गवर्निंग समीकरण: Difference between revisions
m (Neeraja moved page शासकीय समीकरण to गवर्निंग समीकरण without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
गणितीय मॉडल के ''' | गणितीय मॉडल के '''गवर्निंग समीकरण''' बताते हैं कि अधिकांश ज्ञात चर (अर्थात् [[स्वतंत्र चर]]) में परिवर्तन होने पर अज्ञात चर (अर्थात् आश्रित चर) के मान कैसे परिवर्तित होते हैं। | ||
भौतिक प्रणालियों को परिष्कार के विभिन्न स्तरों पर अभूतपूर्व रूप से प्रतिरूपित किया जा सकता है, जिसमें प्रत्येक स्तर पर प्रणाली के बारे में भिन्न-भिन्न डिग्री के विवरण पर अधिकृत करता है। इस प्रकार | भौतिक प्रणालियों को परिष्कार के विभिन्न स्तरों पर अभूतपूर्व रूप से प्रतिरूपित किया जा सकता है, जिसमें प्रत्येक स्तर पर प्रणाली के बारे में भिन्न-भिन्न डिग्री के विवरण पर अधिकृत करता है। इस प्रकार गवर्निंग समीकरण किसी दी गई प्रणाली के लिए वर्तमान में उपलब्ध सबसे विस्तृत और मौलिक [[फेनोमेनोलॉजिकल मॉडल]] का प्रतिनिधित्व करता है। | ||
उदाहरण के लिए, सबसे स्थूल स्तर पर, यूलर-बर्नौली बीम सिद्धांत केवल 1D वक्र होता है जिसका टॉर्क स्थानीय वक्रता का कार्य है। सामान्यतः टिमोचेंको-एहरेनफेस्ट बीम सिद्धांत में, बीम 2D निकाय होता है जिसका तनाव-टेंसर स्थानीय तनाव-टेंसर का कार्य है और तनाव-टेंसर इसके विरूपण का कार्य होता है। इस प्रकार तब समीकरण पीडीई प्रणाली होता हैं। ध्यान दीजिए कि परिष्कार के दोनों स्तर असाधारण होते हैं, किन्तु दूसरे की तुलना में गहरा होते है। अतः अन्य उदाहरण के रूप में, द्रव गतिकी में, [[नेवियर-स्टोक्स समीकरण]] यूलर समीकरणों (द्रव गतिकी) की तुलना में अधिक परिष्कृत होते हैं। | उदाहरण के लिए, सबसे स्थूल स्तर पर, यूलर-बर्नौली बीम सिद्धांत केवल 1D वक्र होता है जिसका टॉर्क स्थानीय वक्रता का कार्य है। सामान्यतः टिमोचेंको-एहरेनफेस्ट बीम सिद्धांत में, बीम 2D निकाय होता है जिसका तनाव-टेंसर स्थानीय तनाव-टेंसर का कार्य है और तनाव-टेंसर इसके विरूपण का कार्य होता है। इस प्रकार तब समीकरण पीडीई प्रणाली होता हैं। ध्यान दीजिए कि परिष्कार के दोनों स्तर असाधारण होते हैं, किन्तु दूसरे की तुलना में गहरा होते है। अतः अन्य उदाहरण के रूप में, द्रव गतिकी में, [[नेवियर-स्टोक्स समीकरण]] यूलर समीकरणों (द्रव गतिकी) की तुलना में अधिक परिष्कृत होते हैं। | ||
जैसे-जैसे क्षेत्र आगे बढ़ता है और अंतर्निहित तंत्रों की हमारी समझ गहरी होती जाती है, वैसे-वैसे | जैसे-जैसे क्षेत्र आगे बढ़ता है और अंतर्निहित तंत्रों की हमारी समझ गहरी होती जाती है, वैसे-वैसे गवर्निंग समीकरणों के नए अधिक त्रुटिहीन मॉडल द्वारा प्रतिस्थापित या परिष्कृत किया जा सकता है जो प्रणाली के व्यवहार का उत्तम प्रतिनिधित्व करते हैं। इन नए गवर्निंग समीकरणों को उस समय के फेनोमेनोलॉजिकल मॉडल का सबसे गहरा स्तर माना जा सकता है। | ||
== [[द्रव्यमान संतुलन]] == | == [[द्रव्यमान संतुलन]] == | ||
