लाप्लास ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 138: Line 138:
विशेष मामले के लिए जहां <math>\mathbf{T}</math>  अदिश (गणित) (शून्य डिग्री का  टेन्सर) है, लाप्लासियन परिचित रूप लेता है।
विशेष मामले के लिए जहां <math>\mathbf{T}</math>  अदिश (गणित) (शून्य डिग्री का  टेन्सर) है, लाप्लासियन परिचित रूप लेता है।


यदि <math>\mathbf{T}</math>  वेक्टर (पहली डिग्री का टेन्सर) है, ग्रेडिएंट  सहसंयोजक व्युत्पन्न है जिसके परिणामस्वरूप दूसरी डिग्री का टेंसर होता है, और इसका विचलन फिर से  वेक्टर होता है। उपरोक्त सदिश लाप्लासियन के सूत्र का उपयोग टेन्सर गणित से बचने के लिए किया जा सकता है और  सदिश के प्रवणता के लिए नीचे दिखाए गए जैकोबियन मैट्रिक्स के विचलन के बराबर दिखाया जा सकता है:
यदि <math>\mathbf{T}</math>  वेक्टर (पहली डिग्री का टेन्सर) है, ग्रेडिएंट  सहसंयोजक व्युत्पन्न है जिसके परिणामस्वरूप दूसरी डिग्री का टेंसर होता है, और इसका विचलन फिर से  वेक्टर होता है। उपरोक्त सदिश लाप्लासियन के सूत्र का उपयोग टेन्सर गणित से बचने के लिए किया जा सकता है और  सदिश के प्रवणता के लिए नीचे दिखाए गए जैकोबियन आव्यूह के विचलन के बराबर दिखाया जा सकता है:
<math display="block">\nabla \mathbf{T}= (\nabla T_x, \nabla T_y, \nabla T_z) = \begin{bmatrix}
<math display="block">\nabla \mathbf{T}= (\nabla T_x, \nabla T_y, \nabla T_z) = \begin{bmatrix}
T_{xx} & T_{xy} & T_{xz} \\
T_{xx} & T_{xy} & T_{xz} \\
Line 145: Line 145:
\end{bmatrix} ,
\end{bmatrix} ,
\text{ where } T_{uv} \equiv \frac{\partial T_u}{\partial v}.</math>
\text{ where } T_{uv} \equiv \frac{\partial T_u}{\partial v}.</math>
और, उसी प्रकार,  डॉट उत्पाद, जो  वेक्टर का मूल्यांकन करता है,  वेक्टर के दूसरे वेक्टर (द्वितीय डिग्री का टेंसर) के प्रवणता द्वारा मैट्रिक्स के उत्पाद के रूप में देखा जा सकता है:
और, उसी प्रकार,  डॉट उत्पाद, जो  वेक्टर का मूल्यांकन करता है,  वेक्टर के दूसरे वेक्टर (द्वितीय डिग्री का टेंसर) के प्रवणता द्वारा आव्यूह के उत्पाद के रूप में देखा जा सकता है:
<math display="block"> \mathbf{A} \cdot \nabla \mathbf{B}
<math display="block"> \mathbf{A} \cdot \nabla \mathbf{B}
= \begin{bmatrix} A_x & A_y & A_z \end{bmatrix} \nabla \mathbf{B}
= \begin{bmatrix} A_x & A_y & A_z \end{bmatrix} \nabla \mathbf{B}
= \begin{bmatrix} \mathbf{A} \cdot \nabla B_x & \mathbf{A} \cdot \nabla B_y & \mathbf{A} \cdot \nabla B_z \end{bmatrix}.</math>
= \begin{bmatrix} \mathbf{A} \cdot \nabla B_x & \mathbf{A} \cdot \nabla B_y & \mathbf{A} \cdot \nabla B_z \end{bmatrix}.</math>
यह पहचान  समन्वय निर्भर परिणाम है, और सामान्य नहीं है।
यह पहचान  समन्वय निर्भर परिणाम है और सामान्य नहीं है।


=== भौतिकी में प्रयोग करें ===
=== भौतिकी में प्रयोग करें ===
Line 166: Line 166:


