निलपोटेंट समूह: Difference between revisions

From Vigyanwiki
No edit summary
Line 91: Line 91:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:55, 16 May 2023

गणित में, विशेष रूप से समूह सिद्धांत में, एक निलपोटेंट समूह G एक समूह (गणित) है जिसमें एक ऊपरी केंद्रीय श्रृंखला होती है जो G के साथ समाप्त होती है। समतुल्य रूप से, इसकी केंद्रीय श्रृंखला परिमित लंबाई की है या इसकी निचली केंद्रीय श्रृंखला {1} के साथ समाप्त होती है।

सहज रूप से, एक नीलपोटेंट समूह एक ऐसा समूह है जो लगभग एबेलियन समूह है। यह विचार इस तथ्य से प्रेरित है कि नाइलपोटेंट समूह हल करने योग्य समूह हैं, और परिमित निलपोटेंट समूहों के लिए, अपेक्षाकृत प्रमुख क्रम वाले दो तत्वों को अवश्य ही कम्यूट करना चाहिए। यह भी सच है कि परिमित निलपोटेंट समूह सुपरसाल्वेबल समूह हैं। इस अवधारणा को 1930 के दशक में रूसी गणितज्ञ सर्गेई चेर्निकोव द्वारा काम करने का श्रेय दिया जाता है।[1]

गैलोज़ सिद्धांत के साथ-साथ समूहों के वर्गीकरण में निलपोटेंट समूह उत्पन्न होते हैं। वे झूठ समूह के वर्गीकरण में भी प्रमुखता से दिखाई देते हैं।

लाई बीजगणित (वेक्टर क्षेत्र के लाई ब्रैकेट का उपयोग करके) के लिए समान शब्दों का उपयोग किया जाता है, जिसमें निलपोटेंट लाई बीजगणित, निचला केंद्रीय श्रृंखला और ऊपरी केंद्रीय श्रृंखला सम्मिलित है।

परिभाषा

परिभाषा समूह के लिए केंद्रीय श्रृंखला के विचार का उपयोग करती है। निलपोटेंट समूह G के लिए निम्नलिखित समान परिभाषाएँ हैं :

  • Gकी परिमित लंबाई की central series जिससे सामान्य उपसमूहों की एक श्रृंखला
    जहाँ , या समकक्ष .
  • G की एक निचली केंद्रीय श्रृंखला है जो छोटे उपसमूह में बहुत से चरणों के बाद समाप्त होती है। यानी सामान्य उपसमूहों की एक श्रृंखला
    where .
  • Gकी एक ऊपरी केंद्रीय श्रृंखला है जो पूरे समूह में बहुत से चरणों के बाद समाप्त होती है। यानी सामान्य उपसमूहों की एक श्रृंखला
    जहाँ and ऐसा उपसमूह है कि .

एक निलपोटेंट समूह के लिए, सबसे छोटा n जैसे कि G की लंबाई n की एक केंद्रीय श्रृंखला है जिसे G की निलपोटेंसी वर्ग कहलाती है; और G को वर्ग n का निलपोटेंट कहा जाता है . (परिभाषा के अनुसार, लंबाई n है तो यदि श्रृंखला में विभिन्न उपसमूह है जिसमे, तुच्छ उपसमूह और पूरे समूह सम्मिलित है ।)

समान रूप से, G की शून्यता वर्ग निचली केंद्रीय श्रृंखला या ऊपरी केंद्रीय श्रृंखला की लंबाई के सामान होती है। यदि किसी समूह में सबसे अधिक n शून्यता वर्ग है , तो इसे कभी-कभी शून्य n समूह। कहा जाता है-

यह निलपोटेंसी की परिभाषा के उपरोक्त रूपों में से किसी से तुरंत अनुसरण करता है, कि तुच्छ समूह निलपोटेंसी वर्ग 0 का अनूठा समूह है, और शून्यता वर्ग 1 के समूह वास्तव में गैर-तुच्छ एबेलियन समूह हैं।[2][3]

उदाहरण

असतत हाइजेनबर्ग समूह के केली ग्राफ का एक हिस्सा, एक प्रसिद्ध निलपोटेंट समूह।

* जैसा कि ऊपर उल्लेख किया गया है, प्रत्येक एबेलियन समूह शून्य है।[2][4]

