बहुमान फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Generalized mathematical function}} | {{Short description|Generalized mathematical function}} | ||
{{More footnotes needed|date=January 2020}} | {{More footnotes needed|date=January 2020}} | ||
{{About| | {{About|बहुमान फलन, जैसा कि उन्हें गणितीय विश्लेषण में माना जाता है।|परिवर्तनशील विश्लेषण में विचार किए गए समुच्चय मान फलन|समुच्चय मान फलन}}{{distinguish|बहुमान फलन}} | ||
गणित में '''बहुमान फलन''', जिसे बहुफलन | गणित में '''बहुमान फलन''', जिसे बहुफलन भी कहा जाता है। यह एक समुच्चय मान फलन होता है जिसमें निरंतरता के गुण होते हैं जो इसे स्थानीय रूप से सामान्य फलन के रूप में मानने की स्वीकृति देते हैं। | ||
बहुमान फलन सामान्यतः [[अंतर्निहित कार्य प्रमेय]] के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को | बहुमान फलन सामान्यतः [[अंतर्निहित कार्य प्रमेय|अंतर्निहित फलन प्रमेय]] के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को बहुमान फलन के अस्तित्व पर महत्व देने के रूप में देखा जा सकता है। विशेष रूप से अवकलनीय फलन का व्युत्क्रम फलन बहुमान फलन होता है। उदाहरण के लिए [[जटिल लघुगणक|समिश्र लघुगणक]] एक बहुमान फलन है जो घातीय फलन के व्युत्क्रम के रूप में है। इसे एक सामान्य फलन के रूप में नहीं माना जा सकता है क्योंकि जब कोई फलन 0 पर केन्द्रित वृत्त के साथ लघुगणक के एक मान का अनुसरण करता है। तो उसे एक पूर्ण मोड़ के बाद प्रारंभिक मान से एक और मान प्राप्त होता है। इस घटना को "[[मोनोड्रोमी]]" कहा जाता है। | ||
बहुमान फलन को परिभाषित करने का एक अन्य सामान्य प्रकार विश्लेषणात्मक निरंतरता है जो सामान्यतः कुछ मोनोड्रोमी उत्पन्न करता है। एक विवृत वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो प्रारंभिक मान से भिन्न होता है। | |||
बहुमान फलन अंतर समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न | बहुमान फलन अंतर समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मानों को प्रारंभिक स्थितियों द्वारा पैरामीट्रिज (प्राचलीकरण) किया जाता है। | ||
== प्रेरणा == | == प्रेरणा == | ||
बहुमान फलन शब्द की उत्पत्ति विश्लेषणात्मक निरंतरता से समिश्र विश्लेषण में हुई है। प्रायः ऐसा होता है कि एक बिंदु <math>z=a</math> के निकट में एक समिश्र विश्लेषणात्मक फलन <math>f(z)</math> का मान जानता है। निहित फलन प्रमेय <math>z=a</math> के आस-पास [[टेलर श्रृंखला]] द्वारा परिभाषित फलनों के लिए यही स्थिति है। ऐसी स्थिति में एक से प्रारम्भ होने वाले समिश्र समतल में वक्रों के साथ एकल मान फलन <math>f(z)</math> के डोमेन का विस्तार किया जा सकता है। ऐसा करने पर कोई यह प्राप्त करता है कि एक बिंदु <math>z=b</math> पर विस्तारित फलन का मान a से b तक के चुने हुए वक्र पर निर्भर करता है क्योंकि कोई भी नया मान दूसरों की तुलना में अधिक स्वाभाविक नहीं होता है। उन सभी बहुमान फलन को इसमें सम्मिलित किया गया है। | |||
