निकट बहुभुज: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 11: Line 11:
* प्रत्येक दो बिंदुओं के लिए ''x'', ''y दूरी पर'' ''i'' < ''d'',  जहां y का अद्वितीय निकटस्थ उपस्थित है।
* प्रत्येक दो बिंदुओं के लिए ''x'', ''y दूरी पर'' ''i'' < ''d'',  जहां y का अद्वितीय निकटस्थ उपस्थित है।


एक निकट बहुभुज को सघन कहा जाता है यदि प्रत्येक रेखा कम से कम तीन बिंदुओं के साथ आपतित होती है और यदि प्रत्येक दो बिंदुओं की दूरी पर कम से कम दो आम पड़ोसी होते हैं। ऐसा कहा जाता है कि क्रम (s, t) है यदि प्रत्येक पंक्ति ठीक + 1 बिंदुओं के साथ आपतित होती है और प्रत्येक बिंदु ठीक + 1 रेखाओं के साथ आपतित होती है। पॉलीगॉन के पास डेंस का एक समृद्ध सिद्धांत है और उनमें से कई वर्ग (जैसे पॉलीगॉन के पास स्लिम डेंस) को पूरी तरह से वर्गीकृत किया गया है।<ref>De Bruyn, Bart. ''Near Polygons''</ref>
एक निकट बहुभुज को सघन कहा जाता है यदि प्रत्येक रेखा कम से कम तीन बिंदुओं के साथ आपतित होती है और यदि प्रत्येक दो बिंदुओं की दूरी पर कम से कम दो सामान्य निकटस्थ होते हैं। ऐसा कहा जाता है कि क्रम (''s'', ''t'') है यदि प्रत्येक पंक्ति ठीक ''s'' + 1 बिंदुओं के साथ आपतित होती है और प्रत्येक बिंदु ठीक ''t'' + रेखाओं के साथ आपतित होती है। बहुभुज के पास डेंस का सुस्पष्ट सिद्धांत है और उनमें से कई वर्ग (जैसे बहुभुज के पास स्लिम डेंस) को पूरी तरह से वर्गीकृत किया गया है।<ref>De Bruyn, Bart. ''Near Polygons''</ref>