सामान्यतः द्रव्यमान संतुलन को भौतिक संतुलन भी कहा जाता है, भौतिक प्रणालियों के विश्लेषण के लिए द्रव्यमान के संरक्षण का अनुप्रयोग होता है। यह सबसे सरल | सामान्यतः द्रव्यमान संतुलन को भौतिक संतुलन भी कहा जाता है, भौतिक प्रणालियों के विश्लेषण के लिए द्रव्यमान के संरक्षण का अनुप्रयोग होता है। यह सबसे सरल गवर्निंग समीकरण होते है और यह प्रश्न में मात्रा पर केवल बजट (शेष गणना) होता है। | ||
<div संरेखित करें = केंद्र><math> \text{Input} + \text{Generation} = \text{Output} + \text{Accumulation} \ + \text{Consumption} </math></div> | <div संरेखित करें = केंद्र><math> \text{Input} + \text{Generation} = \text{Output} + \text{Accumulation} \ + \text{Consumption} </math></div> | ||
Line 15: | Line 15: | ||
===भौतिकी === | ===भौतिकी === | ||
गवर्निंग समीकरण<ref name="Fletcher1991">{{cite book|last1=Fletcher|first1=Clive A.J.|year=1991|title=Computational Techniques for Fluid Dynamics 2; Chapter 1; Fluid Dynamics: The Governing Equations |pages= 1–46|volume=2|publisher=Springer Berlin Heidelberg|location=Berlin / Heidelberg, Germany|isbn=978-3-642-58239-4}}</ref><ref name="Tryggvason2011">{{cite book |last1=Tryggvason |first1=Viola D. Hank Professor Gretar |title=Lecture 28 Computational Fluid Dynamics - CFD Course from B. Daly (1969) Numerical methods |publisher=Department of Aerospace and Mechanical Engineering, University of Notre Dame |year=2011 |edition=Lecture 28 CFD Course 2011 |location=Notre Dame, Indiana, US}}[http://www3.nd.edu/~gtryggva/CFD-Course/2011-Lecture-28.pdf]</ref> शास्त्रीय भौतिकी में जिनका व्याख्यान<ref name="Münchow2012">{{cite book |last1=Münchow |first1=Physical Oceanographer Ph.D. Andreas |title=व्याख्यान MAST-806 भूभौतिकीय द्रव गतिकी|publisher=University of Delaware |year=2012 |edition=Lecture MAST-806 2012 |location=Newark, Delaware, US}}[एचटीटीपी://मुइँचो.कंस.उड़ेल.ेदु/हटम्ल/क्लासेज/गफद/बुक/इंट्रोगफद्चप्त3.पीडीऍफ़]</रेफ><nowiki><ref name="Brenner2000"></nowiki>{{cite book |last1=Brenner |first1=Glover Prof. Michael P. |title=तरल पदार्थ की पतली चादरों की गतिकी भाग 1 पानी की घंटियाँ जी.आई. द्वारा। टेलर|publisher=Harvard University |year=2000 |edition=MIT course number 18.325 Spring 2000 |location=Cambridge, Massachusetts, US}}[http://www.seas.harvard.edu/brenner/taylor/handouts/waterbell/node2.html]</ref> विश्वविद्यालयों में किया जाता है, नीचे सूचीबद्ध हैं। | |||
{{div col|colwidth=30em}} | {{div col|colwidth=30em}} | ||
Line 30: | Line 30: | ||
=== मौलिक सातत्य यांत्रिकी === | === मौलिक सातत्य यांत्रिकी === | ||