उदाहरण के लिए | उदाहरण के लिए मान लीजिए कि <math>f(z)=\sqrt{z}\,</math> धनात्मक वास्तविक संख्याओं पर सामान्य [[वर्गमूल]] फलन है। कोई अपने डोमेन को समिश्र समतल में z = 1 के पास तक बढ़ा सकता है। और फिर <math>z=1</math> से प्रारम्भ होने वाले वक्रों के साथ आगे बढ़ सकता है ताकि किसी दिए गए वक्र के मान निरंतर <math>\sqrt{1}=1</math> से भिन्न हो। ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं। उदाहरण के लिए {{math|±''i''}} के लिए {{math|–1}} इस पर निर्भर करता है कि डोमेन को समिश्र समतल के ऊपरी या निचले आधे भाग के माध्यम से विस्तृत किया गया है या नहीं विस्तृत किया गया है। यह घटना बार-बार होती है और {{mvar|n}} वें मूल, लघुगणक और प्रतिलोम त्रिकोणमितीय फलनों के लिए घटित होती है। | ||
समिश्र बहुमान फलन से एकल मान फलन को परिभाषित करने के लिए एक से अधिक मानों में से एक को मुख्य मान के रूप में अलग किया जा सकता है। जो पूरे समतल पर एकल मान फलन का उत्पादन करता है जो कुछ सीमा वक्रों के साथ विवृत है। वैकल्पिक रूप से बहुमान फलन सामने से कुछ ऐसा होता है जो प्रत्येक स्थान पर निरंतर होता है। संभावित मान परिवर्तन की कीमत पर जब कोई विवृत पथ (मोनोड्रोमी) का अनुसरण करता है। तब रीमैन सतहों के सिद्धांत में इन समस्याओं का समाधान किया गया है। एक बहुमान फलन <math>f(z)</math> के किसी भी मान को बिना अलग किए एक सामान्य फलन के रूप में विचार करने के लिए डोमेन को कई-स्तरित आच्छादन समष्टि में कई गुना गुणा करता है जो कि <math>f(z)</math> से संबद्ध रीमैन सतह है। | |||
== उदाहरण == | == उदाहरण == | ||
*शून्य से बड़ी प्रत्येक [[वास्तविक संख्या]] के दो वास्तविक वर्गमूल होते हैं | *शून्य से बड़ी प्रत्येक [[वास्तविक संख्या]] के दो वास्तविक वर्गमूल होते हैं ताकि वर्गमूल को एक बहुमान फलन माना जा सके। उदाहरण के लिए, हम <math>\sqrt{4}=\pm 2=\{2,-2\}</math> लिख सकते हैं। हालाँकि शून्य का केवल एक वर्गमूल <math>\sqrt{0} =\{0\}</math> होता है। | ||
*प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और | *प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतःn का nवां वर्गमूल होता है और 0 का केवल nवाँ वर्गमूल 0 होता है। | ||
* | *सम्मिश्र लघुगणक फलन या बहुमान फलन द्वारा ग्रहण किए गए मान <math>\log(a+bi)</math> वास्तविक संख्या के लिए <math>a</math> और <math>b</math> हैं जो <math>\log{\sqrt{a^2 + b^2}} + i\arg (a+bi) + 2 \pi n i</math> के सभी [[पूर्णांक|पूर्णांकों]] के लिए <math>n</math> है। | ||
*प्रतिलोम त्रिकोणमितीय | *प्रतिलोम त्रिकोणमितीय फलन बहुमान होते हैं क्योंकि त्रिकोणमितीय फलन आवधिक होते हैं।<math display="block"> | ||
\tan\left(\tfrac{\pi}{4}\right) = \tan\left(\tfrac{5\pi}{4}\right) | \tan\left(\tfrac{\pi}{4}\right) = \tan\left(\tfrac{5\pi}{4}\right) | ||
= \tan\left({\tfrac{-3\pi}{4}}\right) = \tan\left({\tfrac{(2n+1)\pi}{4}}\right) = \cdots = 1. | = \tan\left({\tfrac{-3\pi}{4}}\right) = \tan\left({\tfrac{(2n+1)\pi}{4}}\right) = \cdots = 1. | ||
</math> | </math>जिसके परिणाम स्वरूप आर्कटान (1) सहज रूप से कई मानों {{pi}}/4, 5{{pi}}/4, −3{{pi}}/4 से संबंधित है और इसी प्रकार हम tan x के डोमेन को {{nowrap|−{{pi}}/2 < ''x'' < {{pi}}/2}} डोमेन जिस पर tan x नीरस रूप से बढ़ रहा है। tan x के मान को सीमित करके आर्कटान को एकल मान फलन के रूप में मान सकते हैं। इस प्रकार आर्कटान (एक्स) की सीमा{{nowrap|−{{pi}}/2 < ''y'' < {{pi}}/2}} बन जाती है। प्रतिबंधित डोमेन के इन मानों को मुख्य मान कहा जाता है। | ||