== उदाहरण ==
== उदाहरण ==
* सभी जुड़े [[द्विपक्षीय ग्राफ]] बहुभुज के पास हैं। वास्तव में, कोई भी निकट बहुभुज जिसमें प्रति पंक्ति ठीक दो बिंदु हों, एक जुड़ा हुआ द्विदलीय ग्राफ होना चाहिए।
* सभी जुड़े [[द्विपक्षीय ग्राफ]] बहुभुज के पास हैं। वास्तव में, कोई भी निकट बहुभुज जिसमें प्रति पंक्ति ठीक दो बिंदु हों, एक जुड़ा हुआ द्विआधारी ग्राफ होना चाहिए।
* प्रक्षेपी तलों को छोड़कर सभी परिमित सामान्यीकृत बहुभुज।
* प्रक्षेपी तलों को छोड़कर सभी परिमित सामान्यीकृत बहुभुज हैं।
* सभी ध्रुवीय स्थान।
* सभी दोहरी ध्रुवीय स्थान हैं।
* अष्टकोना के पास हॉल-जानको, जिसे अष्टकोना के पास कोहेन-[[जैक्स स्तन]] के रूप में भी जाना जाता है<ref>{{Cite web|url=http://www.win.tue.nl/~aeb/graphs/HJ315.html|title = The near octagon on 315 points}}</ref> हॉल-जान्को समूह से संबद्ध। इसका निर्माण हॉल-जानको समूह के 315 केंद्रीय अंतर्विरोधों के [[संयुग्मन वर्ग]] को बिंदुओं और रेखाओं के रूप में तीन तत्व उपसमुच्चय {x, y, xy} के रूप में चुनकर किया जा सकता है जब भी x और y यात्रा करते हैं।
* अष्टभुज के पास हॉल-जानको, जिसे हॉल-जांको समूह से जुड़े अष्टभुज के निकट कोहेन-टिट्स के रूप में भी जाना जाता है।<ref>{{Cite web|url=http://www.win.tue.nl/~aeb/graphs/HJ315.html|title = The near octagon on 315 points}}</ref> इसको निर्मित हॉल-जानको समूह के 315 केंद्रीय अंतर्विरोधों के [[संयुग्मन वर्ग]] को बिंदुओं और रेखाओं के रूप में तीन तत्व उपसमुच्चय {x, y, xy} के रूप में चुनकर किया जा सकता है जब भी x और y कम्यूट होता है।
* उन्हें<sub>24</sub> [[मैथ्यू समूह M24]] और [[ बाइनरी भाषा में कोड ]] से संबंधित हेक्सागोन के पास। इसका निर्माण गोले कोड के अनुरूप विट डिजाइन एस (5, 8, 24) में 759 ऑक्टैड्स (ब्लॉक) को बिंदुओं के रूप में और लाइनों के रूप में तीन जोड़ीदार असंयुक्त ऑक्टैड्स के ट्रिपल द्वारा किया गया है।<ref>{{cite web|url=https://www.win.tue.nl/~aeb/2WF02/Witt.pdf |website=tue.nl|access-date=25 April 2023
* उन्हें M<sub>24</sub> [[मैथ्यू समूह M24]] और [[ बाइनरी भाषा में कोड |बाइनरी भाषा में कोड]] से संबंधित है। । इसका निर्माण गोले कोड के अनुरूप विट डिजाइन ''S''(5, 8, 24) में 759 अष्टक (ब्लॉक) को बिंदुओं के रूप में और रेखाओ के रूप में तीन जोड़ीदार असंयुक्त अष्टक के ट्रिपल द्वारा किया गया है।<ref>{{cite web|url=https://www.win.tue.nl/~aeb/2WF02/Witt.pdf |website=tue.nl|access-date=25 April 2023
|title=The Witt designs, Golay codes and Mathieu groups}}</ref> * {1, 2, ..., 2n + 2} के समुच्चय के विभाजन को n + 1 2-उपसमुच्चय में बिंदुओं के रूप में लें और विभाजनों को n 1 2-उपसमुच्चय और एक 4-उपसमुच्चय को रेखाओं के रूप में लें। एक बिंदु एक रेखा की आपतन है यदि विभाजन के रूप में यह रेखा का परिशोधन है। यह हमें प्रत्येक पंक्ति पर तीन बिंदुओं के साथ लगभग 2n-गॉन देता है, जिसे आमतौर पर 'H' के रूप में दर्शाया जाता है।<sub>''n''</sub>. इसका पूर्ण ऑटोमोर्फिज़्म समूह [[सममित समूह]] S है<sub>2''n''+2</sub>.<ref>{{citation|last1 = Brouwer|first1 = A.E.|last2=Wilbrink|first2=H.A.|title=Two infinite sequences of near polygons|url=http://www.win.tue.nl/~aeb/preprints/zw194.pdf}}</ref><ref>{{citation|first=Bart|last=De Bruyn|title=Isometric embeddings between the near polygon '''H'''<sub>n</sub> and '''G'''<sub>n</sub>|url=https://biblio.ugent.be/publication/5842831/file/5842840.pdf}}</ref>
|title=The Witt designs, Golay codes and Mathieu groups}}</ref>  
*{1, 2, ..., 2''n'' + 2} के समुच्चय के विभाजन को ''n'' + 1 2-उपसमुच्चय में बिंदुओं के रूप में लें और विभाजनों को ''n'' + 1 22-उपसमुच्चय और एक 4-उपसमुच्चय को रेखाओं के रूप में लेते है। एक बिंदु रेखा की आपतन है यदि विभाजन के रूप में यह रेखा का परिशोधन है। यह हमें प्रत्येक पंक्ति पर तीन बिंदुओं के साथ लगभग 2''n''-गॉन देता है, जिसे आमतौर पर ''''H'''<sub>''n''</sub>' के रूप में दर्शाया जाता है। इसका पूर्ण ऑटोमोर्फिज़्म समूह [[सममित समूह]] ''S''<sub>2''n''+2</sub> है।<ref>{{citation|last1 = Brouwer|first1 = A.E.|last2=Wilbrink|first2=H.A.|title=Two infinite sequences of near polygons|url=http://www.win.tue.nl/~aeb/preprints/zw194.pdf}}</ref><ref>{{citation|first=Bart|last=De Bruyn|title=Isometric embeddings between the near polygon '''H'''<sub>n</sub> and '''G'''<sub>n</sub>|url=https://biblio.ugent.be/publication/5842831/file/5842840.pdf}}</ref>




