बाइनरी डेटा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Data whose unit can take on only two possible states}}बाइनरी डेटा वह डेटा है जिसकी इकाई | {{Short description|Data whose unit can take on only two possible states}}बाइनरी डेटा वह डेटा है जिसकी इकाई मात्र दो संभावित अवस्थाओं को ग्रहण कर सकती है। इन्हें अधिकांशतः बाइनरी अंक प्रणाली और [[बूलियन बीजगणित]] के अनुसार 0 और 1 के रूप में लेबल जाता है। | ||
बाइनरी डेटा कई अलग-अलग विधि और वैज्ञानिक क्षेत्रों में होता है, जहां इसे कंप्यूटर विज्ञान में बिट (बाइनरी | बाइनरी डेटा कई अलग-अलग विधि और वैज्ञानिक क्षेत्रों में होता है, जहां इसे कंप्यूटर विज्ञान में बिट (बाइनरी अंक) सहित विभिन्न नामों से बुलाया जा सकता है, गणितीय तर्क और संबंधित डोमेन में [[सत्य मूल्य|सत्य मान]] और सांख्यिकी में बाइनरी चर है । | ||
== गणितीय और संयोजक | == गणितीय और संयोजक मूल == | ||
असतत चर जो | असतत चर जो मात्र एक स्थिति ले सकता है उसमें शून्य सूचना होती है, और 2 1 के बाद अगली प्राकृतिक संख्या है। यही कारण है कि बिट, मात्र दो संभावित मानों वाला एक चर सूचना की एक मानक प्राथमिक इकाई है। | ||
{{mvar|n}} | {{mvar|n}} बिट के संग्रह में {{math|[[power of two|2<sup>''n''</sup>]]}} अवस्थाएँ हो सकती हैं: विवरण के लिए [[ बाइनरी संख्या |बाइनरी संख्या]] देखें। असतत चरों के संग्रह के स्थिति की संख्या चरों की संख्या पर घातीय फलन पर निर्भर करती है, और मात्र प्रत्येक चर के स्थिति की संख्या पर घात नियम के रूप में हैं। दस बिट में तीन दशमलव अंकों ({{num|1000}}) से अधिक ({{num|1024}}) अवस्थाएँ होती हैं। {{math|10''k''}} बिट सूचना (एक [[संख्या]] या कुछ और) का प्रतिनिधित्व करने के लिए पर्याप्त से अधिक हैं जिसकी लिए {{math|3''k''}} दशमलव अंक की आवश्यकता होती है इसलिए त्रैमासिक अंक प्रणाली, 4, 5, 6, 7, 8, 9, [[Neper|नेपर]]... स्थिति के साथ असतत चर में निहित सूचना को कभी भी दो, तीन, या चार गुना अधिक बिट आवंटित करके बदला जा सकता है। इसलिए, 2 के अतिरिक्त किसी अन्य छोटी संख्या का उपयोग लाभ प्रदान नहीं करता है। | ||
[[Image:Hypercubeorder binary.svg|thumb|right|एक हास आरेख: [[निर्देशित ग्राफ]] के रूप में बूलियन बीजगणित का प्रतिनिधित्व]]इसके अतिरिक्त , बूलियन बीजगणित | [[Image:Hypercubeorder binary.svg|thumb|right|एक हास आरेख: [[निर्देशित ग्राफ]] के रूप में बूलियन बीजगणित का प्रतिनिधित्व]]इसके अतिरिक्त , बूलियन बीजगणित बिट के संग्रह के लिए सुविधाजनक गणितीय संरचना प्रदान करता है, जिसमें प्रस्तावित चर के संग्रह का पदार्थ है। कंप्यूटर विज्ञान में बूलियन बीजगणित संचालन को बिटवार संचालन के रूप में जाना जाता है। [[बूलियन समारोह|बूलियन फलन]] का सैद्धांतिक रूप से ठीक रूप से अध्ययन किया जाता है और सरलता से प्रयुक्त किया जा सकता है, या तो [[कंप्यूटर प्रोग्राम]] के साथ या [[डिजिटल इलेक्ट्रॉनिक्स|अंकीय इलेक्ट्रॉनिकी]] में तथाकथित [[लॉजिक गेट|तर्क गेट]] द्वारा यह विभिन्न डेटा का प्रतिनिधित्व करने के लिए बिट के उपयोग में योगदान देता है, यहां तक कि मूल रूप से बाइनरी नहीं है। | ||
==सांख्यिकी में== | ==सांख्यिकी में== | ||