[[सातत्यक यांत्रिकी|मौलिक सातत्यक यांत्रिकी]] में मूल समीकरण सभी | [[सातत्यक यांत्रिकी|मौलिक सातत्यक यांत्रिकी]] में मूल समीकरण सभी गवर्निंग समीकरण होते हैं और उनमें से प्रत्येक में समय-व्युत्पन्न शब्द होता है जो गणना करता है कि समय के साथ निर्भर चर कितना परिवर्तित होता है। इस प्रकार विलगित, घर्षण रहित/इनविसिड प्रणाली के लिए प्रथम चार समीकरण मौलिक यांत्रिकी में परिचित संरक्षण समीकरण होते हैं। | ||
डार्सी के भूजल प्रवाह के नियम में दबाव प्रवणता के कारण वॉल्यूमेट्रिक प्रवाह का रूप है। मौलिक यांत्रिकी में प्रवाह सामान्य रूप से | डार्सी के भूजल प्रवाह के नियम में दबाव प्रवणता के कारण वॉल्यूमेट्रिक प्रवाह का रूप है। मौलिक यांत्रिकी में प्रवाह सामान्य रूप से गवर्निंग समीकरण नहीं है, किन्तु सामान्यतः परिवहन घटनाओं के लिए [[परिभाषित समीकरण (भौतिकी)]] है। इस प्रकार डार्सी का नियम मूल रूप से अनुभवजन्य समीकरण के रूप में स्थापित किया गया था, किन्तु पश्चात् में अनुभवजन्य समग्र घर्षण बल शब्द के साथ संयुक्त नेवियर-स्टोक्स समीकरण के अनुमान के रूप में व्युत्पन्न होने के लिए दिखाया गया है। यह डार्सी के नियम में गवर्निंग समीकरण और पूर्ण पारगम्यता के लिए परिभाषित समीकरण के रूप में द्वंद्व की व्याख्या करता है। | ||
सामान्य रूप से संतुलन समीकरणों में [[सामग्री व्युत्पन्न]] की गैर-रैखिकता और कॉची के संवेग समीकरण और नेवियर-स्टोक्स समीकरण की जटिलताओं ने मौलिक यांत्रिकी में बुनियादी समीकरणों को सरल सन्निकटन स्थापित करने के लिए उजागर किया जाता है। | सामान्य रूप से संतुलन समीकरणों में [[सामग्री व्युत्पन्न]] की गैर-रैखिकता और कॉची के संवेग समीकरण और नेवियर-स्टोक्स समीकरण की जटिलताओं ने मौलिक यांत्रिकी में बुनियादी समीकरणों को सरल सन्निकटन स्थापित करने के लिए उजागर किया जाता है। | ||
Line 66: | Line 66: | ||
== राज्यों का क्रम == | == राज्यों का क्रम == | ||
सामान्यतः | सामान्यतः गवर्निंग समीकरण राज्य समीकरण भी हो सकता है, समीकरण जो प्रणाली की स्थिति का वर्णन करता है और इस प्रकार वास्तव में संवैधानिक समीकरण हो सकता है जिसने "रैंक को ऊपर उठाया है" जिससे कि प्रश्न में मॉडल का तात्पर्य समय-निर्भर अवधि को सम्मिलित करने के लिए नहीं था। यह [[तेल उत्पादन संयंत्र]] के मॉडल की स्थिति होती है जो औसतन [[स्थिर अवस्था]] मोड में कार्य करता है। इस प्रकार [[थर्मोडायनामिक संतुलन]] गणना के परिणाम कुछ नए राज्य मापदंडों के साथ अगले संतुलन गणना के लिए इनपुट डेटा होता हैं और इसी प्रकार इस स्थिति में एल्गोरिथ्म और इनपुट डेटा का अनुक्रम क्रियाओं की श्रृंखला या गणना बनाता है, जो पहले राज्य (केवल इनपुट डेटा पर आधारित) से अंतिम स्थिति में राज्यों के परिवर्तन का वर्णन करता है जो अंततः गणना अनुक्रम से बाहर आता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 19:59, 24 May 2023
गणितीय मॉडल के गवर्निंग समीकरण बताते हैं कि अधिकांश ज्ञात चर (अर्थात् स्वतंत्र चर) में परिवर्तन होने पर अज्ञात चर (अर्थात् आश्रित चर) के मान कैसे परिवर्तित होते हैं।