* विरोधी व्युत्पन्न को बहुमान फलन के रूप में माना जा सकता है। किसी फलन का प्रतिपक्षी उन फलनों का समुच्चय होता है। जिसका व्युत्पन्न वह फलन होता है। एकीकरण की निरंतरता इस तथ्य से अनुसरण करती है कि एक स्थिर फलन का व्युत्पन्न 0 होता है। | |||
* | *सम्मिश्र डोमेन पर व्युत्क्रम अतिपरवलयिक फलन बहुमान होते हैं क्योंकि अतिपरवलयिक फलन काल्पनिक अक्ष के साथ आवधिक होते हैं। वास्तव में वे आर्कोश और आर्सेच के मान को छोड़कर एकल मान के होते हैं। | ||
* | |||
ये सभी बहुमान | ये सभी बहुमान फलन के उदाहरण हैं जो गैर अंतःक्षेपक फलन से उत्पन्न होते हैं। चूंकि वर्गमूल फलन उनके इनपुट की सभी सूचनाओं को सुरक्षित नहीं रखते हैं इसलिए वे उत्क्रमणीय नहीं होते हैं। प्रायः बहुमान फलन का प्रतिबंध वर्गमूल फलन का आंशिक व्युत्क्रम होता है। | ||
== शाखा बिंदु == | == शाखा बिंदु == | ||
{{Main articles| | {{Main articles|शाखाबिन्दु}} | ||
सम्मिश्र चर के बहुमान फलनों में [[शाखा बिंदु]] होते हैं। उदाहरण के लिए nवें मूल और लघुगणक फलनों के लिए 0 एक शाखा बिंदु है। स्पर्शरेखीय फलन के लिए काल्पनिक इकाइयां i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके इन फलनों की सीमा को प्रतिबंधित एकल मान फलनों के रूप में पुनर्परिभाषित किया जा सकता है। एक शाखा बिन्दु के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है। एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है। इस प्रकार के फलन बहुस्तरीय रीमैन सतह को एक परत में अपेक्षाकृत कम कर देते है। जैसा कि वास्तविक फलनों की स्थितियों में प्रतिबंधित सीमा फलनों को मुख्य शाखा बिंदु कहा जा सकता है। | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
भौतिकी में | भौतिकी में बहुमान फलन महत्वपूर्ण भूमिका निभाते हैं। वे [[पॉल डिराक]] के [[चुंबकीय मोनोपोल]] के लिए गणितीय आधार बनाते हैं। क्रिस्टल में दोषों के सिद्धांत और पदार्थों की परिणामी [[प्लास्टिसिटी (भौतिकी)|पराप्रत्यास्थता भौतिकी]] के लिए अति तरल और अतिचालक में चक्रवात और इन प्रणालियों में [[चरण संक्रमण|प्रावस्था संक्रमण]] के लिए गलनांक और [[क्वार्क कारावास|क्वार्क सीमाबद्ध]] मे भौतिकी की कई शाखाओं में गेज क्षेत्र संरचनाओं के लिए मूल हैं।{{Citation needed|reason=reliable source needed for the paragraph|date=July 2013}} | ||
==अग्रिम पठन== | ==अग्रिम पठन== |
Revision as of 09:02, 18 May 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (January 2020) (Learn how and when to remove this template message) |
गणित में बहुमान फलन, जिसे बहुफलन भी कहा जाता है। यह एक समुच्चय मान फलन होता है जिसमें निरंतरता के गुण होते हैं जो इसे स्थानीय रूप से सामान्य फलन के रूप में मानने की स्वीकृति देते हैं।