डेटा में, बाइनरी डेटा [[सांख्यिकीय डेटा प्रकार]] होता है जिसमें स्पष्ट डेटा होता है जो A और B, या चित व पट जैसे दो संभावित मान ले सकता है। इसे द्विभाजित डेटा भी कहा जाता है, और प्राचीन पद क्वान्टमी डेटा है।{{sfn|Collett|2002|p=1}} दो मान को अधिकांशतः सामान्य रूप से सफलता और विफलता के रूप में संदर्भित किया जाता है।{{sfn|Collett|2002|p=1}} श्रेणीबद्ध डेटा के रूप के रूप में, बाइनरी डेटा नाममात्र डेटा है, जिसका अर्थ है कि मान गुणात्मक गुण हैं और संख्यात्मक रूप से तुलना नहीं की जा सकती। चूँकि, मानों को अधिकांशतः 1 या 0 के रूप में दर्शाया जाता है, जो एकल परीक्षण में सफलताओं की संख्या की गणना के अनुरूप होता है: 1 (सफलता) या 0 (विफलता); {{slink||गणना}} देखें। | |||
अधिकांशतः , बाइनरी डेटा का उपयोग दो वैचारिक रूप से विपरीत मानों में से का प्रतिनिधित्व करने के लिए किया जाता है, जैसे: | अधिकांशतः , बाइनरी डेटा का उपयोग दो वैचारिक रूप से विपरीत मानों में से का प्रतिनिधित्व करने के लिए किया जाता है, जैसे: | ||
*एक प्रयोग के परिणाम (सफलता या | *एक प्रयोग के परिणाम (सफलता या विफलता) | ||
*हाँ-नहीं प्रश्न का उत्तर (हाँ या नहीं) | *हाँ-नहीं प्रश्न का उत्तर (हाँ या नहीं) | ||
* कुछ विशेषता की उपस्थिति या अनुपस्थिति (उपस्थित है या उपस्थित नहीं है) | * कुछ विशेषता की उपस्थिति या अनुपस्थिति (उपस्थित है या उपस्थित नहीं है) | ||
* किसी प्रस्ताव की | * किसी प्रस्ताव की सत्यता या असत्यता (सत्य या असत्य, उचित या अनुचित ) | ||
चूँकि, इसका उपयोग उन डेटा के लिए भी किया जा सकता है, जिन्हें | चूँकि, इसका उपयोग उन डेटा के लिए भी किया जा सकता है, जिन्हें मात्र दो संभावित मान माना जाता है, तथापि वे वैचारिक रूप से विरोध न करते हों या अवधारणात्मक रूप से समष्टि में सभी संभावित मान का प्रतिनिधित्व करते हों। उदाहरण के लिए, संयुक्त राज्य अमेरिका, अर्थात गणतांत्रिक दल (संयुक्त राज्य) या लोकतांत्रिक दल (संयुक्त राज्य) में चुनावों में मतदाताओं के दल के चयन का प्रतिनिधित्व करने के लिए अधिकांशतः बाइनरी डेटा का उपयोग किया जाता है। इस स्थिति में, कोई अंतर्निहित कारण नहीं है कि क्यों मात्र दो [[राजनीतिक दल]] का अस्तित्व होना चाहिए, और वस्तुतः, अन्य दल अमेरिका में उपस्थित हैं, किंतु वे इतने छोटे हैं कि उन्हें सामान्यतः अनदेखा कर दिया जाता है। विश्लेषण उद्देश्यों के लिए बाइनरी चर के रूप में मॉडलिंग निरंतर डेटा (या 2 से अधिक श्रेणियों का श्रेणीबद्ध डेटा) को [[विवेक|द्विभाजन]]करण (एक द्विभाजन बनाना) कहा जाता है। सभी असंततकरण के जैसे, इसमें असंततकरण की त्रुटि सम्मिलित है, किंतु लक्ष्य त्रुटि के अतिरिक्त कुछ मूल्यवान सीखना है: इसे हाथ में उद्देश्य के लिए नगण्य के रूप में मानना, किंतु यह याद रखना कि इसे सामान्य रूप से नगण्य नहीं माना जा सकता है। | ||
=== | ===बाइनरी चर === | ||
एक | एक बाइनरी चर बाइनरी प्रकार का यादृच्छिक चर है, जिसका अर्थ है दो संभावित मान। [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]] (आई.आई.डी.) बाइनरी चर बर्नौली वितरण का पालन करते हैं, किंतु सामान्य बाइनरी डेटा में आई.आई.डी से आने की आवश्यकता नहीं होती है। चर आई.आई.डी. की कुल संख्या बाइनरी चर (समतुल्य रूप से, 1 या 0 के रूप में कोडित आई.आई.डी. बाइनरी चर के योग) [[द्विपद वितरण]] का पालन करते हैं, किंतु जब बाइनरी चर आई.आई.डी नहीं होते हैं, तो वितरण को द्विपद होने की आवश्यकता नहीं होती है। | ||
=== | === गणना === | ||