भौतिक प्रणालियों को परिष्कार के विभिन्न स्तरों पर अभूतपूर्व रूप से प्रतिरूपित किया जा सकता है, जिसमें प्रत्येक स्तर पर प्रणाली के बारे में भिन्न-भिन्न डिग्री के विवरण पर अधिकृत करता है। इस प्रकार गवर्निंग समीकरण किसी दी गई प्रणाली के लिए वर्तमान में उपलब्ध सबसे विस्तृत और मौलिक फेनोमेनोलॉजिकल मॉडल का प्रतिनिधित्व करता है।
उदाहरण के लिए, सबसे स्थूल स्तर पर, यूलर-बर्नौली बीम सिद्धांत केवल 1D वक्र होता है जिसका टॉर्क स्थानीय वक्रता का कार्य है। सामान्यतः टिमोचेंको-एहरेनफेस्ट बीम सिद्धांत में, बीम 2D निकाय होता है जिसका तनाव-टेंसर स्थानीय तनाव-टेंसर का कार्य है और तनाव-टेंसर इसके विरूपण का कार्य होता है। इस प्रकार तब समीकरण पीडीई प्रणाली होता हैं। ध्यान दीजिए कि परिष्कार के दोनों स्तर असाधारण होते हैं, किन्तु दूसरे की तुलना में गहरा होते है। अतः अन्य उदाहरण के रूप में, द्रव गतिकी में, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) की तुलना में अधिक परिष्कृत होते हैं।
जैसे-जैसे क्षेत्र आगे बढ़ता है और अंतर्निहित तंत्रों की हमारी समझ गहरी होती जाती है, वैसे-वैसे गवर्निंग समीकरणों के नए अधिक त्रुटिहीन मॉडल द्वारा प्रतिस्थापित या परिष्कृत किया जा सकता है जो प्रणाली के व्यवहार का उत्तम प्रतिनिधित्व करते हैं। इन नए गवर्निंग समीकरणों को उस समय के फेनोमेनोलॉजिकल मॉडल का सबसे गहरा स्तर माना जा सकता है।
द्रव्यमान संतुलन
सामान्यतः द्रव्यमान संतुलन को भौतिक संतुलन भी कहा जाता है, भौतिक प्रणालियों के विश्लेषण के लिए द्रव्यमान के संरक्षण का अनुप्रयोग होता है। यह सबसे सरल गवर्निंग समीकरण होते है और यह प्रश्न में मात्रा पर केवल बजट (शेष गणना) होता है।
विभेदक समीकरण
भौतिकी
गवर्निंग समीकरण[1][2] शास्त्रीय भौतिकी में जिनका व्याख्यान[3] विश्वविद्यालयों में किया जाता है, नीचे सूचीबद्ध हैं।
मौलिक सातत्य यांत्रिकी
मौलिक सातत्यक यांत्रिकी में मूल समीकरण सभी गवर्निंग समीकरण होते हैं और उनमें से प्रत्येक में समय-व्युत्पन्न शब्द होता है जो गणना करता है कि समय के साथ निर्भर चर कितना परिवर्तित होता है। इस प्रकार विलगित, घर्षण रहित/इनविसिड प्रणाली के लिए प्रथम चार समीकरण मौलिक यांत्रिकी में परिचित संरक्षण समीकरण होते हैं।
डार्सी के भूजल प्रवाह के नियम में दबाव प्रवणता के कारण वॉल्यूमेट्रिक प्रवाह का रूप है। मौलिक यांत्रिकी में प्रवाह सामान्य रूप से गवर्निंग समीकरण नहीं है, किन्तु सामान्यतः परिवहन घटनाओं के लिए परिभाषित समीकरण (भौतिकी) है। इस प्रकार डार्सी का नियम मूल रूप से अनुभवजन्य समीकरण के रूप में स्थापित किया गया था, किन्तु पश्चात् में अनुभवजन्य समग्र घर्षण बल शब्द के साथ संयुक्त नेवियर-स्टोक्स समीकरण के अनुमान के रूप में व्युत्पन्न होने के लिए दिखाया गया है। यह डार्सी के नियम में गवर्निंग समीकरण और पूर्ण पारगम्यता के लिए परिभाषित समीकरण के रूप में द्वंद्व की व्याख्या करता है।
सामान्य रूप से संतुलन समीकरणों में सामग्री व्युत्पन्न की गैर-रैखिकता और कॉची के संवेग समीकरण और नेवियर-स्टोक्स समीकरण की जटिलताओं ने मौलिक यांत्रिकी में बुनियादी समीकरणों को सरल सन्निकटन स्थापित करने के लिए उजागर किया जाता है।