=== लाप्लास-बेल्ट्रामी ऑपरेटर ===
=== लाप्लास-बेल्ट्रामी ऑपरेटर ===
{{main article|Laplace–Beltrami operator}}
{{main article|लाप्लास-बेल्ट्रामी ऑपरेटर}}
लाप्लासियन को  अण्डाकार ऑपरेटर के लिए भी सामान्यीकृत किया जा सकता है जिसे लाप्लास-बेल्ट्रामी ऑपरेटर कहा जाता है जिसे रीमैनियन मैनिफोल्ड पर परिभाषित किया गया है। लाप्लास-बेल्ट्रामी ऑपरेटर, जब  फलन पर लागू होता है, ट्रेस (रैखिक बीजगणित) होता है ({{math|tr}}) फलन के हेसियन मैट्रिक्स का:
लाप्लासियन को  अण्डाकार ऑपरेटर के लिए भी सामान्यीकृत किया जा सकता है जिसे लाप्लास-बेल्ट्रामी ऑपरेटर कहा जाता है जिसे रीमैनियन मैनिफोल्ड पर परिभाषित किया गया है। लाप्लास-बेल्ट्रामी ऑपरेटर, जब  फलन पर लागू होता है, ट्रेस (रैखिक बीजगणित) होता है ({{math|tr}}) फलन के हेसियन आव्यूह का:
<math display="block">\Delta f = \operatorname{tr}\big(H(f)\big)</math>
<math display="block">\Delta f = \operatorname{tr}\big(H(f)\big)</math>
जहां मीट्रिक टेंसर के व्युत्क्रम के संबंध में ट्रेस लिया जाता है। लाप्लास-बेल्ट्रामी ऑपरेटर को  ऑपरेटर (जिसे लाप्लास-बेल्ट्रामी ऑपरेटर भी कहा जाता है) के लिए सामान्यीकृत किया जा सकता है, जो  समान सूत्र द्वारा टेन्सर क्षेत्रों पर संचालित होता है।
जहां मीट्रिक टेंसर के व्युत्क्रम के संबंध में ट्रेस लिया जाता है। लाप्लास-बेल्ट्रामी ऑपरेटर को  ऑपरेटर (जिसे लाप्लास-बेल्ट्रामी ऑपरेटर भी कहा जाता है) के लिए सामान्यीकृत किया जा सकता है, जो  समान सूत्र द्वारा टेन्सर क्षेत्रों पर संचालित होता है।
Line 175: Line 175:
यहां {{mvar|δ}} कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी व्युत्पन्न  के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है {{mvar|α}} द्वारा
यहां {{mvar|δ}} कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी व्युत्पन्न  के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है {{mvar|α}} द्वारा
<math display="block">\Delta \alpha = \delta d \alpha + d \delta \alpha .</math>
<math display="block">\Delta \alpha = \delta d \alpha + d \delta \alpha .</math>
इसे लाप्लास-बेल्ट्रामी ऑपरेटर#लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।
इसे लाप्लास-बेल्ट्रामी ऑपरेटर लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।


=== डी'अलेम्बर्टियन ===
=== डी'अलेम्बर्टियन ===
Line 182: Line 182:
मिन्कोव्स्की अंतरिक्ष में लाप्लास-बेल्ट्रामी ऑपरेटर डी'अलेम्बर्ट ऑपरेटर बन जाता है <math>\Box</math> या डी'अलेम्बर्टियन:
मिन्कोव्स्की अंतरिक्ष में लाप्लास-बेल्ट्रामी ऑपरेटर डी'अलेम्बर्ट ऑपरेटर बन जाता है <math>\Box</math> या डी'अलेम्बर्टियन:
<math display="block">\square = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}.</math>
<math display="block">\square = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}.</math>
यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के अनुसार  अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग  नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। D'Alembert ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।
यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के अनुसार  अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग  नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। डी'अलेम्बर्ट ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।


का अतिरिक्त कारक {{math|''c''}} भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है;  समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, {{mvar|x}} दिशा मीटर में मापी गई जबकि {{mvar|y}} दिशा सेंटीमीटर में मापी गई। वास्तव में, सैद्धांतिक भौतिक विज्ञानी सामान्यतः  ऐसी इकाइयों में काम करते हैं {{math|1=[[Natural units|''c'' = 1]]}} समीकरण को सरल बनाने के लिए।
का अतिरिक्त कारक {{math|''c''}} भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है;  समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, {{mvar|x}} दिशा मीटर में मापी गई जबकि {{mvar|y}} दिशा सेंटीमीटर में मापी गई। वास्तव में, सैद्धांतिक भौतिक विज्ञानी सामान्यतः  ऐसी इकाइयों में काम करते हैं {{math|1=[[Natural units|''c'' = 1]]}} समीकरण को सरल बनाने के लिए।