श्रेणीबद्ध डेटा | श्रेणीबद्ध डेटा के जैसे, बाइनरी डेटा को प्रत्येक संभावित मान के लिए निर्देशांक लिखकर और होने वाले मान के लिए 1 की गणना करके, और न होने वाले मान के लिए 0 की गणना करके डेटा की [[सरणी डेटा संरचना]] में परिवर्तित किया जा सकता है।<ref>{{cite book |last=Agresti |first=Alan |url=https://books.google.com/books?id=UOrr47-2oisC&pg=PA6 |title=श्रेणीबद्ध डेटा विश्लेषण|publisher=Wiley |year=2012 |isbn=978-0470463635 |edition=3rd |page=6 |section=1.2.2 Multinomial Distribution}}</ref> उदाहरण के लिए, यदि मान A और B हैं, तो डेटा समूह A, A, B को (1, 0), (1, 0), (0, 1) के रूप में गणना में दर्शाया जा सकता है। एक बार गणना में परिवर्तित हो जाने पर, बाइनरी डेटा को [[समूहीकृत डेटा|समूहीकृत]] किया जा सकता है और गणना को जोड़ा जा सकता है। उदाहरण के लिए, यदि समूह A, A, B को समूहीकृत किया जाता है, तो कुल संख्याएँ (2, 1): 2 A's और 1 B (3 परीक्षणों में से) हैं। | ||
चूंकि | चूंकि मात्र दो संभावित मान हैं, इसे मान को सफलता और दूसरे को विफलता के रूप में मानते हुए, सफलता के मान को 1 के रूप में और विफलता को 0 के रूप में कोडित करके एकल गणना (एक अदिश मान) के लिए सरल बनाया जा सकता है (मात्र का उपयोग करके) सफलता मान के लिए समन्वय, विफलता मान के लिए समन्वय नहीं)। उदाहरण के लिए, यदि मान A को सफलता माना जाता है (और इस प्रकार B को विफलता माना जाता है), तो डेटा समूह A, A, B को 1, 1, 0 के रूप में दर्शाया जाएगा। जब इसे समूहीकृत किया जाता है, तो मान जोड़े जाते हैं, जबकि संख्या परीक्षण का सामान्यतः निहित ट्रैक किया जाता है। उदाहरण के लिए, A, A, B को 1 + 1 + 0 = 2 सफलताओं (<math>n = 3</math> परीक्षणों में से) के रूप में समूहीकृत किया जाएगा। दूसरी ओर जाकर, <math>n = 1</math> के साथ डेटा की गणना करना बाइनरी डेटा है, जिसमें दो वर्ग 0 (विफलता) या 1 (सफलता) हैं। | ||
आई.आई.डी. | आई.आई.डी. बाइनरी चर {{tmath|n}} परीक्षणों की कुल संख्या (समूहित डेटा में अंक) के साथ एक द्विपद वितरण का पालन करते हैं। | ||
=== प्रतिगमन === | === प्रतिगमन === | ||
{{main|बाइनरी | {{main|बाइनरी प्रतिगमन}} | ||
अनुमानित परिणामों पर [[प्रतिगमन विश्लेषण]] जो | अनुमानित परिणामों पर [[प्रतिगमन विश्लेषण]] जो बाइनरी चर हैं, बाइनरी प्रतिगमन के रूप में जाना जाता है; जब बाइनरी डेटा को गणना डेटा में परिवर्तित किया जाता है और आई.आई.डी के रूप में मॉडलिंग की जाती है, चर (इसलिए उनका द्विपद वितरण है), [[द्विपद प्रतिगमन]] का उपयोग किया जा सकता है। बाइनरी डेटा के लिए सबसे सामान्य प्रतिगमन विधियाँ [[ संभार तन्त्र परावर्तन |संभार तन्त्र परावर्तन]] , [[ प्रोबिट प्रतिगमन |प्रोबिट प्रतिगमन]] या संबंधित प्रकार के [[द्विआधारी विकल्प|बाइनरी विकल्प]] मॉडल हैं। | ||
इसी | इसी प्रकार आई.आई.डी. दो से अधिक श्रेणियों वाले श्रेणीबद्ध चर को [[बहुराष्ट्रीय प्रतिगमन]] के साथ प्रतिरूपित किया जा सकता है। गैर-आई.आई.डी. बाइनरी डेटा को अधिक जटिल वितरणों द्वारा प्रतिरूपित किया जा सकता है, जैसे कि [[बीटा-द्विपद वितरण]] (एक [[यौगिक वितरण]])। वैकल्पिक रूप से संबंध को [[सामान्यीकृत रैखिक मॉडल]], जैसे [[अर्ध-संभावना]] और अर्ध-समानता मॉडल से विधियों का उपयोग करके आउटपुट चर के वितरण को स्पष्ट रूप से मॉडल करने की आवश्यकता के बिना मॉडल किया जा सकता है; {{slink|अतिफैलाव|द्विपद}} देखें। | ||