मौलिक सातत्य यांत्रिकी में अंतर समीकरणों को नियंत्रित करने के कुछ उदाहरण हैं।
- हेले-शॉ प्रवाह
- प्लेट सिद्धांत
- किरचॉफ-लव प्लेट सिद्धांत
- माइंडलिन-रीस्नर प्लेट सिद्धांत
- भ्रमिल अलगन
- कुंडलाकार पंख
- अंतरिक्ष यात्री
- अस्थिर प्रवाह के लिए परिमित मात्रा विधि
- ध्वनिक सिद्धांत
- तेजी से सख्त होना
- केल्विन का परिसंचरण प्रमेय
- सतह विकिरण आदान-प्रदान के अभिन्न समीकरण को हल करने के लिए कर्नेल फ़ंक्शन
- गैर रेखीय ध्वनिकी
- बड़ा एड़ी अनुकरण
- फोप्पल-वॉन कर्मन समीकरण
- टिमोचेंको बीम सिद्धांत
जीव विज्ञान
जीव विज्ञान के अंदर अंतर समीकरणों को नियंत्रित करने का प्रसिद्ध उदाहरण होता है।
- लोटका-वोल्तेरा समीकरण शिकार-शिकारी समीकरण होते हैं।
राज्यों का क्रम
सामान्यतः गवर्निंग समीकरण राज्य समीकरण भी हो सकता है, समीकरण जो प्रणाली की स्थिति का वर्णन करता है और इस प्रकार वास्तव में संवैधानिक समीकरण हो सकता है जिसने "रैंक को ऊपर उठाया है" जिससे कि प्रश्न में मॉडल का तात्पर्य समय-निर्भर अवधि को सम्मिलित करने के लिए नहीं था। यह तेल उत्पादन संयंत्र के मॉडल की स्थिति होती है जो औसतन स्थिर अवस्था मोड में कार्य करता है। इस प्रकार थर्मोडायनामिक संतुलन गणना के परिणाम कुछ नए राज्य मापदंडों के साथ अगले संतुलन गणना के लिए इनपुट डेटा होता हैं और इसी प्रकार इस स्थिति में एल्गोरिथ्म और इनपुट डेटा का अनुक्रम क्रियाओं की श्रृंखला या गणना बनाता है, जो पहले राज्य (केवल इनपुट डेटा पर आधारित) से अंतिम स्थिति में राज्यों के परिवर्तन का वर्णन करता है जो अंततः गणना अनुक्रम से बाहर आता है।
यह भी देखें
- संवैधानिक समीकरण
- द्रव्यमान संतुलन
- मास्टर समीकरण
- गणित का मॉडल
- आदिम समीकरण
संदर्भ
- ↑ Fletcher, Clive A.J. (1991). Computational Techniques for Fluid Dynamics 2; Chapter 1; Fluid Dynamics: The Governing Equations. Vol. 2. Berlin / Heidelberg, Germany: Springer Berlin Heidelberg. pp. 1–46. ISBN 978-3-642-58239-4.
- ↑ Tryggvason, Viola D. Hank Professor Gretar (2011). Lecture 28 Computational Fluid Dynamics - CFD Course from B. Daly (1969) Numerical methods (Lecture 28 CFD Course 2011 ed.). Notre Dame, Indiana, US: Department of Aerospace and Mechanical Engineering, University of Notre Dame.[1]
- ↑ Münchow, Physical Oceanographer Ph.D. Andreas (2012). व्याख्यान MAST-806 भूभौतिकीय द्रव गतिकी (Lecture MAST-806 2012 ed.). Newark, Delaware, US: University of Delaware.[एचटीटीपी://मुइँचो.कंस.उड़ेल.ेदु/हटम्ल/क्लासेज/गफद/बुक/इंट्रोगफद्चप्त3.पीडीऍफ़]</रेफ><ref name="Brenner2000">Brenner, Glover Prof. Michael P. (2000). तरल पदार्थ की पतली चादरों की गतिकी भाग 1 पानी की घंटियाँ जी.आई. द्वारा। टेलर (MIT course number 18.325 Spring 2000 ed.). Cambridge, Massachusetts, US: Harvard University.[2]