Revision as of 11:27, 17 May 2023

गणित में, लाप्लास ऑपरेटर या लाप्लासियन अवकल संकारक है जो यूक्लिडियन स्थान पर एक अदिश फलन के प्रवणता के विचलन द्वारा दिया जाता है। यह सामान्यतः प्रतीकों , (जहां डेल है), या द्वारा दर्शाया जाता है। कार्तीय समन्वय प्रणाली में, लाप्लासियन को प्रत्येक स्वतंत्र चर के संबंध में फलन के दूसरे आंशिक व्युत्पन्न के योग द्वारा दिया जाता है। अन्य समन्वय प्रणालियों में, जैसे कि बेलनाकार निर्देशांक और गोलाकार निर्देशांक, लाप्लासियन का भी उपयोगी रूप है। अनौपचारिक रूप से, लाप्लासियन Δf (p) फलन का f बिंदु पर p के औसत मूल्य से मापता है f छोटे गोले या गेंदों पर केंद्रित p से विचलित f (p) होता है ।

लाप्लास ऑपरेटर का नाम फ्रांसीसी गणितज्ञ पियरे-साइमन डी लाप्लास (1749-1827) के नाम पर रखा गया है, जिन्होंने पहली बार आकाशीय यांत्रिकी के अध्ययन के लिए ऑपरेटर को लागू किया था। किसी दिए गए द्रव्यमान घनत्व वितरण के कारण गुरुत्वाकर्षण क्षमता का लाप्लासियन निरंतर गुणक है। वह घनत्व वितरण लाप्लास के समीकरण के समाधान Δf = 0 हार्मोनिक फलन कहलाते हैं और निर्वात के क्षेत्रों में संभावित गुरुत्वाकर्षण क्षमता का प्रतिनिधित्व करते हैं।

लाप्लासियन भौतिक घटनाओं का वर्णन करने वाले कई अंतर समीकरणों में होता है। प्वासों का समीकरण विद्युत क्षमता और गुरुत्वाकर्षण क्षमता का वर्णन करता है ।प्रसार समीकरण ऊष्मा समीकरण और द्रव यांत्रिकी का वर्णन करता है, तरंग समीकरण तरंग समीकरण का वर्णन करता है और क्वांटम यांत्रिकी में श्रोडिंगर समीकरण। मूर्ति प्रोद्योगिकी और कंप्यूटर विज़न में, लाप्लासियन ऑपरेटर का उपयोग विभिन्न कार्यों के लिए किया गया है, जैसे बूँद का पता लगाना और किनारे का पता लगाना। लाप्लासियन सबसे सरल अण्डाकार संचालिका है और हॉज सिद्धांत के साथ-साथ डी रम कोहोलॉजी के परिणामों के मूल में है।

परिभाषा

लाप्लास संचालिका द्वितीय-क्रम अवकल समीकरण है। n-आयामी यूक्लिडियन अंतरिक्ष में द्वितीय-क्रम अवकल संचालिका है, जिसे अपसरण () के रूप में प्रवणता का () परिभाषित किया गया है . इस प्रकार यदि व्युत्पन्न दो बार-विभेदक वास्तविक-मूल्यवान फलन है, फिर का लाप्लासियन द्वारा परिभाषित वास्तविक-मूल्यवान कार्य है।

 

 

 

 

(1)

जहां बाद की सूचनाएं औपचारिक रूप से लिखने से प्राप्त होती हैं।

स्पष्ट रूप से, के लाप्लासियन f इस प्रकार कार्तीय निर्देशांक में सभी अमिश्रित दूसरे आंशिक व्युत्पन्न का योग xi है ।

 

 

 

 

(2)

दूसरे क्रम के अंतर ऑपरेटर के रूप में, लाप्लास ऑपरेटर [[Continuously differentiable|Ck]] को k ≥ 2 के लिए Ck−2 कार्यों के लिए मैप करता है। यह रैखिक ऑपरेटर है Δ : Ck(Rn) → Ck−2(Rn), या अधिक सामान्यतः ऑपरेटर Δ : Ck(Ω) → Ck−2(Ω) किसी भी खुले सेटΩ ⊆ Rn के लिए है।