== कंप्यूटर विज्ञान में == | == कंप्यूटर विज्ञान में == | ||
[[File:Commons QR code.png|thumb|right|सामान्य 24-बिट कलर डेप्थ या ट्रू कलर (24-बिट) इमेज के विपरीत, [[ क्यू आर संहिता |क्यू आर संहिता]] की [[ द्विआधारी छवि | | [[File:Commons QR code.png|thumb|right|सामान्य 24-बिट कलर डेप्थ या ट्रू कलर (24-बिट) इमेज के विपरीत, [[ क्यू आर संहिता |क्यू आर संहिता]] की [[ द्विआधारी छवि |बाइनरी छवि]] , प्रति पिक्सेल 1 बिट का प्रतिनिधित्व करती है।]] | ||
{{See also|बाइनरी फ़ाइल}} | {{See also|बाइनरी फ़ाइल}} | ||
आधुनिक [[कंप्यूटर]] में, बाइनरी डेटा किसी भी डेटा को उच्च स्तर पर व्याख्या करने या किसी अन्य रूप में [[डेटा रूपांतरण]] के अतिरिक्त बाइनरी रूप में प्रदर्शित करने के लिए संदर्भित करता है। निम्नतम स्तर पर, | आधुनिक [[कंप्यूटर]] में, बाइनरी डेटा किसी भी डेटा को उच्च स्तर पर व्याख्या करने या किसी अन्य रूप में [[डेटा रूपांतरण]] के अतिरिक्त बाइनरी रूप में प्रदर्शित करने के लिए संदर्भित करता है। निम्नतम स्तर पर, बिट को [[ bstability |स्थिरता]] उपकरण जैसे [[फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स)|फ्लिप-फ्लॉप (इलेक्ट्रॉनिकी)]] फ्लिप-फ्लॉप में संग्रहित किया जाता है। जबकि अधिकांश बाइनरी डेटा का प्रतीकात्मक अर्थ होता है (परवाह नहीं करने के अतिरिक्त ) सभी बाइनरी डेटा संख्यात्मक नहीं होते हैं। कुछ बाइनरी डेटा इंस्ट्रक्शन (कंप्यूटर साइंस) से मेल खाते हैं, जैसे कि [[प्रोसेसर रजिस्टर]] के डेटा को [[ नियंत्रण यूनिट |नियंत्रण ईकाई]] द्वारा डिकोड किया जाता है, जो कि [[लाने-डिकोड-निष्पादित चक्र]] के साथ होता है। प्रदर्शन कारणों से कंप्यूटर संभवतःही कभी अलग-अलग बिट को संशोधित करते हैं। इसके अतिरिक्त , डेटा निश्चित संख्या में बिट के समूहों में [[डेटा संरचना संरेखण]] है, सामान्यतः 1 [[बाइट]] (8 बिट) इसलिए, कंप्यूटर में बाइनरी डेटा वस्तुतः बाइट्स के अनुक्रम होते हैं। उच्च स्तर पर, [[32-बिट]] प्रणाली के लिए 1 पद (कंप्यूटर आर्किटेक्चर) (4 बाइट्स) के समूहों में और [[64-बिट]] प्रणाली के लिए 2 पदों में डेटा उपयोग किया जाता है। | ||
[[निर्देश (कंप्यूटर विज्ञान)]] और सूचना प्रौद्योगिकी क्षेत्र में, बाइनरी डेटा | [[निर्देश (कंप्यूटर विज्ञान)]] और सूचना प्रौद्योगिकी क्षेत्र में, बाइनरी डेटा पद अधिकांशतः टेक्स्ट-आधारित डेटा के विपरीत होता है, जो किसी भी प्रकार के डेटा का संदर्भ देता है जिसे टेक्स्ट के रूप में व्याख्या नहीं किया जा सकता है। पाठ बनाम बाइनरी भेद कभी-कभी फ़ाइल की सिमेंटिक पदार्थ को संदर्भित कर सकता है (उदाहरण के लिए लिखित दस्तावेज़ बनाम [[डिजिटल छवि|अंकीय छवि]])। चूँकि, यह अधिकांशतः विशेष रूप से संदर्भित करता है कि फ़ाइल के अलग-अलग बाइट टेक्स्ट के रूप में व्याख्या करने योग्य हैं ([[अक्षरों को सांकेतिक अक्षरों में बदलना]] देखें) या व्याख्या नहीं की जा सकती है। जब यह अंतिम अर्थ अभिप्रेत है तो अधिक विशिष्ट पद बाइनरी प्रारूप और पाठ (यूएल) प्रारूप कभी-कभी उपयोग किए जाते हैं। सिमेंटिकली टेक्स्टुअल डेटा को बाइनरी प्रारूप में प्रदर्शित किया जा सकता है (उदाहरण के लिए जब कंप्रेस किया जाता है या कुछ प्रारूप में जो विभिन्न प्रकार के प्रारूप कोड को मिश्रित करते हैं, जैसा कि [[माइक्रोसॉफ्ट वर्ड]] द्वारा उपयोग किए जाने वाले [[ डॉक्टर (कंप्यूटिंग) |डॉक्टर (कंप्यूटिंग)]] में होता है); इसके विपरीत, छवि डेटा को कभी-कभी पाठ्य प्रारूप में दर्शाया जाता है (उदाहरण के लिए [[एक्स विंडो सिस्टम|एक्स विंडो]] प्रणाली में उपयोग किया जाने वाला [[X PixMap|एक्स पिक्समैप]] छवि प्रारूप)। | ||
