अतार्किक प्रतीक: Difference between revisions

From Vigyanwiki
No edit summary
Line 68: Line 68:
[[Category:Pages with empty portal template]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Pages with script errors]]
[[Category:Vigyan Ready]]

Revision as of 10:10, 26 May 2023

तर्कशास्त्र में, अभिव्यक्तियों को निर्मित करने के लिए उपयोग की जाने वाली औपचारिक भाषाओं में प्रतीक (औपचारिक) प्रयुक्त होते हैं, जिन्हें सामान्यतः तार्किक स्थिरांक और चर (गणित) में विभाजित किया जा सकता है। किसी भाषा के स्थिरांक को तार्किक स्थिरांक और गैर-तार्किक प्रतीकों (कभी-कभी तार्किक और गैर-तार्किक स्थिरांक भी कहा जाता है) में विभाजित किया जा सकता है।

प्रथम-क्रम तर्क की भाषा के गैर-तार्किक प्रतीकों में निर्धारक तर्क (गणितीय तर्क) और अलग-अलग स्थिरांक सम्मिलित हैं। इनमें ऐसे प्रतीक सम्मिलित हैं, जो एक व्याख्या में, अलग-अलग स्थिरांक, चर (गणित), फलन (गणित), या निर्धारक तर्क (तर्क) के लिए स्थिर हो सकते हैं। प्रथम-क्रम तर्क की किसी वर्णमाला पर एक औपचारिक भाषा है जिसमें इसके गैर-तार्किक प्रतीक और इसके तार्किक स्थिरांक होते हैं। उत्तरार्द्ध में तार्किक संयोजक, परिमाणक (तर्क) तर्क और चर सम्मिलित हैं जो कथन (तर्क) के लिए स्थिर हैं।

गैर-तार्किक प्रतीक में सिर्फ अर्थ या शब्दार्थ सामग्री होती है जब इसे किसी व्याख्या (तर्क) के माध्यम से प्रतिपादित किया जाता है। परिणामतः, एक गैर-तार्किक प्रतीक वाले एक वाक्य (गणितीय तर्क) में व्याख्या के अलावा अर्थ का अभाव होता है, इसलिए एक वाक्य को 'व्याख्या के तहत सही या गलत' कहा जाता है। इन अवधारणाओं को पहले क्रम के तर्क में परिभाषित और चर्चा की गई है। पहले क्रम के तर्क पर लेख, और विशेष रूप से पहले क्रम के तर्क सिंटेक्स का उल्लेख किया गया।

तार्किक स्थिरांक, इसके विपरीत, सभी व्याख्याओं में समान अर्थ रखते हैं। उनमें सत्य-कार्यात्मक संयोजकों के लिए प्रतीक सम्मिलित हैं (जैसे कि और, या, नहीं, तात्पर्य, और तार्किक तुल्यता) और सभी के लिए परिमाणकों के प्रतीक उपलब्ध होते हैं।

समानता (गणित) प्रतीक को कभी-कभी गैर-तार्किक प्रतीक के रूप में और कभी-कभी तर्क के प्रतीक के रूप में माना जाता है। यदि इसे एक तार्किक प्रतीक के रूप में माना जाता है, तो वास्तविक समानता का उपयोग करते हुए समानता चिह्न की व्याख्या करने के लिए किसी भी अन्य व्याख्या की आवश्यकता होगी; यदि एक गैर-तार्किक प्रतीक के रूप में व्याख्या की जाती है, तो इसकी व्याख्या एक मनमाना तुल्यता संबंध द्वारा की जा सकती है।

सांकेतिक चिन्ह

सांकेतिक चिन्ह गैर-तार्किक स्थिरांक का एक समुच्चय है, जिसमें अतिरिक्त जानकारी के साथ-साथ प्रत्येक प्रतीक को एक निरंतर प्रतीक, या एक विशिष्ट ऐरिटी n (एक प्राकृतिक संख्या), या एक विशिष्ट ऐरिटी के एक संबंध प्रतीक के रूप में पहचानना है। अतिरिक्त जानकारी नियंत्रित करती है कि कैसे गैर-तार्किक प्रतीकों का उपयोग शब्दों और सूत्रों को निर्मित करने के लिए किया जा सकता है। उदाहरण के लिए यदि f एक बाइनरी फलन प्रतीक है और c एक स्थिर प्रतीक है, तो f(x, c) एक पद है, लेकिन c(x, f) एक पद नहीं है। संबंध प्रतीकों का उपयोग शब्दों में नहीं किया जा सकता है, लेकिन उनका उपयोग एक या एक से अधिक शब्दों को एक परमाणु सूत्र में संयोजित करने के लिए किया जा सकता है।