प्रेरणा

प्रसार

प्रसार के भौतिकी सिद्धांत में, लाप्लास ऑपरेटर प्रसार संतुलन के गणितीय विवरण में स्वाभाविक रूप से उत्पन्न होता है।[1] विशेष रूप से, यदि u कुछ मात्रा के संतुलन पर घनत्व है जैसे रासायनिक एकाग्रता, फिर शुद्ध प्रवाह u सीमा के माध्यम से V किसी भी चिकने क्षेत्र का V शून्य है, परंतु भीतर कोई स्रोत या सिंक V न हो :

जहां n की सीमा के लिए सामान्य बाहरी इकाई V है । विचलन प्रमेय द्वारा,
चूंकि यह सभी चिकने क्षेत्रों के लिए है V, कोई दिखा सकता है कि इसका तात्पर्य है।
इस समीकरण के बाईं ओर लाप्लास ऑपरेटर और संपूर्ण समीकरण है Δu = 0 लाप्लास के समीकरण के रूप में जाना जाता है। लाप्लास समीकरण के समाधान, अर्थात ऐसे कार्य जिनके लाप्लासियन समान रूप से शून्य हैं, इस प्रकार प्रसार के अनुसार संभावित संतुलन घनत्व का प्रतिनिधित्व करते हैं।

लाप्लास ऑपरेटर के पास गैर-संतुलन प्रसार के लिए भौतिक व्याख्या है, जिस सीमा तक बिंदु स्रोत या रासायनिक एकाग्रता के सिंक का प्रतिनिधित्व करता है, अर्थ में प्रसार समीकरण द्वारा सटीक बनाया गया है। लाप्लासियन की इस व्याख्या को औसत के बारे में निम्नलिखित तथ्य से भी समझाया गया है।

औसत

दो बार लगातार अलग-अलग फलन दिया गया , बिंदु और वास्तविक संख्या , हम जाने का औसत मान हो गेंद पर त्रिज्या के साथ पर केंद्रित है और का औसत मान हो , त्रिज्या के साथ गोले ( गेंद की सीमा) के ऊपर पर केंद्रित है। तो हमारे पास हैं:[2]

और


क्षमता से जुड़ा घनत्व

यदि φ चार्ज वितरण से जुड़े इलेक्ट्रोस्टैटिक क्षमता q को दर्शाता है , तब आवेश वितरण स्वयं के लाप्लासियन के ऋणात्मक द्वारा φ दिया जाता है।

जहां ε0 विद्युत स्थिरांक है।

यह गॉस के नियम का परिणाम है। वास्तव में, यदि V सीमा के साथ कोई चिकना क्षेत्र V है , फिर गॉस के नियम द्वारा इलेक्ट्रोस्टैटिक क्षेत्र का प्रवाह E सीमा के पार संलग्न प्रभार के समानुपाती होता है।

जहाँ पहली समानता विचलन प्रमेय के कारण है। चूंकि इलेक्ट्रोस्टैटिक क्षेत्र क्षमता का (नकारात्मक) प्रवणता है, यह देता है।
चूंकि यह सभी क्षेत्रों के लिए है V, हमारे पास यह होना चाहिए
उसी दृष्टिकोण का तात्पर्य है कि गुरुत्वाकर्षण क्षमता के लाप्लासियन का ऋणात्मक द्रव्यमान वितरण है। अधिकांशतः आवेश (या द्रव्यमान) वितरण दिया जाता है और संबंधित क्षमता अज्ञात होती है। उपयुक्त सीमा स्थितियों के अधीन संभावित फलन का पता लगाना प्वासों के समीकरण को हल करने के बराबर है।

ऊर्जा न्यूनीकरण

भौतिकी में दिखने वाले लाप्लासियन के लिए एक और प्रेरणा यह है कि इसका समाधान Δf = 0 क्षेत्र में U ऐसे कार्य हैं जो डिरिचलेट ऊर्जा को कार्यात्मक (गणित) स्थिर बिंदु बनाते हैं।