1 और 0 और कुछ नहीं किंतु | 1 और 0 और कुछ नहीं किंतु मात्र दो अलग-अलग वोल्टेज स्तर हैं। आप कंप्यूटर को उच्च वोल्टेज के लिए 1 और निम्न वोल्टेज के लिए 0 समझा सकते हैं। दो वोल्टेज स्तरों को संचयन करने के कई अलग-अलग विधि हैं। यदि आपने फ़्लॉपी देखा है, तो आपको चुंबकीय टेप मिलेगा जिसमें फेरोमैग्नेटिक पदार्थ का लेप होता है, यह प्रकार का पैरामैग्नेटिक पदार्थ होता है, जिसमें पदार्थ के माध्यम से धाराओं को हटाने के बाद भी अवशेष चुंबकीय क्षेत्र देने के लिए विशेष दिशा में डोमेन संरेखित होते हैं या चुंबकीय क्षेत्र चुंबकीय टेप में डेटा लोड करने के समय, डोमेन के सहेजे गए अभिविन्यास को कॉल करने के लिए चुंबकीय क्षेत्र को दिशा में पारित किया जाता है और चुंबकीय क्षेत्र को दूसरी दिशा में पारित किया जाता है, तो डोमेन का सहेजा गया अभिविन्यास 0 होता है। इस प्रकार सामान्यतः, 1 और 0 डेटा संग्रहीत होते हैं।<ref>{{Cite web |last=Gul |first=Najam |date=2022-08-18 |title=How do different types of Data get stored in form of 0 and 1? |url=https://www.deepcurious.com/how-do-different-types-of-data-get-stored-in-form-of-0-and-1 |access-date=2023-01-05 |website=Curiosity Tea |language=en}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[बिट सरणी]] | * [[बिट सरणी]] |
Revision as of 13:30, 4 May 2023
बाइनरी डेटा वह डेटा है जिसकी इकाई मात्र दो संभावित अवस्थाओं को ग्रहण कर सकती है। इन्हें अधिकांशतः बाइनरी अंक प्रणाली और बूलियन बीजगणित के अनुसार 0 और 1 के रूप में लेबल जाता है।
बाइनरी डेटा कई अलग-अलग विधि और वैज्ञानिक क्षेत्रों में होता है, जहां इसे कंप्यूटर विज्ञान में बिट (बाइनरी अंक) सहित विभिन्न नामों से बुलाया जा सकता है, गणितीय तर्क और संबंधित डोमेन में सत्य मान और सांख्यिकी में बाइनरी चर है ।
गणितीय और संयोजक मूल
असतत चर जो मात्र एक स्थिति ले सकता है उसमें शून्य सूचना होती है, और 2 1 के बाद अगली प्राकृतिक संख्या है। यही कारण है कि बिट, मात्र दो संभावित मानों वाला एक चर सूचना की एक मानक प्राथमिक इकाई है।
n बिट के संग्रह में 2n अवस्थाएँ हो सकती हैं: विवरण के लिए बाइनरी संख्या देखें। असतत चरों के संग्रह के स्थिति की संख्या चरों की संख्या पर घातीय फलन पर निर्भर करती है, और मात्र प्रत्येक चर के स्थिति की संख्या पर घात नियम के रूप में हैं। दस बिट में तीन दशमलव अंकों (1000) से अधिक (1024) अवस्थाएँ होती हैं। 10k बिट सूचना (एक संख्या या कुछ और) का प्रतिनिधित्व करने के लिए पर्याप्त से अधिक हैं जिसकी लिए 3k दशमलव अंक की आवश्यकता होती है इसलिए त्रैमासिक अंक प्रणाली, 4, 5, 6, 7, 8, 9, नेपर... स्थिति के साथ असतत चर में निहित सूचना को कभी भी दो, तीन, या चार गुना अधिक बिट आवंटित करके बदला जा सकता है। इसलिए, 2 के अतिरिक्त किसी अन्य छोटी संख्या का उपयोग लाभ प्रदान नहीं करता है।