उदाहरण के लिए एक सांकेतिक चिन्ह में एक बाइनरी फलन सांकेतिक चिन्ह +, एक स्थिर सांकेतिक चिन्ह 0 और एक बाइनरी सम्बन्ध सांकेतिक चिन्ह < हो सकता है।

प्रतिरूप

किसी सांकेतिक चिन्ह पर संरचनाएं, जिसे प्रतिरूप के रूप में भी जाना जाता है, एक सांकेतिक चिन्ह के लिए औपचारिक शब्दार्थ (तर्क) प्रदान करता है और प्रथम-क्रम तर्क उस पर प्रथम-क्रम भाषा के प्रतिरूप को संदर्भित करता है।

किसी सांकेतिक चिन्ह पर एक संरचना में समुच्चय होता है, जिसे सम्भाषण के डोमेन के रूप में जाना जाता है, साथ में गैर-तार्किक प्रतीकों के व्याख्या कार्य के साथ प्रत्येक स्थिर प्रतीक की व्याख्या एक अवयव द्वारा की जाती है और एक -एरी की व्याख्या फलन सांकेतिक चिन्ह एक -एरी है। फलन एक फलन से डोमेन के कार्तीयन उत्पाद को डोमेन में ही फोल्ड करें। प्रत्येक -एरी सम्बन्ध सांकेतिक चिन्ह की व्याख्या a द्वारा की जाती है जिसमे -ऐरे डोमेन पर संबंध वह है, के एक सबसमुच्चय द्वारा ऊपर उल्लिखित सांकेतिक चिन्ह पर संरचना का एक उदाहरण पूर्णांक का क्रमबद्ध समूह है। जो कि इसका डोमेन समुच्चय है पूर्णांकों का बाइनरी फलन प्रतीक जोड़ द्वारा व्याख्या की जाती है, निरंतर प्रतीक 0 को योगात्मक पहचान द्वारा, और द्विआधारी संबंध प्रतीक < से कम संबंध द्वारा प्रतिरूप को संदर्भित करता है।

अनौपचारिक शब्दार्थ

गणितीय संदर्भ के बाहर, अधिक अनौपचारिक व्याख्याओं के साथ काम करना अधिकांशतः अधिक उपयुक्त होता है।

वर्णनात्मक संकेत

रुडोल्फ कार्नाप ने एक निश्चित प्रकार की व्याख्या (तर्क) के तहत एक औपचारिक प्रणाली के तार्किक और गैर-तार्किक प्रतीकों (जिसे उन्होंने वर्णनात्मक संकेत कहा) के बीच अंतर करने वाली एक शब्दावली प्रस्तुत की, जिसे वे दुनिया में वर्णित करते हैं।

एक वर्णनात्मक संकेत को औपचारिक भाषा के किसी भी प्रतीक के रूप में परिभाषित किया जाता है जो दुनिया में चीजों या प्रक्रियाओं, या गुणों या चीजों के संबंधों को निर्दिष्ट करता है। यह तार्किक संकेतों के विपरीत है जो वस्तुओं की दुनिया में किसी भी चीज़ को निर्दिष्ट नहीं करते हैं। तार्किक संकेतों का उपयोग भाषा के तार्किक नियमों द्वारा निर्धारित किया जाता है, जबकि अर्थ मनमाने ढंग से वर्णनात्मक संकेतों से जुड़ा होता है जब वे व्यक्तियों के दिए गए डोमेन पर लागू होते हैं।[1]


यह भी देखें







संदर्भ

  1. Carnap, Rudolf (1958). Introduction to symbolic logic and its applications. New York: Dover.
Notes
  • Hinman, P. (2005), Fundamentals of Mathematical Logic, A K Peters, ISBN 978-1-56881-262-5


बाहरी संबंध