इसे देखने के लिए, मान लीजिए f : UR फलन है, और u : UR ऐसा कार्य है जो U की सीमा पर गायब हो जाता है । फिर:
जहां अंतिम समानता ग्रीन की पहली पहचान का उपयोग करती है। यह गणना दर्शाती है कि यदि Δf = 0, तब E, f चारों ओर स्थिर है . इसके विपरीत यदि E , f चारों ओर स्थिर है , तब Δf = 0 विविधताओं की कलन की मौलिक लेम्मा द्वारा।

समन्वय भाव

दो आयाम

लाप्लास ऑपरेटर दो आयामों में दिया जाता है:

कार्तीय निर्देशांक में,

जहाँ x और y, xy-तल के मानक कार्तीय निर्देशांक हैं।

ध्रुवीय निर्देशांक में,

जहां r रेडियल दूरी और θ कोण का प्रतिनिधित्व करता है ।

तीन आयाम

तीन आयामों में, विभिन्न समन्वय प्रणालियों में लाप्लासियन के साथ काम करना साधारण है।

कार्तीय निर्देशांक में,

बेलनाकार निर्देशांक में,
जहां रेडियल दूरी का प्रतिनिधित्व करता है, φ दिगंश कोण और z ऊँचाईं।

गोलाकार निर्देशांक में:

या

जहां φ दिगंशीय कोण और θ आंचल कोण कोण या सह-अक्षांश का प्रतिनिधित्व करता है सामान्य घुमावदार निर्देशांक में (ξ1, ξ2, ξ3):

जहां दोहराए गए सूचकांकों पर योग निहित है, gmn व्युत्क्रम मीट्रिक टेन्सर है और Γl mn चयनित निर्देशांकों के लिए क्रिस्टोफ़ेल प्रतीक हैं।

N आयाम

N आयाम (ξ1, …, ξN) विवेकाधीन वक्रीय निर्देशांक में , हम व्युत्क्रम मीट्रिक टेन्सर के संदर्भ में लाप्लासियन लिख सकते हैं।

विचलन के लिए वॉस -हरमन वेइल सूत्र से[3] सामान्य निर्देशांक।

N आयाम गोलाकार निर्देशांक में, मानकीकरण के साथ x = RN साथ r सकारात्मक वास्तविक त्रिज्या का प्रतिनिधित्व करना और θ इकाई क्षेत्र SN−1 का एक तत्व है,

जहां ΔSN−1 लाप्लास-बेल्ट्रामी ऑपरेटर है (N − 1)-गोला, गोलाकार लाप्लासियन के रूप में जाना जाता है। दो रेडियल व्युत्पन्न शब्दों को समान रूप से फिर से लिखा जा सकता है।
परिणाम के रूप में,SN−1RN पर परिभाषित फलन के गोलाकार लाप्लासियन तक विस्तारित RN∖{0} फलन के सामान्य लाप्लासियन के रूप में गणना की जा सकती है जिससे कि यह किरणों के साथ स्थिर हो, अर्थात डिग्री शून्य का सजातीय कार्य है।

यूक्लिडियन आक्रमण

लाप्लासियन सभी यूक्लिडियन परिवर्तनों के अनुसार अपरिवर्तनीय है घूर्णन और अनुवाद (गणित)। दो आयामों में, उदाहरण के लिए, इसका अर्थ है कि:

सभी θ, a, और b के लिए। विवेकाधीन आयामों में,
जब भी ρ घूर्णन होता है, और इसी प्रकार:
जब भी τ अनुवाद है। (अधिक सामान्य रूप में , यह सच रहता है जब ρ प्रतिबिंब (गणित) जैसे ओर्थोगोनल परिवर्तन होता है।)

वास्तव में, सभी स्केलर रेखीय अंतर ऑपरेटरों का बीजगणित, निरंतर गुणांक के साथ, जो सभी यूक्लिडियन परिवर्तनों के साथ यात्रा करता है, लाप्लास ऑपरेटर द्वारा उत्पन्न बहुपद बीजगणित है।

स्पेक्ट्रल सिद्धांत

लाप्लास ऑपरेटर के वर्णक्रमीय सिद्धांत में सभी आइगेनवैल्यूज़ ​​​​सम्मलित λ हैं जिसके लिए संबंधित ईजेनफंक्शन f होता है।