इसके अतिरिक्त , बूलियन बीजगणित बिट के संग्रह के लिए सुविधाजनक गणितीय संरचना प्रदान करता है, जिसमें प्रस्तावित चर के संग्रह का पदार्थ है। कंप्यूटर विज्ञान में बूलियन बीजगणित संचालन को बिटवार संचालन के रूप में जाना जाता है। बूलियन फलन का सैद्धांतिक रूप से ठीक रूप से अध्ययन किया जाता है और सरलता से प्रयुक्त किया जा सकता है, या तो कंप्यूटर प्रोग्राम के साथ या अंकीय इलेक्ट्रॉनिकी में तथाकथित तर्क गेट द्वारा यह विभिन्न डेटा का प्रतिनिधित्व करने के लिए बिट के उपयोग में योगदान देता है, यहां तक कि मूल रूप से बाइनरी नहीं है।
सांख्यिकी में
डेटा में, बाइनरी डेटा सांख्यिकीय डेटा प्रकार होता है जिसमें स्पष्ट डेटा होता है जो A और B, या चित व पट जैसे दो संभावित मान ले सकता है। इसे द्विभाजित डेटा भी कहा जाता है, और प्राचीन पद क्वान्टमी डेटा है।[1] दो मान को अधिकांशतः सामान्य रूप से सफलता और विफलता के रूप में संदर्भित किया जाता है।[1] श्रेणीबद्ध डेटा के रूप के रूप में, बाइनरी डेटा नाममात्र डेटा है, जिसका अर्थ है कि मान गुणात्मक गुण हैं और संख्यात्मक रूप से तुलना नहीं की जा सकती। चूँकि, मानों को अधिकांशतः 1 या 0 के रूप में दर्शाया जाता है, जो एकल परीक्षण में सफलताओं की संख्या की गणना के अनुरूप होता है: 1 (सफलता) या 0 (विफलता); § गणना देखें।
अधिकांशतः , बाइनरी डेटा का उपयोग दो वैचारिक रूप से विपरीत मानों में से का प्रतिनिधित्व करने के लिए किया जाता है, जैसे:
- एक प्रयोग के परिणाम (सफलता या विफलता)
- हाँ-नहीं प्रश्न का उत्तर (हाँ या नहीं)
- कुछ विशेषता की उपस्थिति या अनुपस्थिति (उपस्थित है या उपस्थित नहीं है)
- किसी प्रस्ताव की सत्यता या असत्यता (सत्य या असत्य, उचित या अनुचित )
चूँकि, इसका उपयोग उन डेटा के लिए भी किया जा सकता है, जिन्हें मात्र दो संभावित मान माना जाता है, तथापि वे वैचारिक रूप से विरोध न करते हों या अवधारणात्मक रूप से समष्टि में सभी संभावित मान का प्रतिनिधित्व करते हों। उदाहरण के लिए, संयुक्त राज्य अमेरिका, अर्थात गणतांत्रिक दल (संयुक्त राज्य) या लोकतांत्रिक दल (संयुक्त राज्य) में चुनावों में मतदाताओं के दल के चयन का प्रतिनिधित्व करने के लिए अधिकांशतः बाइनरी डेटा का उपयोग किया जाता है। इस स्थिति में, कोई अंतर्निहित कारण नहीं है कि क्यों मात्र दो राजनीतिक दल का अस्तित्व होना चाहिए, और वस्तुतः, अन्य दल अमेरिका में उपस्थित हैं, किंतु वे इतने छोटे हैं कि उन्हें सामान्यतः अनदेखा कर दिया जाता है। विश्लेषण उद्देश्यों के लिए बाइनरी चर के रूप में मॉडलिंग निरंतर डेटा (या 2 से अधिक श्रेणियों का श्रेणीबद्ध डेटा) को द्विभाजनकरण (एक द्विभाजन बनाना) कहा जाता है। सभी असंततकरण के जैसे, इसमें असंततकरण की त्रुटि सम्मिलित है, किंतु लक्ष्य त्रुटि के अतिरिक्त कुछ मूल्यवान सीखना है: इसे हाथ में उद्देश्य के लिए नगण्य के रूप में मानना, किंतु यह याद रखना कि इसे सामान्य रूप से नगण्य नहीं माना जा सकता है।
बाइनरी चर
एक बाइनरी चर बाइनरी प्रकार का यादृच्छिक चर है, जिसका अर्थ है दो संभावित मान। स्वतंत्र और समान रूप से वितरित यादृच्छिक चर (आई.आई.डी.) बाइनरी चर बर्नौली वितरण का पालन करते हैं, किंतु सामान्य बाइनरी डेटा में आई.आई.डी से आने की आवश्यकता नहीं होती है। चर आई.आई.डी. की कुल संख्या बाइनरी चर (समतुल्य रूप से, 1 या 0 के रूप में कोडित आई.आई.डी. बाइनरी चर के योग) द्विपद वितरण का पालन करते हैं, किंतु जब बाइनरी चर आई.आई.डी नहीं होते हैं, तो वितरण को द्विपद होने की आवश्यकता नहीं होती है।
