas. "Sound ideas." Physics World 18, no. 12 (2005): 24.
- ↑ Laude, Vincent (2015-09-14). Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves (in English). Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-030266-0.