बहुमान फलन सामान्यतः अंतर्निहित फलन प्रमेय के अनुप्रयोगों में उत्पन्न होते हैं, क्योंकि इस प्रमेय को बहुमान फलन के अस्तित्व पर महत्व देने के रूप में देखा जा सकता है। विशेष रूप से अवकलनीय फलन का व्युत्क्रम फलन बहुमान फलन होता है। उदाहरण के लिए समिश्र लघुगणक एक बहुमान फलन है जो घातीय फलन के व्युत्क्रम के रूप में है। इसे एक सामान्य फलन के रूप में नहीं माना जा सकता है क्योंकि जब कोई फलन 0 पर केन्द्रित वृत्त के साथ लघुगणक के एक मान का अनुसरण करता है। तो उसे एक पूर्ण मोड़ के बाद प्रारंभिक मान से एक और मान प्राप्त होता है। इस घटना को "मोनोड्रोमी" कहा जाता है।
बहुमान फलन को परिभाषित करने का एक अन्य सामान्य प्रकार विश्लेषणात्मक निरंतरता है जो सामान्यतः कुछ मोनोड्रोमी उत्पन्न करता है। एक विवृत वक्र के साथ विश्लेषणात्मक निरंतरता एक अंतिम मान उत्पन्न कर सकती है जो प्रारंभिक मान से भिन्न होता है।
बहुमान फलन अंतर समीकरणों के समाधान के रूप में भी उत्पन्न होते हैं, जहां विभिन्न मानों को प्रारंभिक स्थितियों द्वारा पैरामीट्रिज (प्राचलीकरण) किया जाता है।
प्रेरणा
बहुमान फलन शब्द की उत्पत्ति विश्लेषणात्मक निरंतरता से समिश्र विश्लेषण में हुई है। प्रायः ऐसा होता है कि एक बिंदु के निकट में एक समिश्र विश्लेषणात्मक फलन का मान जानता है। निहित फलन प्रमेय के आस-पास टेलर श्रृंखला द्वारा परिभाषित फलनों के लिए यही स्थिति है। ऐसी स्थिति में एक से प्रारम्भ होने वाले समिश्र समतल में वक्रों के साथ एकल मान फलन के डोमेन का विस्तार किया जा सकता है। ऐसा करने पर कोई यह प्राप्त करता है कि एक बिंदु पर विस्तारित फलन का मान a से b तक के चुने हुए वक्र पर निर्भर करता है क्योंकि कोई भी नया मान दूसरों की तुलना में अधिक स्वाभाविक नहीं होता है। उन सभी बहुमान फलन को इसमें सम्मिलित किया गया है।
उदाहरण के लिए मान लीजिए कि धनात्मक वास्तविक संख्याओं पर सामान्य वर्गमूल फलन है। कोई अपने डोमेन को समिश्र समतल में z = 1 के पास तक बढ़ा सकता है। और फिर से प्रारम्भ होने वाले वक्रों के साथ आगे बढ़ सकता है ताकि किसी दिए गए वक्र के मान निरंतर से भिन्न हो। ऋणात्मक वास्तविक संख्याओं तक विस्तार करने पर वर्गमूल के लिए दो विपरीत मान प्राप्त होते हैं। उदाहरण के लिए ±i के लिए –1 इस पर निर्भर करता है कि डोमेन को समिश्र समतल के ऊपरी या निचले आधे भाग के माध्यम से विस्तृत किया गया है या नहीं विस्तृत किया गया है। यह घटना बार-बार होती है और n वें मूल, लघुगणक और प्रतिलोम त्रिकोणमितीय फलनों के लिए घटित होती है।
समिश्र बहुमान फलन से एकल मान फलन को परिभाषित करने के लिए एक से अधिक मानों में से एक को मुख्य मान के रूप में अलग किया जा सकता है। जो पूरे समतल पर एकल मान फलन का उत्पादन करता है जो कुछ सीमा वक्रों के साथ विवृत है। वैकल्पिक रूप से बहुमान फलन सामने से कुछ ऐसा होता है जो प्रत्येक स्थान पर निरंतर होता है। संभावित मान परिवर्तन की कीमत पर जब कोई विवृत पथ (मोनोड्रोमी) का अनुसरण करता है। तब रीमैन सतहों के सिद्धांत में इन समस्याओं का समाधान किया गया है। एक बहुमान फलन के किसी भी मान को बिना अलग किए एक सामान्य फलन के रूप में विचार करने के लिए डोमेन को कई-स्तरित आच्छादन समष्टि में कई गुना गुणा करता है जो कि से संबद्ध रीमैन सतह है।
उदाहरण
- शून्य से बड़ी प्रत्येक वास्तविक संख्या के दो वास्तविक वर्गमूल होते हैं ताकि वर्गमूल को एक बहुमान फलन माना जा सके। उदाहरण के लिए, हम लिख सकते हैं। हालाँकि शून्य का केवल एक वर्गमूल होता है।