गणना
श्रेणीबद्ध डेटा के जैसे, बाइनरी डेटा को प्रत्येक संभावित मान के लिए निर्देशांक लिखकर और होने वाले मान के लिए 1 की गणना करके, और न होने वाले मान के लिए 0 की गणना करके डेटा की सरणी डेटा संरचना में परिवर्तित किया जा सकता है।[2] उदाहरण के लिए, यदि मान A और B हैं, तो डेटा समूह A, A, B को (1, 0), (1, 0), (0, 1) के रूप में गणना में दर्शाया जा सकता है। एक बार गणना में परिवर्तित हो जाने पर, बाइनरी डेटा को समूहीकृत किया जा सकता है और गणना को जोड़ा जा सकता है। उदाहरण के लिए, यदि समूह A, A, B को समूहीकृत किया जाता है, तो कुल संख्याएँ (2, 1): 2 A's और 1 B (3 परीक्षणों में से) हैं।
चूंकि मात्र दो संभावित मान हैं, इसे मान को सफलता और दूसरे को विफलता के रूप में मानते हुए, सफलता के मान को 1 के रूप में और विफलता को 0 के रूप में कोडित करके एकल गणना (एक अदिश मान) के लिए सरल बनाया जा सकता है (मात्र का उपयोग करके) सफलता मान के लिए समन्वय, विफलता मान के लिए समन्वय नहीं)। उदाहरण के लिए, यदि मान A को सफलता माना जाता है (और इस प्रकार B को विफलता माना जाता है), तो डेटा समूह A, A, B को 1, 1, 0 के रूप में दर्शाया जाएगा। जब इसे समूहीकृत किया जाता है, तो मान जोड़े जाते हैं, जबकि संख्या परीक्षण का सामान्यतः निहित ट्रैक किया जाता है। उदाहरण के लिए, A, A, B को 1 + 1 + 0 = 2 सफलताओं ( परीक्षणों में से) के रूप में समूहीकृत किया जाएगा। दूसरी ओर जाकर, के साथ डेटा की गणना करना बाइनरी डेटा है, जिसमें दो वर्ग 0 (विफलता) या 1 (सफलता) हैं।
आई.आई.डी. बाइनरी चर परीक्षणों की कुल संख्या (समूहित डेटा में अंक) के साथ एक द्विपद वितरण का पालन करते हैं।
प्रतिगमन
अनुमानित परिणामों पर प्रतिगमन विश्लेषण जो बाइनरी चर हैं, बाइनरी प्रतिगमन के रूप में जाना जाता है; जब बाइनरी डेटा को गणना डेटा में परिवर्तित किया जाता है और आई.आई.डी के रूप में मॉडलिंग की जाती है, चर (इसलिए उनका द्विपद वितरण है), द्विपद प्रतिगमन का उपयोग किया जा सकता है। बाइनरी डेटा के लिए सबसे सामान्य प्रतिगमन विधियाँ संभार तन्त्र परावर्तन , प्रोबिट प्रतिगमन या संबंधित प्रकार के बाइनरी विकल्प मॉडल हैं।
इसी प्रकार आई.आई.डी. दो से अधिक श्रेणियों वाले श्रेणीबद्ध चर को बहुराष्ट्रीय प्रतिगमन के साथ प्रतिरूपित किया जा सकता है। गैर-आई.आई.डी. बाइनरी डेटा को अधिक जटिल वितरणों द्वारा प्रतिरूपित किया जा सकता है, जैसे कि बीटा-द्विपद वितरण (एक यौगिक वितरण)। वैकल्पिक रूप से संबंध को सामान्यीकृत रैखिक मॉडल, जैसे अर्ध-संभावना और अर्ध-समानता मॉडल से विधियों का उपयोग करके आउटपुट चर के वितरण को स्पष्ट रूप से मॉडल करने की आवश्यकता के बिना मॉडल किया जा सकता है; अतिफैलाव § द्विपद देखें।
कंप्यूटर विज्ञान में
आधुनिक कंप्यूटर में, बाइनरी डेटा किसी भी डेटा को उच्च स्तर पर व्याख्या करने या किसी अन्य रूप में डेटा रूपांतरण के अतिरिक्त बाइनरी रूप में प्रदर्शित करने के लिए संदर्भित करता है। निम्नतम स्तर पर, बिट को स्थिरता उपकरण जैसे फ्लिप-फ्लॉप (इलेक्ट्रॉनिकी) फ्लिप-फ्लॉप में संग्रहित किया जाता है। जबकि अधिकांश बाइनरी डेटा का प्रतीकात्मक अर्थ होता है (परवाह नहीं करने के अतिरिक्त ) सभी बाइनरी डेटा संख्यात्मक नहीं होते हैं। कुछ बाइनरी डेटा इंस्ट्रक्शन (कंप्यूटर साइंस) से मेल खाते हैं, जैसे कि