== बहुभुज के पास नियमित ==
== बहुभुज के पास नियमित ==
एक परिमित निकट <math>2d</math>-गॉन एस को नियमित कहा जाता है अगर इसका कोई आदेश हो <math>(s,t)</math> और अगर वहाँ स्थिरांक उपस्थित हैं <math>t_i, i \in \{1,\ldots,d\}</math>, जैसे कि हर दो बिंदुओं के लिए <math>x</math> और <math>y</math> दूरी पर <math>i</math>, ठीक हैं <math>t_i + 1</math> के माध्यम से लाइनें <math>y</math> दूरी पर एक (अनिवार्य रूप से अद्वितीय) बिंदु युक्त <math>i - 1</math> से <math>x</math>. यह पता चला है कि नियमित रूप से पास <math>2d</math>-गन ठीक वही हैं जो पास हैं <math>2d</math>-गोंस जिसका पॉइंट ग्राफ़ (जिसे कोलीनिकटिटी#कोलीनिकटिटी ग्राफ़ के रूप में भी जाना जाता है) एक [[दूरी-नियमित ग्राफ]]है। एक सामान्यीकृत <math>2d</math>-आदेश का <math>(s, t)</math> एक नियमित निकट है <math>2d</math>-पैरामीटर के साथ <math>t_1 = 0, t_2 = 0, \ldots, t_d = t</math>
एक परिमित निकट <math>2d</math>-गॉन एस को नियमित कहा जाता है अगर इसका कोई क्रम <math>(s,t)</math> हो और अगर वहाँ स्थिरांक <math>t_i, i \in \{1,\ldots,d\}</math> उपस्थित हैं, जैसे कि हर दो बिंदुओं के लिए <math>x</math> और <math>y</math> दूरी पर <math>i</math>, यथावत्
 
हैं, <math>t_i + 1</math> के माध्यम से लाइनें <math>y</math> दूरी पर एक (अनिवार्य रूप से अद्वितीय) बिंदु युक्त <math>i - 1</math> से <math>x</math>. यह पता चला है कि नियमित रूप से पास <math>2d</math>-गन ठीक वही हैं जो पास हैं <math>2d</math>-गोंस जिसका बिंदु ग्राफ (जिसे कॉलिनेरिटी ग्राफ भी कहा जाता है) एक [[दूरी-नियमित ग्राफ]] है। सामान्यीकृत <math>2d</math>-क्रम का <math>(s, t)</math> एक नियमित निकट <math>2d</math>-पैरामीटर के साथ <math>t_1 = 0, t_2 = 0, \ldots, t_d = t</math> है।