इसे हेल्महोल्ट्ज़ समीकरण के रूप में जाना जाता है।

यदि Ω में परिबद्ध डोमेन Rn है , तब लाप्लासियन के ईजेनफंक्शन हिल्बर्ट अंतरिक्ष के लिए L2(Ω) अलौकिक आधार हैं । यह परिणाम अनिवार्य रूप से सुगठित ऑपरेटर स्व-आसन्न ऑपरेटरों पर वर्णक्रमीय प्रमेय से अनुसरण करता है, जो लाप्लासियन के व्युत्क्रम पर लागू होता है (जो सुगठित है, पॉइंकेयर असमानता और रेलीच-कोंड्राचोव प्रमेय द्वारा)।[4] यह भी दिखाया जा सकता है कि ईजेनफंक्शन असीम रूप से अलग-अलग कार्य हैं।[5] सामान्य रूप में , ये परिणाम लाप्लास-बेल्ट्रामी ऑपरेटर के लिए सीमा के साथ किसी भी सुगठित रीमैनियन कई गुना पर, या वास्तव में किसी भी अण्डाकार ऑपरेटर की डिरिचलेट ईजेनवेल्यू समस्या के लिए सीमित डोमेन पर चिकनी गुणांक के साथ होते हैं। कब Ω n-क्षेत्र है|n-स्फीयर, लाप्लासियन के ईजेनफंक्शन गोलाकार हार्मोनिक्स हैं।

वेक्टर लाप्लासियन

वेक्टर लाप्लास ऑपरेटर, द्वारा भी निरूपित , सदिश क्षेत्र पर परिभाषित अवकल संकारक है।[6] सदिश लाप्लासियन अदिश लाप्लासियन के समान है; जबकि अदिश लाप्लासियन अदिश क्षेत्र पर लागू होता है और अदिश मात्रा लौटाता है, सदिश लाप्लासियन सदिश क्षेत्र पर लागू होता है, सदिश मात्रा लौटाता है। जब ऑर्थोनॉर्मल कार्टेशियन निर्देशांक में गणना की जाती है, तो लौटाया गया वेक्टर फ़ील्ड प्रत्येक वेक्टर घटक पर लागू स्केलर लाप्लासियन के वेक्टर फ़ील्ड के बराबर होता है।

सदिश क्षेत्र का सदिश लाप्लासियन की प्रकार परिभाषित किया गया है

कार्टेशियन निर्देशांक में, यह बहुत सरल रूप में कम हो जाता है
जहां , , और वेक्टर क्षेत्र के घटक हैं , और प्रत्येक वेक्टर फ़ील्ड घटक के ठीक बाईं ओर (स्केलर) लाप्लास ऑपरेटर है। इसे लैग्रेंज के सूत्र की विशेष स्थिति के रूप में देखा जा सकता है; वेक्टर ट्रिपल उत्पाद देखें।

अन्य समन्वय प्रणालियों में वेक्टर लाप्लासियन की अभिव्यक्तियों के लिए डेल को बेलनाकार और गोलाकार निर्देशांक में देखें।

सामान्यीकरण

किसी भी टेंसर क्षेत्र का लाप्लासियन (टेंसर में स्केलर और वेक्टर सम्मलित हैं) को टेंसर के ग्रेडिएंट के विचलन के रूप में परिभाषित किया गया है:

विशेष मामले के लिए जहां अदिश (गणित) (शून्य डिग्री का टेन्सर) है, लाप्लासियन परिचित रूप लेता है।

यदि वेक्टर (पहली डिग्री का टेन्सर) है, ग्रेडिएंट सहसंयोजक व्युत्पन्न है जिसके परिणामस्वरूप दूसरी डिग्री का टेंसर होता है, और इसका विचलन फिर से वेक्टर होता है। उपरोक्त सदिश लाप्लासियन के सूत्र का उपयोग टेन्सर गणित से बचने के लिए किया जा सकता है और सदिश के प्रवणता के लिए नीचे दिखाए गए जैकोबियन आव्यूह के विचलन के बराबर दिखाया जा सकता है:

और, उसी प्रकार, डॉट उत्पाद, जो वेक्टर का मूल्यांकन करता है, वेक्टर के दूसरे वेक्टर (द्वितीय डिग्री का टेंसर) के प्रवणता द्वारा आव्यूह के उत्पाद के रूप में देखा जा सकता है:
यह पहचान समन्वय निर्भर परिणाम है और सामान्य नहीं है।

भौतिकी में प्रयोग करें

सदिश लाप्लासियन के उपयोग का उदाहरण न्यूटोनियन द्रव असंपीड्य प्रवाह के लिए नेवियर-स्टोक्स समीकरण है:

जहां शब्द वेग क्षेत्र के वेक्टर लाप्लासियन के साथ है तरल पदार्थ में चिपचिपापन तनाव (भौतिकी) का प्रतिनिधित्व करता है।

अन्य उदाहरण विद्युत क्षेत्र के लिए तरंग समीकरण है जिसे आवेशों और धाराओं की अनुपस्थिति में मैक्सवेल के समीकरणों से प्राप्त किया जा सकता है:

इस समीकरण को इस प्रकार भी लिखा जा सकता है:
कहां
क्लेन-गॉर्डन समीकरण में प्रयुक्त डी'अलेम्बर्टियन है।

सामान्यीकरण

लाप्लासियन के संस्करण को परिभाषित किया जा सकता है जहां भी डिरिचलेट ऊर्जा समझ में आती है, जो कि डिरिचलेट रूपों का सिद्धांत है। अतिरिक्त संरचना वाले रिक्त स्थान के लिए, लाप्लासियन के अधिक स्पष्ट विवरण इस प्रकार दिए जा सकते हैं।

लाप्लास-बेल्ट्रामी ऑपरेटर

लाप्लासियन को अण्डाकार ऑपरेटर के लिए भी सामान्यीकृत किया जा सकता है जिसे लाप्लास-बेल्ट्रामी ऑपरेटर कहा जाता है जिसे रीमैनियन मैनिफोल्ड पर परिभाषित किया गया है। लाप्लास-बेल्ट्रामी ऑपरेटर, जब फलन पर लागू होता है, ट्रेस (रैखिक बीजगणित) होता है (tr) फलन के हेसियन आव्यूह का:

जहां मीट्रिक टेंसर के व्युत्क्रम के संबंध में ट्रेस लिया जाता है। लाप्लास-बेल्ट्रामी ऑपरेटर को ऑपरेटर (जिसे लाप्लास-बेल्ट्रामी ऑपरेटर भी कहा जाता है) के लिए सामान्यीकृत किया जा सकता है, जो समान सूत्र द्वारा टेन्सर क्षेत्रों पर संचालित होता है।

लाप्लास ऑपरेटर का अन्य सामान्यीकरण जो छद्म-रिमेंनियन मैनिफोल्ड्स पर उपलब्ध है, बाहरी व्युत्पन्न का उपयोग करता है, जिसके संदर्भ में जियोमीटर के लाप्लासियन को व्यक्त किया जाता है

यहां δ कोडिफ़रेंशियल है, जिसे हॉज स्टार ऑपरेटर और बाहरी व्युत्पन्न के रूप में भी व्यक्त किया जा सकता है। यह ऑपरेटर ऊपर परिभाषित विश्लेषक के लाप्लासियन से संकेत में भिन्न है। अधिक सामान्यतः, हॉज लाप्लासियन को विभेदक रूपों पर परिभाषित किया गया है α द्वारा
इसे लाप्लास-बेल्ट्रामी ऑपरेटर लाप्लास-डी_रहम_ऑपरेटर|लाप्लास-डी राम ऑपरेटर के रूप में जाना जाता है, जो वीटजेनबॉक पहचान द्वारा लाप्लास-बेल्ट्रामी ऑपरेटर से संबंधित है।

डी'अलेम्बर्टियन

लाप्लासियन को गैर-यूक्लिडियन रिक्त स्थान के कुछ तरीकों से सामान्यीकृत किया जा सकता है, जहां यह अंडाकार ऑपरेटर, हाइपरबोलिक ऑपरेटर, या अल्ट्राहाइपरबोलिक ऑपरेटर हो सकता है।

मिन्कोव्स्की अंतरिक्ष में लाप्लास-बेल्ट्रामी ऑपरेटर डी'अलेम्बर्ट ऑपरेटर बन जाता है या डी'अलेम्बर्टियन:

यह लैपलेस ऑपरेटर का सामान्यीकरण इस अर्थ में है कि यह अंतर ऑपरेटर है जो अंतर्निहित स्थान के आइसोमेट्री समूह के अनुसार अपरिवर्तनीय है और समय-स्वतंत्र कार्यों तक सीमित होने पर यह लैपलेस ऑपरेटर को कम कर देता है। यहां मीट्रिक का समग्र चिह्न इस प्रकार चुना जाता है कि ऑपरेटर के स्थानिक भाग नकारात्मक संकेत स्वीकार करते हैं, जो उच्च-ऊर्जा कण भौतिकी में सामान्य सम्मेलन है। डी'अलेम्बर्ट ऑपरेटर को वेव ऑपरेटर के रूप में भी जाना जाता है क्योंकि यह वेव समीकरणों में दिखाई देने वाला डिफरेंशियल ऑपरेटर है, और यह क्लेन-गॉर्डन समीकरण का भी हिस्सा है, जो द्रव्यमान रहित मामले में वेव समीकरण को कम करता है।

का अतिरिक्त कारक c भौतिकी में मीट्रिक की आवश्यकता होती है यदि स्थान और समय को विभिन्न इकाइयों में मापा जाता है; समान कारक की आवश्यकता होगी यदि, उदाहरण के लिए, x दिशा मीटर में मापी गई जबकि y दिशा सेंटीमीटर में मापी गई। वास्तव में, सैद्धांतिक भौतिक विज्ञानी सामान्यतः ऐसी इकाइयों में काम करते हैं c = 1 समीकरण को सरल बनाने के लिए।

डी'अलेम्बर्ट ऑपरेटर छद्म-रीमैनियन मैनिफोल्ड्स पर हाइपरबोलिक ऑपरेटर के लिए सामान्यीकृत करता है।

यह भी देखें

  • लाप्लास-बेल्ट्रामी संचालिका, यूक्लिडियन अंतरिक्ष में सबमनीफोल्ड का सामान्यीकरण और रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड।
  • वेक्टर लाप्लासियन ऑपरेटर, लाप्लासियन से सदिश क्षेत्रों का सामान्यीकरण।
  • डिफरेंशियल ज्योमेट्री में लाप्लास ऑपरेटर्स।
  • असतत लाप्लास ऑपरेटर, रेखांकन और ग्रिड पर परिभाषित निरंतर लाप्लासियन का परिमित-अंतर एनालॉग है।
  • लाप्लासियन मूर्ति प्रोद्योगिकी और कंप्यूटर विज़न में सामान्य ऑपरेटर है (गॉसियन, ब्लॉब डिटेक्शन और स्केल स्पेस का लाप्लासियन देखें)।
  • रिमेंनियन ज्यामिति में सूत्रों की सूची में क्रिस्टोफेल प्रतीकों के संदर्भ में लाप्लासियन के लिए भाव सम्मलित हैं।
  • वेइल की लेम्मा (लाप्लास समीकरण)।
  • अर्नशॉ की प्रमेय जो दर्शाती है कि स्थिर स्थिर गुरुत्वाकर्षण, इलेक्ट्रोस्टैटिक या चुंबकीय निलंबन असंभव है।
  • डेल बेलनाकार और गोलाकार निर्देशांक में।
  • अन्य स्थितियों में लाप्लासियन को परिभाषित किया गया है: फ्रैक्टल्स पर विश्लेषण, टाइम स्केल कैलकुलस और डिस्क्रीट एक्सटीरियर कैलकुलस।

टिप्पणियाँ

  1. Evans 1998, §2.2
  2. Ovall, Jeffrey S. (2016-03-01). "द लाप्लासियन एंड मीन एंड एक्सट्रीम वैल्यूज़" (PDF). The American Mathematical Monthly. 123 (3): 287–291. doi:10.4169/amer.math.monthly.123.3.287. S2CID 124943537.
  3. Archived at Ghostarchive and the Wayback Machine: Grinfeld, Pavel. "The Voss-Weyl Formula". YouTube (in English). Retrieved 9 January 2018.
  4. Gilbarg & Trudinger 2001, Theorem 8.6
  5. Gilbarg & Trudinger 2001, Corollary 8.11
  6. MathWorld. "वेक्टर लाप्लासियन".


संदर्भ


आगे की पढाई


इस पेज में लापता आंतरिक लिंक की सूची

बाहरी कड़ियाँ

श्रेणी:विभेदक संचालक श्रेणी:अण्डाकार आंशिक अवकल समीकरण श्रेणी:फूरियर विश्लेषण संचालक श्रेणी: हार्मोनिक कार्य श्रेणी: कैलकुलस में लीनियर ऑपरेटर्स श्रेणी:बहुभिन्नरूपी कलन