प्रोसेसर रजिस्टर के डेटा को नियंत्रण ईकाई द्वारा डिकोड किया जाता है, जो कि लाने-डिकोड-निष्पादित चक्र के साथ होता है। प्रदर्शन कारणों से कंप्यूटर संभवतःही कभी अलग-अलग बिट को संशोधित करते हैं। इसके अतिरिक्त , डेटा निश्चित संख्या में बिट के समूहों में डेटा संरचना संरेखण है, सामान्यतः 1 बाइट (8 बिट) इसलिए, कंप्यूटर में बाइनरी डेटा वस्तुतः बाइट्स के अनुक्रम होते हैं। उच्च स्तर पर, 32-बिट प्रणाली के लिए 1 पद (कंप्यूटर आर्किटेक्चर) (4 बाइट्स) के समूहों में और 64-बिट प्रणाली के लिए 2 पदों में डेटा उपयोग किया जाता है।
निर्देश (कंप्यूटर विज्ञान) और सूचना प्रौद्योगिकी क्षेत्र में, बाइनरी डेटा पद अधिकांशतः टेक्स्ट-आधारित डेटा के विपरीत होता है, जो किसी भी प्रकार के डेटा का संदर्भ देता है जिसे टेक्स्ट के रूप में व्याख्या नहीं किया जा सकता है। पाठ बनाम बाइनरी भेद कभी-कभी फ़ाइल की सिमेंटिक पदार्थ को संदर्भित कर सकता है (उदाहरण के लिए लिखित दस्तावेज़ बनाम अंकीय छवि)। चूँकि, यह अधिकांशतः विशेष रूप से संदर्भित करता है कि फ़ाइल के अलग-अलग बाइट टेक्स्ट के रूप में व्याख्या करने योग्य हैं (अक्षरों को सांकेतिक अक्षरों में बदलना देखें) या व्याख्या नहीं की जा सकती है। जब यह अंतिम अर्थ अभिप्रेत है तो अधिक विशिष्ट पद बाइनरी प्रारूप और पाठ (यूएल) प्रारूप कभी-कभी उपयोग किए जाते हैं। सिमेंटिकली टेक्स्टुअल डेटा को बाइनरी प्रारूप में प्रदर्शित किया जा सकता है (उदाहरण के लिए जब कंप्रेस किया जाता है या कुछ प्रारूप में जो विभिन्न प्रकार के प्रारूप कोड को मिश्रित करते हैं, जैसा कि माइक्रोसॉफ्ट वर्ड द्वारा उपयोग किए जाने वाले डॉक्टर (कंप्यूटिंग) में होता है); इसके विपरीत, छवि डेटा को कभी-कभी पाठ्य प्रारूप में दर्शाया जाता है (उदाहरण के लिए एक्स विंडो प्रणाली में उपयोग किया जाने वाला एक्स पिक्समैप छवि प्रारूप)।
1 और 0 और कुछ नहीं किंतु मात्र दो अलग-अलग वोल्टेज स्तर हैं। आप कंप्यूटर को उच्च वोल्टेज के लिए 1 और निम्न वोल्टेज के लिए 0 समझा सकते हैं। दो वोल्टेज स्तरों को संचयन करने के कई अलग-अलग विधि हैं। यदि आपने फ़्लॉपी देखा है, तो आपको चुंबकीय टेप मिलेगा जिसमें फेरोमैग्नेटिक पदार्थ का लेप होता है, यह प्रकार का पैरामैग्नेटिक पदार्थ होता है, जिसमें पदार्थ के माध्यम से धाराओं को हटाने के बाद भी अवशेष चुंबकीय क्षेत्र देने के लिए विशेष दिशा में डोमेन संरेखित होते हैं या चुंबकीय क्षेत्र चुंबकीय टेप में डेटा लोड करने के समय, डोमेन के सहेजे गए अभिविन्यास को कॉल करने के लिए चुंबकीय क्षेत्र को दिशा में पारित किया जाता है और चुंबकीय क्षेत्र को दूसरी दिशा में पारित किया जाता है, तो डोमेन का सहेजा गया अभिविन्यास 0 होता है। इस प्रकार सामान्यतः, 1 और 0 डेटा संग्रहीत होते हैं।[3]
यह भी देखें
- बिट सरणी
- बरनौली वितरण
- बूलियन डेटा प्रकार
- स्मृति
- सुस्पष्ट डेटा
- गुणात्मक तथ्य
संदर्भ
- ↑ 1.0 1.1 Collett 2002, p. 1.
- ↑ Agresti, Alan (2012). "1.2.2 Multinomial Distribution". श्रेणीबद्ध डेटा विश्लेषण (3rd ed.). Wiley. p. 6. ISBN 978-0470463635.
- ↑ Gul, Najam (2022-08-18). "How do different types of Data get stored in form of 0 and 1?". Curiosity Tea (in English). Retrieved 2023-01-05.
- Collett, David (2002). Modelling Binary Data (Second ed.). CRC Press. ISBN 9781420057386.