Revision as of 00:20, 8 May 2023

व्यास d = 2 के साथ बहुभुज के पास घना

गणित में, निकट बहुभुज 1980 में अर्नेस्ट ई. शल्ट और आर्थर यानुष्का द्वारा प्रस्तुत आपतन ज्यामिति है।[1] शल्ट और यानुष्का ने यूक्लिडियन समष्टि में तथाकथित टेट्राहेड क्लोज्ड लाइन सिस्टम और पॉइंट-लाइन ज्यामिति के वर्ग के बीच संयोजन दिखाया जिसे वे पॉलीगन्स के पास कहते थे। ये संरचनाएं सामान्यीकृत बहुभुज की धारणा को सामान्य बनाती हैं क्योंकि प्रत्येक सामान्यीकृत 2n-गॉन किसी विशेष प्रकार के 2n-गॉन के निकट है। बहुभुजों का बड़े पैमाने पर अध्ययन किया गया और उनके और दोहरे ध्रुवीय स्थानों के बीच संबंध का अध्ययन किया गया था।[2] 1980 और 1990 के दशक के प्रारंभ में दिखाया गया था। कुछ स्पोरैडिक सरल समूह, उदाहरण के लिए हॉल-जान्को समूह और मैथ्यू समूह, निकट बहुभुजों के ऑटोमोर्फिज़्म समूहों के रूप में कार्य करते हैं।

परिभाषा

निकट 2d-गॉन आपतन संरचना () है, जहां बिंदुओं का समूह है, लाइनों का सेट है और आपतन संबंध है, जैसे कि:

  • दो बिंदुओं (तथाकथित व्यास) के बीच की अधिकतम दूरी d है।
  • हर बिंदु के लिए और हर पंक्ति पर अद्वितीय बिंदु उपस्थित है जो के सबसे निकट है।

ध्यान दें कि दूरी को बिंदुओं के संरेखता ग्राफ़ (विच्छेद गणित) में मापा जाता है, अर्थात, बिंदुओं को शीर्षों के रूप में लेकर और शीर्षों की जोड़ी को जोड़कर बनाया गया ग्राफ़, यदि वे सामान्य रेखा के साथ घटित होते हैं। हम एक वैकल्पिक ग्राफ (असतत गणित) की परिभाषा भी दे सकते हैं, निकट 2d-गॉन विशेशता के साथ परिमित व्यास d का जुड़ा हुआ ग्राफ है जो प्रत्येक शीर्ष x और प्रत्येक अधिकतम क्लिक M के लिए M में एक अद्वितीय शीर्ष x' उपस्थित है जो निकटतम x है। इस तरह के ग्राफ के अधिकतम समूह आपतन संरचना परिभाषा में रेखाओं के अनुरूप होते हैं। निकट 0-गॉन (d = 0) एक एकल बिंदु है जबकि a निकट 2-गॉन (d = 1) केवल पंक्ति है, अर्थात एक पूर्ण ग्राफ है। एक निकट चतुर्भुज ((d = 2) सामान्यीकृत चतुर्भुज के समान है। वास्तव में, यह दिखाया जा सकता है कि प्रत्येक सामान्यीकृत बहुभुज 2d-गॉन निकट 2d-गॉन है जो निम्नलिखित दो अतिरिक्त शर्तों को पूरा करता है:

  • हर बिंदु कम से कम दो पंक्तियों के साथ आपतन है।
  • प्रत्येक दो बिंदुओं के लिए x, y दूरी पर i < d, जहां y का अद्वितीय निकटस्थ उपस्थित है।

एक निकट बहुभुज को सघन कहा जाता है यदि प्रत्येक रेखा कम से कम तीन बिंदुओं के साथ आपतित होती है और यदि प्रत्येक दो बिंदुओं की दूरी पर कम से कम दो सामान्य निकटस्थ होते हैं। ऐसा कहा जाता है कि क्रम (s, t) है यदि प्रत्येक पंक्ति ठीक s + 1 बिंदुओं के साथ आपतित होती है और प्रत्येक बिंदु ठीक t + 1 रेखाओं के साथ आपतित होती है। बहुभुज के पास डेंस का सुस्पष्ट सिद्धांत है और उनमें से कई वर्ग (जैसे बहुभुज के पास स्लिम डेंस) को पूरी तरह से वर्गीकृत किया गया है।[3]