- प्रत्येक अशून्य सम्मिश्र संख्या में दो वर्गमूल, तीन घनमूल और सामान्यतःn का nवां वर्गमूल होता है और 0 का केवल nवाँ वर्गमूल 0 होता है।
- सम्मिश्र लघुगणक फलन या बहुमान फलन द्वारा ग्रहण किए गए मान वास्तविक संख्या के लिए और हैं जो के सभी पूर्णांकों के लिए है।
- प्रतिलोम त्रिकोणमितीय फलन बहुमान होते हैं क्योंकि त्रिकोणमितीय फलन आवधिक होते हैं।जिसके परिणाम स्वरूप आर्कटान (1) सहज रूप से कई मानों π/4, 5π/4, −3π/4 से संबंधित है और इसी प्रकार हम tan x के डोमेन को −π/2 < x < π/2 डोमेन जिस पर tan x नीरस रूप से बढ़ रहा है। tan x के मान को सीमित करके आर्कटान को एकल मान फलन के रूप में मान सकते हैं। इस प्रकार आर्कटान (एक्स) की सीमा−π/2 < y < π/2 बन जाती है। प्रतिबंधित डोमेन के इन मानों को मुख्य मान कहा जाता है।
- विरोधी व्युत्पन्न को बहुमान फलन के रूप में माना जा सकता है। किसी फलन का प्रतिपक्षी उन फलनों का समुच्चय होता है। जिसका व्युत्पन्न वह फलन होता है। एकीकरण की निरंतरता इस तथ्य से अनुसरण करती है कि एक स्थिर फलन का व्युत्पन्न 0 होता है।
- सम्मिश्र डोमेन पर व्युत्क्रम अतिपरवलयिक फलन बहुमान होते हैं क्योंकि अतिपरवलयिक फलन काल्पनिक अक्ष के साथ आवधिक होते हैं। वास्तव में वे आर्कोश और आर्सेच के मान को छोड़कर एकल मान के होते हैं।
ये सभी बहुमान फलन के उदाहरण हैं जो गैर अंतःक्षेपक फलन से उत्पन्न होते हैं। चूंकि वर्गमूल फलन उनके इनपुट की सभी सूचनाओं को सुरक्षित नहीं रखते हैं इसलिए वे उत्क्रमणीय नहीं होते हैं। प्रायः बहुमान फलन का प्रतिबंध वर्गमूल फलन का आंशिक व्युत्क्रम होता है।
शाखा बिंदु
सम्मिश्र चर के बहुमान फलनों में शाखा बिंदु होते हैं। उदाहरण के लिए nवें मूल और लघुगणक फलनों के लिए 0 एक शाखा बिंदु है। स्पर्शरेखीय फलन के लिए काल्पनिक इकाइयां i और -i शाखा बिंदु हैं। शाखा बिंदुओं का उपयोग करके इन फलनों की सीमा को प्रतिबंधित एकल मान फलनों के रूप में पुनर्परिभाषित किया जा सकता है। एक शाखा बिन्दु के उपयोग के माध्यम से एक उपयुक्त अंतराल पाया जा सकता है। एक प्रकार का वक्र जो शाखा बिंदुओं के जोड़े को जोड़ता है। इस प्रकार के फलन बहुस्तरीय रीमैन सतह को एक परत में अपेक्षाकृत कम कर देते है। जैसा कि वास्तविक फलनों की स्थितियों में प्रतिबंधित सीमा फलनों को मुख्य शाखा बिंदु कहा जा सकता है।
अनुप्रयोग
भौतिकी में बहुमान फलन महत्वपूर्ण भूमिका निभाते हैं। वे पॉल डिराक के चुंबकीय मोनोपोल के लिए गणितीय आधार बनाते हैं। क्रिस्टल में दोषों के सिद्धांत और पदार्थों की परिणामी पराप्रत्यास्थता भौतिकी के लिए अति तरल और अतिचालक में चक्रवात और इन प्रणालियों में प्रावस्था संक्रमण के लिए गलनांक और क्वार्क सीमाबद्ध मे भौतिकी की कई शाखाओं में गेज क्षेत्र संरचनाओं के लिए मूल हैं।[citation needed]
अग्रिम पठन
- H. Kleinert, Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation, World Scientific (Singapore, 2008) (also available online)
- H. Kleinert, Gauge Fields in Condensed Matter, Vol. I: Superflow and Vortex Lines, 1–742, Vol. II: Stresses and Defects, 743–1456, World Scientific, Singapore, 1989 (also available online: Vol. I and Vol. II)