  • एक छोटे गैर-अबेलियन उदाहरण के लिए, चतुर्धातुक समूह Q8पर विचार करें, जो सबसे छोटा नॉन-एबेलियन p-समूह है। इसका केंद्र क्रम 2 का {1, -1} है, और इसकी ऊपरी केंद्रीय श्रृंखला {1}, {1, -1}, Q8 है; इसलिए यह कक्षा 2 का शून्य है।
  • दो निलपोटेंट समूहों का प्रत्यक्ष उत्पाद निलपोटेंट है।[5]
  • सभी परिमित p-समूह p-समूह वास्तव में निलपोटेंट ( p-समूह या गैर-तुच्छ केंद्र) हैं। क्रम pn के समूह का अधिकतम वर्ग n है (उदाहरण के लिए, क्रम 2 का कोई भी समूह कक्षा 1 का शून्य है)। अधिकतम वर्ग के 2-समूह सामान्यीकृत चतुर्धातुक समूह, डायहेड्रल समूह और सेमीडायहेड्रल समूह हैं।
  • इसके अतिरिक्त , प्रत्येक परिमित निलपोटेंट समूह p-समूहों का प्रत्यक्ष उत्पाद है।[5]* किसी भी क्षेत्र एफ पर ऊपरी त्रिकोणीय आव्यूह या यूनिट्रिएंगुलर आव्यूह n × n आव्यूह का गुणक समूह निलपोटेंसी वर्ग n - 1 का एक यूनिपोटेंट बीजगणितीय समूह है। विशेष रूप से, n = 3 लेने से हाइजेनबर्ग समूह H उत्पन्न होता है, गैर का एक उदाहरण- एबेलियन[6] अनंत निलपोटेंट समूह।[7] इसमें केंद्रीय श्रृंखला 1, Z(H), H के साथ शून्यता वर्ग 2 है।
  • क्षेत्र F पर बोरेल उपसमूह n × n आव्यूहों का गुणक समूह सामान्य रूप से शून्य नहीं है, किन्तु हल करने योग्य समूह है।
  • कोई भी गैर-अबेलियन समूह G जैसे कि G/Z(G) एबेलियन है, उसकी केंद्रीय श्रृंखला {1}, Z(G), G के साथ निलपोटेंसी वर्ग 2 है।

प्राकृतिक संख्याएँ k जिसके लिए k कोटि का कोई भी समूह निलपोटेंट है, को अभिलक्षित किया गया है (sequence A056867 in the OEIS).

शब्द की व्याख्या

निलपोटेंट समूह इसलिए कहलाते हैं क्योंकि किसी भी तत्व की "संलग्न क्रिया" निलपोटेंट है, जिसका अर्थ है कि निलपोटेंस डिग्री के एक निलपोटेंट समूह और एक तत्व के लिए, कार्य द्वारा परिभाषित (जहाँ और का कम्यूटेटर है) इस अर्थ में शून्य है कार्य का वां पुनरावृत्ति तुच्छ है: में सभी के लिए है ।

यह निलपोटेंट समूहों की एक परिभाषित विशेषता नहीं है: जिन समूहों के लिए डिग्री (उपर्युक्त अर्थ में) का शून्य है, उन्हें -एंगेल समूह कहा जाता है, और सामान्य रूप से निलपोटेंट होने की आवश्यकता नहीं है . यदि उनके पास परिमित क्रम है, तो वे शून्य-शक्तिशाली सिद्ध होते हैं, और जब तक वे अंतिम रूप से उत्पन्न होते हैं, तब तक उन्हें शून्य-शक्तिशाली माना जाता है।

एक एबेलियन समूह निश्चित रूप से एक है जिसके लिए आसन्न क्रिया न केवल शून्य है किन्तु तुच्छ (एक 1-एंगेल समूह) है।

गुण

चूंकि प्रत्येक क्रमिक कारक समूह Zi+1/Zi ऊपरी केंद्रीय श्रृंखला में एबेलियन है, और श्रृंखला परिमित है, प्रत्येक नीलपोटेंट समूह अपेक्षाकृत सरल संरचना वाला एक हल करने योग्य समूह है।

वर्ग n के निलपोटेंट समूह का प्रत्येक उपसमूह अधिक से अधिक n वर्ग का निलपोटेंट है;[8] इसके अतिरिक्त , यदि f वर्ग n के नीलपोटेंट समूह का एक समूह समरूपता है, तो f की छवि अधिकतम n पर वर्ग की शून्य है।[8]


निम्नलिखित बयान परिमित समूहों के लिए समकक्ष हैं,[9] निलपोटेंसी के कुछ उपयोगी गुणों का खुलासा:

  1. जी निलपोटेंट समूह है।
  2. यदि H, G का उचित उपसमूह है, तो H, NG का उचित सामान्य उपसमूह है (H) (G में H का सामान्यकारक)। इसे नॉर्मलाइज़र प्रॉपर्टी कहा जाता है और इसे "नॉर्मलाइज़र ग्रो" के रूप में व्यक्त किया जा सकता है।
  3. जी का हर सिलो उपसमूह सामान्य है।
  4. जी इसके सिल्लो उपसमूहों का प्रत्यक्ष उत्पाद है।
  5. अगर डी जी के आदेश को विभाजित करता है, तो जी के पास डी की एक सामान्य उपसमूह है।

प्रमाण :