उदाहरण

  • सभी जुड़े द्विपक्षीय ग्राफ बहुभुज के पास हैं। वास्तव में, कोई भी निकट बहुभुज जिसमें प्रति पंक्ति ठीक दो बिंदु हों, एक जुड़ा हुआ द्विआधारी ग्राफ होना चाहिए।
  • प्रक्षेपी तलों को छोड़कर सभी परिमित सामान्यीकृत बहुभुज हैं।
  • सभी दोहरी ध्रुवीय स्थान हैं।
  • अष्टभुज के पास हॉल-जानको, जिसे हॉल-जांको समूह से जुड़े अष्टभुज के निकट कोहेन-टिट्स के रूप में भी जाना जाता है।[4] इसको निर्मित हॉल-जानको समूह के 315 केंद्रीय अंतर्विरोधों के संयुग्मन वर्ग को बिंदुओं और रेखाओं के रूप में तीन तत्व उपसमुच्चय {x, y, xy} के रूप में चुनकर किया जा सकता है जब भी x और y कम्यूट होता है।
  • उन्हें M24 मैथ्यू समूह M24 और बाइनरी भाषा में कोड से संबंधित है। । इसका निर्माण गोले कोड के अनुरूप विट डिजाइन S(5, 8, 24) में 759 अष्टक (ब्लॉक) को बिंदुओं के रूप में और रेखाओ के रूप में तीन जोड़ीदार असंयुक्त अष्टक के ट्रिपल द्वारा किया गया है।[5]
  • {1, 2, ..., 2n + 2} के समुच्चय के विभाजन को n + 1 2-उपसमुच्चय में बिंदुओं के रूप में लें और विभाजनों को n + 1 22-उपसमुच्चय और एक 4-उपसमुच्चय को रेखाओं के रूप में लेते है। एक बिंदु रेखा की आपतन है यदि विभाजन के रूप में यह रेखा का परिशोधन है। यह हमें प्रत्येक पंक्ति पर तीन बिंदुओं के साथ लगभग 2n-गॉन देता है, जिसे आमतौर पर 'Hn' के रूप में दर्शाया जाता है। इसका पूर्ण ऑटोमोर्फिज़्म समूह सममित समूह S2n+2 है।[6][7]


बहुभुज के पास नियमित

एक परिमित निकट -गॉन एस को नियमित कहा जाता है अगर इसका कोई क्रम हो और अगर वहाँ स्थिरांक उपस्थित हैं, जैसे कि हर दो बिंदुओं के लिए और दूरी पर , यथावत्

हैं, के माध्यम से लाइनें दूरी पर एक (अनिवार्य रूप से अद्वितीय) बिंदु युक्त से . यह पता चला है कि नियमित रूप से पास -गन ठीक वही हैं जो पास हैं -गोंस जिसका बिंदु ग्राफ (जिसे कॉलिनेरिटी ग्राफ भी कहा जाता है) एक दूरी-नियमित ग्राफ है। सामान्यीकृत -क्रम का एक नियमित निकट -पैरामीटर के साथ है।


यह भी देखें

टिप्पणियाँ

  1. Shult, Ernest; Yanushka, Arthur. "Near n-gons and line systems".
  2. Cameron, Peter J. "Dual polar spaces".
  3. De Bruyn, Bart. Near Polygons
  4. "The near octagon on 315 points".
  5. "The Witt designs, Golay codes and Mathieu groups" (PDF). tue.nl. Retrieved 25 April 2023.
  6. Brouwer, A.E.; Wilbrink, H.A., Two infinite sequences of near polygons (PDF)
  7. De Bruyn, Bart, Isometric embeddings between the near polygon Hn and Gn (PDF)


संदर्भ

  • De Clerck, F.; Van Maldeghem, H. (1995), "Some classes of rank 2 geometries", Handbook of Incidence Geometry, Amsterdam: North-Holland, pp. 433–475.
  • Shult, Ernest E. (2011), Points and Lines, Universitext, Springer, doi:10.1007/978-3-642-15627-4, ISBN 978-3-642-15626-7.