असतत बाहरी कलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== असतत [[बाहरी व्युत्पन्न]] == | == असतत [[बाहरी व्युत्पन्न]] == | ||
स्टोक्स की प्रमेय एक अवकल (n - 1)-रूप ω के समाकल को एक n-विम बहुविध M की [[सीमा (टोपोलॉजी)]] ∂M पर dω के समाकल (ω के बाह्य अवकलज, और M पर अवकल n-रूप) से संबंधित करती है। | स्टोक्स की प्रमेय एक अवकल (n - 1)-रूप ω के समाकल को एक n-विम बहुविध M की [[सीमा (टोपोलॉजी)]] ∂M पर dω के समाकल (ω के [[आयाम|बाह्य]] [[आयाम|अवकलज]], और M पर अवकल n-रूप) से संबंधित करती है। वकलन (एन − 1)-रूप ω [[सीमा (टोपोलॉजी)]] पर ∂एम एक एन-[[आयाम]]ी कई गुना एम के अभिन्न अंग के लिए (ω के बाहरी व्युत्पन्न, और एक अंतर एम पर एन-फॉर्म) एम पर ही: | ||
:<math>\int_{M} \mathrm{d} \omega = \int_{\partial M} \omega.</math> | :<math>\int_{M} \mathrm{d} \omega = \int_{\partial M} \omega.</math> |
Revision as of 16:44, 9 May 2023
गणित में, डिस्क्रीट एक्सटर्नल कैलकुलस (डीईसी) एक्सटर्नल बीजगणित का विस्तार है, जिसमें ग्राफ सिद्धांत , परिमित तत्व विधि, और वर्तमान में सामान्य पॉलीगोनल मेश (गैर-फ्लैट और गैर-उत्तल) भी सम्मिलित हैं।[1] परिमित तत्व विधियों में सुधार और विश्लेषण करने में डीईसी विधियां बहुत शक्तिशाली सिद्ध हुई हैं: उदाहरण के लिए, डीईसी-आधारित विधियां स्पष्ट परिणाम प्राप्त करने के लिए अत्यधिक गैर-समान जालों के उपयोग की अनुमति देती हैं। गैर-समान मेश लाभदायक होते हैं क्योंकि वे बड़े तत्वों के उपयोग की अनुमति देते हैं जहां सिम्युलेटेड होने की प्रक्रिया अपेक्षाकृत सरल होती है, ठीक रिज़ॉल्यूशन के विपरीत जहां प्रक्रिया जटिल हो सकती है (जैसे, द्रव प्रवाह में बाधा के पास), कम कम्प्यूटेशनल शक्ति का उपयोग करते समय यदि समान रूप से महीन जाली का उपयोग किया जाता है।
रूप से महीन जाली का उपयोग किया जाता है।
असतत बाहरी व्युत्पन्न
स्टोक्स की प्रमेय एक अवकल (n - 1)-रूप ω के समाकल को एक n-विम बहुविध M की सीमा (टोपोलॉजी) ∂M पर dω के समाकल (ω के बाह्य अवकलज, और M पर अवकल n-रूप) से संबंधित करती है। वकलन (एन − 1)-रूप ω सीमा (टोपोलॉजी) पर ∂एम एक एन-आयामी कई गुना एम के अभिन्न अंग के लिए (ω के बाहरी व्युत्पन्न, और एक अंतर एम पर एन-फॉर्म) एम पर ही:
एक अंतर के-रूपों को रैखिक ऑपरेटरों के रूप में सोच सकता है जो अंतरिक्ष के के-आयामी बिट्स पर कार्य करते हैं, इस मामले में एक दोहरी जोड़ी के लिए ब्रा-केट नोटेशन का उपयोग करना पसंद कर सकते हैं। इस अंकन में, स्टोक्स प्रमेय को इस प्रकार पढ़ा जाता है
परिमित तत्व विश्लेषण में, पहला चरण अक्सर एक त्रिकोणासन (टोपोलॉजी), टी द्वारा ब्याज के डोमेन का अनुमान होता है। उदाहरण के लिए, एक वक्र को सीधी रेखा खंडों के संघ के रूप में अनुमानित किया जाएगा; एक सतह को त्रिभुजों के एक संघ द्वारा अनुमानित किया जाएगा, जिनके किनारे सीधी रेखा के खंड हैं, जो स्वयं बिंदुओं में समाप्त होते हैं। टोपोलॉजिस्ट इस तरह के निर्माण को एक साधारण परिसर के रूप में संदर्भित करेंगे। इस त्रिकोणासन/सरल परिसर T पर सीमा संचालक को सामान्य तरीके से परिभाषित किया गया है: उदाहरण के लिए, यदि L एक बिंदु, a, से दूसरे, b तक एक निर्देशित रेखा खंड है, तो L की सीमा ∂L औपचारिक अंतर b है − ए.
टी पर एक के-फॉर्म एक रैखिक ऑपरेटर है जो टी के के-आयामी उप परिसरों पर अभिनय करता है; उदाहरण के लिए, 0-फ़ॉर्म बिंदुओं को मान प्रदान करता है, और बिंदुओं के रैखिक संयोजनों के लिए रैखिक रूप से विस्तारित होता है; एक 1-फॉर्म एक समान रैखिक तरीके से लाइन सेगमेंट को मान प्रदान करता है। यदि ω, T पर एक k-रूप है, तो ω का 'असतत बाह्य अवकलज' dω अद्वितीय (k + 1)-रूप परिभाषित है जिससे कि स्टोक्स प्रमेय धारण करता है:
T, S के प्रत्येक (k + 1)-विमीय उपसमुच्चय के लिए।
अन्य ऑपरेटरों और संचालन जैसे असतत वेज उत्पाद,[2] हॉज स्टार, या झूठ व्युत्पन्न को भी परिभाषित किया जा सकता है।
यह भी देखें
टिप्पणियाँ
- ↑ Ptáčková, Lenka; Velho, Luiz (June 2021). "सामान्य बहुभुज जालों पर एक सरल और पूर्ण असतत बाहरी कलन". Computer Aided Geometric Design (in English). 88: 102002. doi:10.1016/j.cagd.2021.102002. S2CID 235613614.
- ↑ Ptackova, Lenka; Velho, Luiz (2017). "ए प्रीमल-टू-प्राइमल डिस्क्रिटाइजेशन ऑफ एक्सटीरियर कैलकुलस ऑन पॉलीगोनल मेशेस". Symposium on Geometry Processing 2017- Posters: 2 pages. doi:10.2312/SGP.20171204. ISSN 1727-8384.
संदर्भ
- A simple and complete discrete exterior calculus on general polygonal meshes, Ptackova, Lenka and Velho, Luiz, Computer Aided Geometric Design, 2021, DOI: 10.1016/j.cagd.2021.102002
- Discrete Calculus, Grady, Leo J., Polimeni, Jonathan R., 2010
- Hirani Thesis on Discrete Exterior Calculus
- A Primal-to-Primal Discretization of Exterior Calculus on Polygonal Meshes, Ptackova, L. and Velho, L., Symposium on Geometry Processing 2017, DOI: 10.2312/SGP.20171204
- Convergence of discrete exterior calculus approximations for Poisson problems, E. Schulz & G. Tsogtgerel, Disc. Comp. Geo. 63(2), 346 - 376, 2020
- On geometric discretization of elasticity, Arash Yavari, J. Math. Phys. 49, 022901 (2008), DOI:10.1063/1.2830977
- Discrete Differential Geometry: An Applied Introduction, Keenan Crane, 2018