(a)→(b)
प्रेरण द्वारा | G|। यदि G आबेली है, तो किसी भी H के लिए, NG(H) = G। यदि नहीं, यदि Z (G) H में निहित नहीं है, तो HZHZ-1H−1 = hHh−1 = H, इसलिए H·Z(G) नॉर्मलाइजर्स H। यदि Z(G) H में निहित है, तो H/Z(G) G/Z(G) में निहित है। ध्यान दें, G/Z(G) एक निलपोटेंट समूह है। इस प्रकार, G/Z(G) का एक उपसमूह उपस्थित है जो H/Z(G) को सामान्य करता है और H/Z(G) इसका एक उचित उपसमूह है। इसलिए, इस उपसमूह को G के उपसमूह में वापस खींच लें और यह H को सामान्य कर देता है। (यह प्रमाण वही तर्क है जो p-समूहों के लिए है – हमें केवल एक तथ्य की आवश्यकता थी यदि G शून्य है तो G/Z(G) भी शून्य है। – इसलिए विवरण छोड़े गए हैं।):
(b)→(c)
चलो p1,p2,...,ps अपने क्रम को विभाजित करने वाले अलग-अलग अभाज्य हैं और Sylpi(G), 1 ≤ i ≤ s में P दें। कुछ i के लिए P = Pi दें और N = NG(P) दें। चूँकि P, N का एक सामान्य सिलो उपसमूह है, P, N में विशेषता है। चूँकि P char N और N, NG(N) का एक सामान्य उपसमूह है, हम पाते हैं कि P, NG(N) का एक सामान्य उपसमूह है। इसका मतलब है कि NG(N). n का उपसमूह है और इसलिए NG(N) = N। (b) से हमें N = G होना चाहिए, जो (c) देता है।:
(c)→(d)
चलो p1,p2,...,ps अपने क्रम को विभाजित करने वाले अलग-अलग अभाज्य हैं और Sylpi(G), 1 ≤ i ≤ s में Pi दें। किसी भी t, 1 ≤ t ≤ s के लिए हम आगमनात्मक रूप से दिखाते हैं कि Pi , P1×P2×···×Pt के लिए तुल्याकारी है।:पहले ध्यान दें कि G में प्रत्येक Pi सामान्य है इसलिएP1P2···Pt G का एक उपसमूह है। H को उत्पाद P1P2···Pt−1 होने दें और K = Pt, होने दें, इसलिए प्रेरण H द्वारा P1×P2×···×Pt−1 के लिए आइसोमॉर्फिक है विशेष रूप से,|H| = |P1|⋅|P2|⋅···⋅|Pt−1|. चूंकि |K| = |Pt|, H और K की कोटि अपेक्षाकृत प्रमुख हैं। लैग्रेंज के प्रमेय का अर्थ है कि H और K का प्रतिच्छेदन 1 के सामान है। परिभाषा के अनुसार, P1P2···Pt = HK इसलिए HK, H×K का समरूपी है जो P1×P2×···×Pt के सामान है। यह लैग्रेंज पूरा करता है। अब (d) प्राप्त करने के लिए t = s लें।
(d)→(e)
ध्यान दें कि क्रम pk के p-समूह कोटि pm का एक सामान्य उपसमूह है सभी के लिए 1≤m≤k. चूँकि G इसके सिलो उपसमूहों का एक प्रत्यक्ष उत्पाद है, और समूहों के प्रत्यक्ष उत्पाद पर सामान्यता संरक्षित है, G के प्रत्येक विभाजक d के लिए क्रम d का एक सामान्य उपसमूह है।
(e)→(a)
किसी भी अभाज्य p विभाजन के लिए |G|, साइलो समूह | साइलो पी-उपसमूह सामान्य है। इस प्रकार हम आवेदन कर सकते हैं (c) (चूंकि हम पहले ही सिद्ध कर चुके हैं (c)→(e)).।

वक्तव्य (d) को अनंत समूहों तक बढ़ाया जा सकता है: यदि G एक निलपोटेंट समूह है, तो प्रत्येक साइलो उपसमूह Gp Gका सामान्य है, और इन साइलो उपसमूहों का प्रत्यक्ष उत्पाद G में परिमित आदेश के सभी तत्वों का उपसमूह है (मरोड़ उपसमूह देखें)।

निलपोटेंट समूहों के कई गुण अतिकेंद्रीय समूह द्वारा साझा किए जाते हैं।

टिप्पणियाँ

  1. Dixon, M. R.; Kirichenko, V. V.; Kurdachenko, L. A.; Otal, J.; Semko, N. N.; Shemetkov, L. A.; Subbotin, I. Ya. (2012). "एसएन चेर्निकोव और अनंत समूह सिद्धांत का विकास". Algebra and Discrete Mathematics. 13 (2): 169–208.
  2. 2.0 2.1 Suprunenko (1976). मैट्रिक्स समूह. p. 205.
  3. Tabachnikova & Smith (2000). ग्रुप थ्योरी में विषय (स्प्रिंगर स्नातक गणित श्रृंखला). p. 169.
  4. Hungerford (1974). बीजगणित. p. 100.
  5. 5.0 5.1 Zassenhaus (1999). समूहों का सिद्धांत. p. 143.
  6. Haeseler (2002). Automatic Sequences (De Gruyter Expositions in Mathematics, 36). p. 15.
  7. Palmer (2001). बनच बीजगणित और *-अलजेब्रा का सामान्य सिद्धांत. p. 1283.
  8. 8.0 8.1 Bechtell (1971), p. 51, Theorem 5.1.3
  9. Isaacs (2008), Thm. 1.26


संदर्भ